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Abstract. There is increasing evidence that long non‑coding 
(lnc)RNA EGFR‑AS1 is involved in the development of 
numerous types of cancer, including non‑small‑cell lung 
cancer (NSCLC). The Cancer Genome Atlas (TCGA) 
demonstrates that EGFR‑AS1 is highly expressed in NSCLC. 
Downregulation of EGFR‑AS1 in A549 and PC9 NSCLC cells 
demonstrates inhibition of NSCLC proliferation, invasion and 
metastasis. The present study demonstrated that lncRNA 
EGFR‑AS1 was essential for the development of NSCLC 
through its function as a competitive endogenous RNA binding 
to miR‑449a and upregulating histone deacetylase 1. In brief, 
it identified a novel signaling pathway that mediated the inva‑
sion and metastasis of NSCLC and may therefore provide a 
new treatment target for NSCLC.

Introduction

Lung cancer is the leading cause of death worldwide, accounting 
for ~80% of individuals suffering from non‑small‑cell lung 
cancer (NSCLC) (1). Although NSCLC treatment has mark‑
edly improved in the past few decades, NSCLC 5 year survival 
rate remains <20% (1). NSCLC is a heterogeneous malignancy 
with different subtypes and clinical indications. Therefore, 
different treatment strategies are required for this disease (2). 
The association between cell signals, tumor microenviron‑
ment and prognosis has provided a unique biological basis for 
the development of NSCLC in individual patients (3,4). The 
ultimate goal of cancer research is to develop a strategy that 
prevents tumor progression and improves prognosis. Therefore, 
identification of new biomarkers and therapeutic targets such 

as oncogene regulators is paramount for the treatment and 
prognosis of cancer patients.

Histone deacetylase 1 (HDAC1) is one of the most impor‑
tant epigenetic regulatory mechanisms for the removal of 
acetyl groups from histones. A number of studies indicate that 
HDAC1 is associated with cancer development. HDAC1, for 
instance, is a short interfering (si)RNA inhibitor that causes 
the cessation of the cell cycle, the inhibition of the growth and 
the death of the tumor cells in the colon (5,6). By contrast, 
HDAC1 overexpression can lead to gastric cancer cell prolif‑
eration and expansion, indicating that HDAC1 promotes 
cancer cell growth (7). Another study reported that HDAC1 
can inhibit pancreatic cancer cell migration by binding to 
the CDH1 promoter and downregulating E‑cadherin expres‑
sion (8). HDAC1 overexpression has been reported in various 
types of cancer. The level of HDAC1 is commonly associated 
with the clinical characteristics and prognosis in patients with 
cancer (9‑11). HDAC1 has been demonstrated to be upregu‑
lated in lung carcinoma (12,13), but its precise molecular 
mechanism remains to be elucidated.

More recently, long non‑coding (lnc)RNAs have been 
found to be critical in the process of epigenetic control. 
Part of the lncRNAs may be involved in the regulation of 
gene and the other may serve as a substrate for the interac‑
tion between the protein and the protein, or as competing 
endogenous RNAs (ceRNAs) which attach to the microRNAs 
(miRNAs/miRs) (14,15). lncRNAs are aberrantly expressed 
in almost all types of cancer and may be involved in the 
regulation of the proliferation, drug‑resistance and metastasis 
of cancer cells (16‑18). Earlier research demonstrated that 
EGFR‑AS1 enhances proliferation and invasion of liver cancer 
cells by accelerating the cell cycle (19). EGFR‑AS1 is known to 
facilitate the development of chemotherapeutic resistance and 
is associated with poor outcomes in NSCLC (20). However, 
the expression and functions of EGFR‑AS1 in NSCLC remain 
to be elucidated. miR‑449 resides at the 2nd intron of CDC20 
on chromosome 5. Genome‑wide association study has shown 
this region (5q11.2) to be a powerful tumor sensitive locus (21). 
miR‑449a is at a low level in some types of cancer, such as 
stomach (22), lung (23), breast (24), glioma (25), hepatic (26), 
ovary (27), retinoblastoma (28) and endometrium (29). 
miR‑449a has been shown to be a strong inducer of cell 
apoptosis, cell cycle arrest and cell differentiation (30). In 
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addition, miR‑449a is associated with the development, prolif‑
eration and differentiation of cancer cells. The mechanism 
of EGFR‑AS1 and HDAC1 in lung cancer requires detailed 
analysis and the role of miR‑449a in lung cancer remains to 
be elucidated. Biological information predicts that EGFR‑AS1 
and HDAC1 3'‑UTR are associated with miR‑449a (31). It was 
hypothesized that EGFR‑AS1 may be a ceRNA of miR‑449a 
and upregulates HDAC1 to promote NSCLC proliferation, 
invasion and metastasis. Therefore, the present study proposed 
a new signaling axis, EGFR‑AS1‑miR‑449a‑HDAC1, involved 
in the progression of NSCLC.

