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ABSTRACT: Inhaled chemicals can cause dysfunction in the lung
surfactant, a protein−lipid complex with critical biophysical and biochemical
functions. This inhibition has many structure-related and dose-dependent
mechanisms, making hazard identification challenging. We developed
quantitative structure−activity relationships for predicting lung surfactant
inhibition using machine learning. Logistic regression, support vector
machines, random forest, gradient-boosted trees, prior-data-fitted networks,
and multilayer perceptron were evaluated as methods. Multilayer perceptron
had the strongest performance with 96% accuracy and an F1 score of 0.97.
Support vector machines and logistic regression also performed well with
lower computation costs. This serves as a proof-of-concept for efficient
hazard screening in the emerging area of lung surfactant inhibition.

KEYWORDS: machine learning, QSAR, lung surfactant, hazard screening, inhalation toxicology

■ INTRODUCTION
Inhaled chemicals and particles can affect lung health in
multiple ways. In addition to biochemical effects on the cells,
they can disrupt the lung surfactant (LS), a protein−lipid
complex that forms a thin film at the gas exchange surface.1 LS
plays biophysical roles in breathing mechanics and particle
clearance, as well as biochemical roles in particle trans-
formation and immune regulation.2 Some inhaled substances,
including particles, that reach the alveoli can alter the
properties or damage the components of LS. This mode of
dysfunction is implicated in respiratory distress syndrome in
infants and adults.3 Among the many chemicals humans are
exposed to, identifying potential surfactant inhibitors is
important for toxicologists and risk assessors.4−6

One way to accomplish this is using quantitative structure−
activity relationships (QSARs), consisting of regression or
classification models that attempt to relate molecular
descriptors of chemicals to biological response.7,8 Tradition-
ally, QSAR models depend on theoretical or empirical
frameworks and limit each task to a similar set of molecules.
Theoretical knowledge in bioavailability, kinetics, and binding
affinities between function groups and proteins would be
combined to predict the effects on a receptor or whole
organism.9,10 These traditional methods fall short because of
the burden of many complex considerations and the difficulty
in translating results from one class of chemicals to another.11

To remedy this, recent efforts have turned to approaches that

start with a blank slate and discover the relationships between
agnostic structural features and the desired output. Machine
learning offers many tools for building these black-box models,
for which it is unnecessary to predefine or fine-tune every
interaction.12−14

This study used binary classification models to identify
potential surfactant inhibitors. Multiple machine learning
models were evaluated across low molecular weight chemicals
through several cross-validation metrics. A set of 43 small-
molecule chemicals were chosen, 19 from Liu et al. and 24
from Da Silva et al.15,16 All chemicals were tested using a
constrained drop surfactometer (CDS) and labeled as
surfactant inhibitors if the average minimum surface tension
from cycling was increased beyond 10 mN m−1. This threshold
is clinically associated with LS dysfunction and atelectasis.
While there are other studies in this emerging field, they may
use alternative methods or evaluate only a few chemicals, so
these data were chosen to ensure consistency in determining
surfactant inhibition. The results serve as a starting point for
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building predictive models that can be used to screen hundreds
or thousands of other chemicals.17

■ METHODS

Constrained Drop Surfactometer
The constrained drop surfactometer (CDS) was purchased from
BioSurface Instruments, LLC (Manoa, HI) and operated using
Axisymmetric Drop Shape Analysis v 2.0 (BioSurface Instruments,
LLC). The details of chemical testing using the CDS are described in
Liu et al.15 The data for an additional 24 chemicals using the same
method were obtained from Da Silva et al.16 Collectively, the 43

chemicals were encoded by their structure using the simplified
molecular input line entry system (SMILES) and a binary 0/1 label
for whether the chemical was a surfactant inhibitor.

Molecular Descriptors

A set of 1826 molecular descriptors suitable for QSAR construction
was calculated from the SMILES structures of chemicals using the
open-source chemoinformatics library RDKit in conjunction with
Mordred.18 Mordred offers a large library of simplistic, 2D, and 3D
descriptors as well as fast calculation speeds.