To evaluate the role of EGFR‑AS1‑miR‑449a‑HDAC1 in 
malignant NSCLC, the present study studied its role in cancer 
progression in A549 and PC9. EGFR‑AS1, miR‑449a and 
HDAC1 were compared and their association was analyzed 
in patients with lung cancer and in surrounding tissues. The 
present study revealed that EGFR‑AS1 sponges miR‑449a 
and subsequently upregulates HDAC1, which promotes the 
malignant progression of NSCLC.

Materials and methods

Gene expression prof iling using public databases. 
RNA‑sequencing expression profiles and corresponding clin‑
ical information for lung carcinoma were downloaded from 
The Cancer Genome Atlas (TCGA) dataset (https://portal.
gdc.com). The University of Alabama at Birmingham cancer 
data analysis portal (UALCAN; https://ualcan.path.uab.edu) 
was used for analysis.

Patient specimens. Between July 2022 and May 2023, 80 
specimens of lung carcinoma and their adjacent tissues (>5 cm 
away from the cancerous tissue) resected surgically were 
collected, all of which were from Department of Respiratory 
Medicine, Shanghai Xuhui Central Hospital, Fudan University 
(Shanghai, China). All specimens were frozen in liquid 
nitrogen for RNA extraction. All participating patients 
gave their written informed consent. The present study was 
approved by the Shanghai Xuhui Central Hospital's Ethics 
Committee (approval no. 2022021).

Cell culture and transfection. MRC‑5, A549, HCC827, 
PC9 and HCC2935 were from Authenticated Cell Cultures. 
MRC‑5 and HCC2935 were cultured using DMEM medium 
(Invitrogen; Thermo Fisher Scientific, Inc.) containing 
10% FBS (Invitrogen; Thermo Fisher Scientific, Inc.), 
100 U/ml penicillin G, 100 U/ml streptomycin sulfate, 
and 2 mM L‑glutamine. A549 cells were cultured using 
F12K medium (Invitrogen; Thermo Fisher Scientific, Inc.) 
containing 10% FBS (Invitrogen; Thermo Fisher Scientific, 
Inc.), 100 U/ml penicillin G, 100 U/ml streptomycin sulfate, 
and 2 mM L‑glutamine. PC9 and HCC827 were cultured using 
RPMI1640 medium (Invitrogen; Thermo Fisher Scientific, 
Inc.) containing 10% FBS (Invitrogen; Thermo Fisher 
Scientific, Inc.), 100 U/ml penicillin G, 100 U/ml streptomycin 
sulfate, and 2 mM L‑glutamine. The cells were cultured in a 
37˚C incubator containing 5% CO2.

The siRNA targeting EGFR‑AS1 and HDAC1, si‑NC, 
miR‑449a mimics, miR‑449a inhibitor, miR‑NC and inhibitor 
NC were all purchased from Shanghai Genechem Co., Ltd. For 

transfection, cells were seeded in 24 well plates at 5,000 cells 
per well or 800,000 per 15 cm dish and 10 nM siRNA, si‑NC, 
miR‑449a mimics, miR‑449a inhibitor, miR‑NC or inhibitor 
NC were transfected (at 37˚C) into cells, respectively, using 
Lipofectamine 3000® (Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's instructions. At 48 h 
after the transfection, cells were subjected to RNA isolation 
or western blotting. The siRNA, miRNA mimics and miRNA 
inhibitors sequences used were: si‑EGFR‑AS1‑1, sense (SS): 
5'‑GCA AGT TGA GTG CAA ATA ACT‑3', anti‑sense (AS): 
5'‑TTA TTT GCA CTC AAC TTG CTA‑3'; si‑EGFR‑AS‑2, SS: 
5'‑CCA CAG TAT TCA CAA AGA ATT‑3', AS: 5'‑TTC TTT 
GTG AAT ACT GTG GTG‑3'; si‑HDAC1‑1, SS: 5'‑CAG CGA 
TGA CTA CAT TAA ATT‑3', AS: 5'‑TTT AAT GTA GTC ATC 
GCT GTG‑3'; si‑HDAC1‑2, SS: 5'‑GCT TCA ATC TAA CTA 
TCA AAG‑3', AS: 5'‑TTG ATA GTT AGA TTG AAG CAA‑3'; 
miR‑449a mimics, SS:5'‑TGG CAG TGT ATT GTT AGC TGG 
T‑3', AS: 5'‑ACC AGC TAA CAA TAC ACT GCC A‑3'; miR‑449a 
inhibitor, SS: 5'‑AGG CTC ACA TAA TCA ATC GAC CA‑3', 
AS: 5'‑TGG CAG TGT ATT GTT AGC TGG T‑3'; miR‑NC, SS: 
5'‑GCA TCA AGG TGA ACT TCA AGA‑3', AS: 5'‑TCT TGA 
AGT TCA CCT TGA TGC‑3'; inhibitor‑NC, SS: 5'‑GCA TCA 
AGG TGA ACT TCA A‑3', AS: 5'‑TTG AAG TTC ACC TTG 
ATG C‑3'.

Reverse transcription‑quantitative (RT‑q) PCR. Total RNA 
was obtained from the cells as instructed by the manufac‑
turer with TRIzol® reagent (Thermo Fisher Scientific, Inc.). 
The RNA of clean and concentrated samples was measured 
using a Spectrometer (Thermo Fisher Scientific, Inc.) and the 
absorbance was between 260‑280 nm. The cDNA synthesis 
was carried out based on the instructions of the miScript II 
RT Kit (Qiagen). Briefly, 1 µg total RNA was added to 12 µl 
DEPC treated water, 2 µl miScript Reverse Transcriptase Mix 
(Qiagen GmbH), 2 µl miScript Nucleics Mix (Qiagen GmbH) 
and 4 µl 5x miScript HiSpec buffer (Qiagen GmbH). After 
incubating at 37˚C for 60 min the mixture was heated to 95˚C 
for 5 min to terminate the reaction. Using commercialized 
primers TaqMan Universal Mix II No UNG plus specific PCR 
primers (Thermo Fisher Scientific, Inc.) were used to detect 
the expression level of miR‑449a according to the manufac‑
turer's instructions. Amplification was performed on the ABI 
StepOne Plus system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.). Using U6 as the internal reference, the 2‑ΔΔCq 
method was used to calculate the relative expression level of 
miR‑449a (32). The quantitative detection of EGFR‑AS1 and 
HDAC1 mRNA was also performed on the ABI StepOne Plus 
system. Using GAPDH as an internal reference, the 2‑ΔΔCq 
method was used to calculate the relative expression level of 
mRNAs (32). The incubation conditions were as follows: 95˚C 
for 30 sec, followed by 40 cycles at 95˚C for 8 sec and 60˚C for 
30 sec. All experiments were repeated three times. Sequences 
of primers for amplification are given in Table I.

Cell viability. Cell survival was measured by Cell Counting 
Kit‑8 (Beyotime Institute of Biotechnology). The exponen‑
tially growing cells were seeded at a density of 2,000 cells 
per well in 96‑well plates and incubated overnight at 37˚C. 
Then, the cells were treated with 10 µl CCK‑8 for 4 h at 48 h 
after transfection. Absorbance density (OD, 450 nm) was 
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measured using a microplate reader (Thermo Fisher Scientific, 
Inc.). Experimental study was conducted on six replicate 
wells per group.