Table 1. Chemicals for the Training and Cross-Validation of QSAR Modelsa

name CAS # SMILES label

(3-methoxy-2-methylpropyl)benzene 120811-92-9 CC(CC1�CC�CC�C1)COC 1
(vinyloxy)cyclohexane 2182-55-0 C�COC1CCCCC1 1
1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethanone 774-55-0 CC(�O)C1�CC2�C(CCCC2)C�C1 1
1-aminoethanol 75-39-8 CC(N)O 1
1-butanol 71-36-3 CCCCO 0
1-ethyl-2-pyrrolidinone 2687-91-4 CCN1CCCC1�O 0
1-phenylethenyl acetate 2206-94-2 CC(�O)OC(=C)C1�CC�CC�C1 1
2-buten-1-one, 1-(2,2-dimethyl-6-
methylenecyclohexyl)-

35087-49-1 CC�CC(�O)C1C(�C)CCCC1(C)C 1

2-butyne-1,4-diol 110-65-6 C(C#CCO)O 0
2-tridecenal 7069-41-2 CCCCCCCCCCC�CC�O 1
6-phenyl-1,3,5-triazine-2,4-diamine 91-76-9 C1�CC�C(C�C1)C2�NC(=NC(=N2)N)N 0
9-undecenal 143-14-6 CC�CCCCCCCCC�O 1
acrylamide 79-06-1 C�CC(�O)N 0
aniline 62-53-3 C1�CC�C(C�C1)N 0
α-thujone 546-80-5 CC1C2CC2(CC1�O)C(C)C 1
benzeneacetonitrile, alpha-butylidene-,
(alphaZ)-

130786-09-3 CCCC�C(C#N)C1�CC�CC�C1 1

captan 133-06-2 C1C�CCC2C1C(�O)N(C2�O)SC(Cl)(Cl)Cl 0
decamethylcyclopentasiloxane 541-02-6 C[Si]1(O[Si](O[Si](O[Si](O[Si](O1)(C)C)(C)C)(C)C)(C)C)C 1
diethylene glycol 111-46-6 C(COCCO)O 0
diisopentyl ether 544-01-4 CC(C)CCOCCC(C)C 1
etaspirene 79893-63-3 CCC1�CCCC(C12C�CC(O2)C)(C)C 1
ethanol 64-17-5 CCO 0
ethyl acrylate 140-88-5 CCOC(�O)C�C 1
ethylene glycol 107-21-1 C(CO)O 0
glutaraldehyde 111-30-8 C(CC�O)CC�O 0
lactose 5965-66-2 C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)O)CO)O)O)O)O 0
maleic anhydride 108-31-6 C1�CC(�O)OC1�O 1
menthol 1490-04-6 CC1CCC(C(C1)O)C(C)C 0
methacrylic acid 79-41-4 CC(�C)C(�O)O 0
methyl acrylate 96-33-3 COC(�O)C�C 1
methyl dihydrojasmonate 24851-98-7 CCCCCC1C(CCC1�O)CC(�O)OC 0
methyl laurate 111-82-0 CCCCCCCCCCCC(�O)OC 1
methyl undec-10-enoate 111-81-9 COC(�O)CCCCCCCCC�C 1
m-xylylenediamine 1477-55-0 C1�CC(�CC(�C1)CN)CN 0
potassium nitrate 7757-79-1 [N+](�O)([O−])[O−][K+] 0
propionic acid 79-09-4 CCC(�O)O 0
propylene glycol 57-55-6 CC(CO)O 1
sodium glycocholate 863-57-0 CC(CCC(�O)NCC(�O)[O−])C1CCC2C1(C(CC3C2C(CC4C3(CCC(C4)O)C)

O)O)C·[Na+]
1

sodium taurocholate 145-42-6 CC(CCC(�O)NCCS(�O)(�O)[O−])C1CCC2C1(C(CC3C2C(CC4C3(CCC(C4)
O)C)O)O)C·[Na+]

1

sodium taurodeoxycholate 1180-95-6 CC(CCC(�O)NCCS(�O)(�O)[O−])C1CCC2C1(C(CC3C2CCC4C3(CCC(C4)
O)C)O)C·[Na+]

1

tetrahydrofuran-3-carbaldehyde 79710-86-4 C1COCC1C�O 0
trimethoxyoctylsilane 3069-40-7 CCCCCCCC[Si](OC)(OC)OC 1
Triton X-100 2315-67-5 CC(C)(C)CC(C)(C)C1�CC�C(C�C1)OCCO 1
aIn addition to the chemical name, the Chemical Abstracts Service (CAS) registry number, SMILES structure, and label (0/1 for non-inhibitor/
inhibitor, respectively) are provided.
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Data Processing
The molecular descriptors serve as input features for downstream
machine learning models. Multiple data processing methods were
investigated to determine their impact on model performance.
Columns with missing values were either deleted or imputed (using
SimpleImputer) with the column median using scikit-learn and then
scaled using MinMaxScaler from scikit-learn.19 The effect of
dimensionality reduction was also investigated by comparing
unaltered data with a reduction to 43 components using principal
component analysis (PCA) in scikit-learn.19 Furthermore, to
investigate the effect of balance between the positive and negative
classes, either data remained imbalanced or the positive class was
oversampled to achieve balance using imblearn.20

Classical Machine Learning
Four classical models were explored: logistic regression, support
vector machines, random forest, and gradient-boosted trees. Logistic
regression based classification was conducted using the LogisticRe-
gression procedure from scikit-learn. All solver options (lbfgs, liblinear,
newton-cg, newton-cholesky, sag, and saga) and three values of C
(0.1, 1, and 10) were tested across data types. Classification using C-
Support Vector Machines was conducted using the SVC routine from
scikit-learn. All kernel options (linear, poly, rbf, and sigmoid) and
three values of C (0.1, 1, and 10) were tested across data types.
Random forest was conducted using the RandomForestClassifier,
optimized by varying the hyperparameters n_estimators (50, 100, and
200) and max_depth (3 and 6). The XGBoost library was also used for
a gradient-boosted tree approach, optimized with the hyper-
parameters max_depth (3 and 6) and min_child_weight (0.1, 1,
and 10).21

Deep Learning
Deep learning models using artificial neural networks (ANNs) were
generated using prior-data-fitted network (PFN) and multilayer
perceptron (MLP) approaches. The library TabPFN provided a
pretrained transformer specializing in small tabular data sets that can
make fast predictions with no hyperparameter tuning.22 MLPs were
built using the Pytorch and Lightning libraries.23,24 The MLPs
consisted of a dropout layer, two or thee hidden layers with rectified
linear unit (ReLU) activation function, and an output layer. The
presence of the additional hidden layer and the hidden layer width
(number of intermediate neurons, 20 or 40) were varied as
hyperparameters.
Model Evaluation
Cross-validation was conducted using 10 random seeds and fivefold
cross-validation from scikit-learn. Four primary evaluation metrics
were obtained from scikit-learn: accuracy, precision, recall, and F1
score. Runtime was also recorded using the time library. In
classification, precision is defined as the fraction of positive labels
among the retrieved positives, while recall is defined as the fraction of
retrieved positives among the positive labels. Precision and recall can
be considered measures of quality and quantity, respectively. F1 score
is defined as the harmonic mean of precision and recall, which
balances the two metrics.

Code Availability. This study’s data, code, and environments are
publicly available on Github at [https://github.com/Jamesliu93/
QSAR_BinCls_2024].

■ RESULTS AND DISCUSSION
A panel of 43 low molecular weight chemicals was used to
classify potential surfactant inhibition (Table 1). The
simplified molecular input line entry system (SMILES)
structures were used to calculate a set of 1826 molecular
descriptors that served as input features. Logistic regression
(LR), support vector machines (SVM), random forest (RF),
gradient-boosted trees (GBT), prior-data fitted networks
(PFN), and multilayer perceptron (MLP) were evaluated as
potential classification models (Figure 1). Every model was

subjected to fivefold cross-validation across 10 random seeds.
Hyperparameters were varied for each model (except PFNs) to
optimize for performance. Four evaluation metrics were
recorded during each run: accuracy, precision, recall, and F1
score. The results for the top-ranked models of each type by F1
score are reported in Table 2. The full results for all models are
available in Table S1, Figure S1, and Figure S2.
Logistic regression (LR) is a traditional method for attacking