Invasion and migration analysis. The cells were subjected 
to trypsinization, dilution in serum free medium and seeded 
at 50,000 cells per Transwell chamber (8 µm pore size; 
Corning) with or without Matrigel (BD Biosciences). Matrigel 
was frozen and thawed overnight at 4˚C on ice, diluted with 
Opti‑MEM medium (Thermo Fisher Scientific, Inc.) at a 
ratio of 1:3 and mixed with precooled pipette tips to form a 
homogenized Matrigel matrix. The Transwell chamber was 
placed on ice, the diluted Matrigel with a concentration of 
50 µl/cm2 growth area was added and it was left at 37˚C for 
30 min before use. The culture medium with 10 percent of 
FBS was put into the wells and incubated for 12 h. The cells 
were fixed with 4% paraformaldehyde (MilliporeSigma) for 
30 min at room temperature and stained with 0.1% crystal 
violet (MilliporeSigma) staining solution for 15 min at room 
temperature . Subsequently, three randomly selected fields of 
vision were analyzed and the number of cells that migrated 
through each insert was counted under a light microscope 
using a 20x objective. Each experiment was conducted 
in triplicate.

Dual luciferase reporter gene assay. The pmirGLO plasmid 
(1 µg; Promega Corporation) was digested with DraI and XbaI 
(Thermo Fisher Scientific, Inc.) according to the manufac‑
turer's protocol. Insert DNA containing a wild‑type miR‑449a 
binding site (ACTGCC) or a mutant miR‑449a binding site 
(TGACGG) was purchased from Shanghai Genechem Co., 
Ltd. Oligonucleotides were hybridized at 90˚C, then cooled to 
4˚C over 5 min, and finally kept at 4˚C for 60 min. Hybridized 
inserts were ligated with T4 ligase (200 U, 10 µl reaction, 1:10 
vector/insert ratio; Thermo Fisher Scientific, Inc.) into a multiple 
cloning site of pmirGLO downstream of the firefly luciferase 
gene for construct wild‑type (wt‑pmirGLO pGL3‑EGFR‑AS1) 
and mutant (mut‑pmirGLO pGL3‑EGFR‑AS1) luciferase 
reporter plasmid. To identify EGFR‑AS1 and miR‑449a targets, 
wt‑pmirGLO EGFR‑AS1 or mut‑pmirGLO‑EGFR‑AS1 were 
co‑transfected with miR‑449a mimics into HEK293 cells 
Lipofectamine 3000® (Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's instructions. At 48 h after 
transfection, a dual luciferase assay kit (Promega Corporation) 
was used to lyse cells.

To study the interaction between HDAC1 3'‑UTR and 
miR‑449a targets, the pmirGLO plasmid (1 µg; Promega 
Corporation) was digested with DraI and XbaI (Thermo 
Fisher Scientific, Inc.) according to the manufacturer's 
protocol. Insert DNA containing a wild‑type miR‑449a 
binding site (CACTGCC) or a mutant miR‑449a binding site 
(CTGACGG) was purchased from Shanghai Genechem Co., 
Ltd. Oligonucleotides were hybridized at 90˚C, then cooled to 
4˚C over 5 min, and finally kept at 4˚C for 60 min. Hybridized 
inserts were ligated with T4 ligase (200 U, 10 µl reaction, 1:10 
vector/insert ratio; Thermo Scientific) into a multiple cloning 
site of pmirGLO downstream of the firefly luciferase gene for 
construct HDAC1 3'‑UTR wild‑type (wt‑pmirGLO‑HDAC1 
3'‑UTR) and mutant (mut‑pmirGLO‑HDAC1 3'‑UTR) 
luciferase reporter plasmid. Wild‑type (wt‑pmirGLO‑HDAC1 
3'‑UTR) and or EGFR‑AS1 (mut‑pmirGLO‑HDAC1 3'‑UTR) 
luciferase reporters were co‑transfected with miR‑449a 
mimics into 293 cells using Lipofectamine 3000® (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
instructions. At 48 h after transfection, a dual luciferase assay 
kit (Promega Corporation) was used to lyse cells. The test was 
carried out on the basis of the activity of Renilla luciferase.

A Panomis Luminometer (Affymetrix; Thermo Fisher 
Scientific, Inc.) was used with a standard method to measure 
the activity of Renilla luciferase.

RNA immunoprecipitation (RIP). The RIP was conducted 
according to manufacturer's instructions of EZMagna RIP 
kit (cat. no. 17‑701; MilliporeSigma). The A549 cells were 
cultured to 80‑80% confluence, then lysed with RIP lysis 
buffer (Millipore Sigma). The protein A/G magnetic beads 
underwent incubation with 5 µg antibodies specific for 
argonaute‑(Ago)2 (cat. no. SAB4200085; MilliporeSigma) 
or normal murine IgG (cat. no. A7031; Beyotime Institute of 
Biotechnology) for 30  min at room temperature. The beads 
underwent incubation at 4˚C overnight with cell lysates 
after being washed three times with RIP wash buffer. The 
RNA purity and the concentration RNA was measured with 
a Nextwave TT 1000 spectrophotometer (Thermo Fisher 
Scientific, Inc.), determined at a 260‑280 nm absorption. The 
RNeasy Micro Kit (Qiagen GmbH) was used for purification 
of RNA and quantification with qPCR. RT‑qPCR was used to 
detect the co‑precipitated RNA. The input % was utilized for 
calculating enrichment level of RNA.

Western blotting. The cells were lysed using Cell Lysis Solution 
(MilliporeSigma) at 4˚C with gentle agitation for 5 min at 
1,000 rpm. Equal amounts (20 µg) of protein were determined 
using a BCA protein assay kit (Thermo Fisher Scientific, 
Inc.) and separated on 10% SDS‑PAGE gels, and transferred 
onto PVDF membranes (Cytiva). After blocking with 5% 
skimmed milk at room temperature for 2 h, the membranes 
were incubated overnight at 4˚C with anti‑HDAC1 antibody 
(cat. no. ab68436; Abcam; 1:1,000) and anti‑β‑actin antibody 
(cat. no. ab8226; Abcam; 1:2,000). After washing TBST buffer 
(0.1% Tween‑20; Beyotime Institute of Biotechnology), the 
membranes were incubated with HRP‑labeled goat anti‑mouse 
IgG (cat. no. ab205719, Abcam; 1:50,000) at room tempera‑
ture for 1 h. After washing the membranes three times, ECL 
luminescent solution (Thermo Fisher Scientific Inc.) was 

Table I. Primers used in the present study. 

Primer Direction Sequence (5'‑3')

EGFR‑AS1 Forward GAGAGGCACGTCAGTGTGG
 Reverse GCGTAAACGTCCCTGTGCTA
HDAC1 Forward GACGGACCGACTGACGGTAG
 Reverse AGTCATGCGGATTCGGTGAG
GAPDH Forward TTTTGCGTCGCCAGCC
 Reverse ATGGAATTTGCCATGGGTGGA
U6 Forward CTCGCTTCGGCAGCACA
 Reverse AACGCTTCACGAATTTGCGT
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applied to the membranes and the results were observed on 
an Imagequant LAS4000 (Cytiva). The density of each band 
was quantified using ImageJ software (National Institutes 
of Health). 

Statistical analysis. All analyses were performed using SPSS 
20.0 (IBM Corp.). Data are presented as mean ± SD. A paired 
two‑tailed t‑test was used to compare EGFR‑AS1, miR‑449a 
and HDAC1 expression in lung carcinoma and their paired adja‑
cent tissues. The unpaired Student's t‑test was used to compare 
the significance between two groups, and one‑way ANOVA 
and Tukey's post hoc test were used for multiple comparisons. 
The relationship of the EGFR‑AS1 and miR‑449a, HDAC1 
and miR‑449a, EGFR‑AS1 and HDAC1 was measured with 
Pearson's correlative test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

EGFR‑AS1 and HDAC1 are upregulated, while miR‑449a 
is downregulated, in NSCLC. UALCAN analysis of TCGA 
NSCLC showed a significant increase of EGFR‑AS1 and 
HDAC1 in NSCLC (Fig. 1A and C), while the levels of 
miR‑449a were lower (Fig. 1B) compared with adjacent 
tissues. Furthermore, qPCR findings indicated that EGFR‑AS1 
and HDAC1 were more highly expressed in A549, HCC827, 
PC9 and HCC2935 cells (NSCLC) compared with MRC‑5 
cells (healthy lung fibroblast), with the greatest expression in 
A549 and PC9 (Fig. 1D and F). A contrary tendency was seen 
with miR‑449a (Fig. 1E). Thus, A549 and PC9 were chosen for 
the next experiment.