classification problems, where a linearized model is fed into a
sigmoid function. The output is akin to a probability, which is
then subjected to a threshold value to predict. Logistic
regression is cost-effective but limited to linearly separable
terms. The liblinear, lbfgs, newton-cg, and newton-cholesky
logistic regression libraries were evaluated at different values
of C across all data processing choices. Imputed, scaled, and
oversampled data resulted in the best overall performance
under fivefold cross-validation with an accuracy of 76% and an
F1 score of 0.77 using the newton-cg solver and C = 0.1.
Computation costs varied within an order of magnitude.
Support vector machines (SVMs) were also evaluated as a

traditional method for classification. SVMs attempt to find a
separating hyperplane in the data, which is very efficient for
cleaner (i.e., low in noise) and smaller data sets. The linear,
poly, rbf, and sigmoid kernels were evaluated at different values
of C. The sigmoid kernel with C = 0.1 achieved the best overall
performance on scaled and oversampled data with an accuracy
of 79% and an F1 score of 0.78. Computation cost was
comparable across the kernels.
Random forest (RF) was evaluated as a tree ensemble

method. Random forest uses random sampling and random
feature selection to build a bagged network of decision trees,
each of which acts as an estimator contributing to the final
prediction. The number of estimators (50/100/200) and the
maximum tree depth (3/6) were chosen as hyperparameters
for tuning. Performance varied widely by hyperparameters and
data type. Models with 50 estimators and a maximum depth of
6 achieved the best performance on imputed, scaled, and
oversampled data with an accuracy of 74% and an F1 score of
0.75. Computation cost was scaled roughly with the number of
estimators.

Figure 1. Study design and model selection. Features are extracted
from the data and fed into a model architecture: logistic regression
(LR), support vector machines (SVM), random forest (RF), gradient-
boosted trees (GBT), prior-data-fitted networks (PFN), or multilayer
perceptron (MLP). Iterations are performed to minimize the cost of
the predictions compared to the original labels.
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Gradient-boosted trees (GBT) using XGBoost were also
evaluated as a tree ensemble method. Gradient boosting differs
from random forest in that it prunes structurally similar trees
and prioritizes handling misclassified observations. Typically,
this yields higher efficiency at the cost of some fine-tuning
potential. The maximum depth (3/6) and minimum child
weight (0.1/1/10) were selected as hyperparameters. Perform-
ance rarely varied with hyperparameters, but data type had an
effect. The best performance was achieved with a maximum
depth of 3 and a minimum child weight of 0.1 on scaled and
oversampled data with an accuracy of 75% and an F1 score of
0.77.
Prior-data fitted networks (PFN) were evaluated as a deep

learning method. The PFN used leverages a pretrained
transformer to generate rapid predictions on small-scale
tabular data, removing the need for hyperparameter tuning.
The best performance was achieved on scaled and reduced
data, with an accuracy of 51% and an F1 score of 0.66. Overall,
the PFN method performed poorly, and it was close to a
random classifier. This may be due to the bottleneck of a small
data set, where closer to 1000 observations may have improved
performance.
Multilayer perceptrons (MLP) were also evaluated as a deep

learning method. Two or three hidden layers of variable width
(20/40) were used to generate predictions. Models with only
two hidden layers and a width of 40 neurons performed the
best on imputed, scaled, reduced, and oversampled data with
an accuracy of 96% and an F1 score of 0.97. The extra hidden
layer typically reduced performance (likely due to overfitting or
slower learning), while the layer width had a varied effect.
Imputed missing values had a clear positive impact on
performance.
The models from Table 2 are compared visually in Figure 2.

Multilayer perceptrons (MLPs) provided the strongest
performance among the model types. However, they also
required the highest computation cost by a large margin. When
considering efficiency, support vector machines (SVMs) and
logistic regression (LR) emerge as viable options, with the next
best performance and low computation time. The large gap
between MLPs and the other methods may be due to intrinsic
complexity in the relationship between chemical structure and
lung surfactant inhibition, resulting in classes that are not
linearly separable. As experimental data on surfactant
inhibition grows, the best data treatments and model
parameters will become clear. MLP performance will likely

continue to scale well with increases in the number of
observations, chemical diversity, and molecular descriptors.
Additional comparisons of data processing treatments, hyper-
parameters, and performance vs computation cost are provided
in the Supporting Information.
There are some limitations to the work described here. First,

the selection of molecular descriptors could be further
expanded. Although Mordred provides one of the largest and
most robust open-source libraries, other options, such as the
proprietary Dragon software, may increase performance. In
addition, the available data contained a small number of
observations due to the novelty of lung surfactant as a
toxicological model. This could limit the effectiveness of some
algorithms and the available metrics for evaluation. As the field
grows, more experimental data will be available to mitigate
these factors.
Lung surfactant inhibition is still an emerging field of study,

and the mechanisms for surfactant dysfunction are diverse. As
our toxicological understanding of lung surfactant inhibition
and other pathways leading to adverse health effects increases,
capturing all the complex relationships between chemical
structure and biological activity becomes prohibitively difficult.
The machine learning models evaluated in this study present a
promising approach for the rapid development of structure−
activity prediction. Rather than resource-intensive systematic
testing of large sets of chemicals, a smaller set can be leveraged
for large-scale prediction, narrowing the scope for further
screening.

Table 2. Evaluation of Models by Accuracy, Precision, Recall, F1 Score, and Runtimea

data model hyperparameters accuracy precision recall F1 score runtime (s)

ISO LR solver = newton-cg 0.76 ± 0.15 0.77 ± 0.20 0.81 ± 0.18 0.77 ± 0.16 1.6
C = 0.1

SO SVM kernel = sigmoid 0.79 ± 0.13 0.84 ± 0.20 0.75 ± 0.21 0.78 ± 0.18 1.5
C = 0.1

ISO RF n_estimators = 50 0.74 ± 0.17 0.77 ± 0.21 0.79 ± 0.19 0.75 ± 0.17 4.3
max_depth = 6

SO GBT max_depth = 3 0.75 ± 0.16 0.76 ± 0.21 0.84 ± 0.19 0.77 ± 0.17 5.1
min_child_weight = 0.1

SR PFN N/A 0.51 ± 0.13 0.56 ± 0.18 0.93 ± 0.16 0.66 ± 0.13 22.1
ISRO MLP depth = 2 0.96 ± 0.08 0.97 ± 0.08 0.97 ± 0.10 0.97 ± 0.08 372.3

width = 40
aThe models with the highest F1 scores are described by parameters and type: logistic regression (LR), support vector machines (SVM), random
forest (RF), gradient-boosted trees (GBT), prior-data-fitted networks (PFN), and multilayer perceptron (MLP). Data processing: imputed (I);
scaled (S); reduced (R); oversampled (O). Metrics are reported as mean and standard deviation for cross-validation across random seeds.

Figure 2. Comparison of classification models grouped by type:
logistic regression (LR), support vector machines (SVM), random
forest (RF), gradient-boosted trees (GBT), prior-data-fitted networks
(PFN), and multilayer perceptron (MLP). (A) Precision (true
positives out of retrieved positives) over recall (true positives out of
labeled positives). (B) F1 score (harmonic mean of precision and
recall) over accuracy (during validation).
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■ CONCLUSIONS
In the dynamic landscape of environmental risk assessment,
quantitative structure−activity relationship (QSAR) modeling
has emerged as a pivotal tool for predicting the toxicological
activities of chemical compounds based on their structural
features. However, as the complexity of chemical data sets
continues to grow, traditional QSAR models face challenges in
capturing intricate relationships and exhibiting robust
predictive performance. Machine learning techniques have
brought about a paradigm shift, offering unparalleled
opportunities to enhance the accuracy and efficiency of
predictive modeling.
We have demonstrated the application of classification

techniques to identify chemicals that may inhibit lung
surfactant. Among six model types, the multilayer perceptron
method provided the strongest performance and may scale well
as the available experimental data increases. As little is known
about the relationships between chemical structure and
surfactant inhibition, this framework may aid hazard
identification, particularly high-throughput screening. The
synergy between machine learning and QSAR holds promise
for addressing challenges related to nonlinearity, high
dimensionality, and intricate interactions within chemical
data sets.
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