Effect of EGFR‑AS1 on proliferation, invasion, and metastasis 
of NSCLC. To investigate the role of EGFR‑AS1 in NSCLC, 

siRNAs were used to inhibit EGFR‑AS1 expression in A549 
and PC9 cells (Fig. 2A and B). The CCK‑8 assay showed that 
EGFR‑AS1 markedly reduced A549 and PC9 proliferation 
(P<0.01; Fig. 2C and D). Furthermore, invasion and migration 
assays demonstrated that EGFR‑AS1 could markedly inhibit 
A549 and PC9 in tumor cells (Fig. 2E‑J).

Inhibition of tumor growth, invasion and metastasis by 
miR‑449a in NSCLC. In order to investigate the influence of 
miR‑449a on A549 and PC9 cells, the influence of miR‑449a 
on tumor growth, invasion and metastasis in NSCLC was 
investigated (Fig. 3A‑D). The results showed that A549 and 
PC9 were significantly affected (P<0.01) and were also aggres‑
sive and metastatic (Fig. 3E and F).

Inhibition of HDAC1 on proliferation, invasion and 
metastasis of NSCLC. HDAC1 siRNA was used to 
transfect A549 and PC9 cells and investigate the down‑
regulation of HDAC1 on proliferation, invasion and metastasis 
(Fig. 4A and B). CCK‑8 demonstrated that HDAC1 could 
significantly inhibit invasion and metastasis of A549, PC9 and 
A549 cells (P<0.01; Fig. 4C‑J).

Co‑transfection of EGFR‑AS1 and with miR‑449a inhibitor 
can abrogate the effect of EGFR‑AS1 silencing on HDAC1 
expression. Using siEGFR‑AS1, miR‑449a, A549 and PC9 
cells were cotransfected to study their HDAC1 expression. 
Western blotting and qPCR demonstrated partial restoration 
of HDAC1 in the siEGFR‑AS1 + miR‑449a inhibitors versus 
siEGFR‑AS1 (Fig. 5 and Fig. S1).

EGFR‑AS1, as a ceRNA, adsorbs miR‑449a to promote the 
expression of HDAC1. Using ENCORI and UALCAN (30) 
prediction, it was shown that there were binding sites between 

Figure 1. TCGA and qPCR were employed to measure EGFR‑AS1, miR‑449a and HDAC1 in NSCLC. (A) UALCAN test for NSCLC (EGFR‑AS1) in NSCLC 
and adjacent tissues in TCGA samples. **P<0.01 compared with adjacent tissues. (B) UALCAN test for miR‑449a was expressed in NSCLC and adjacent tissues 
in TCGA samples. **P<0.01 compared with normal adjacent tissues. (C) UALCAN analysis of HDAC1 expression in NSCLC cancer and adjacent tissues of 
TCGA data. ***P<0.01 compared with normal adjacent tissues. Quantification of (D) EGFR‑AS1 expression (E) miR‑449a expression and (F) HDAC1 expres‑
sion in MRC‑5 and NSCLC with qPCR. **P<0.01. TCGA, The Cancer Genome Atlas; qPCR, quantitative PCR; HDAC1, histone deacetylase 1; University of 
Alabama at Birmingham cancer data analysis portal; NSCLC, non‑small‑cell lung cancer; miR, microRNA. 
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EGFR‑AS1 and miR‑449a, and between miR‑449ap and 
HDAC1 3'‑UTR (Fig. 6A). The results of luciferase reporter 
gene analysis showed that there were targeted regulatory effects 
between EGFR‑AS1 and miR‑449a (Fig. 6B) and between 
miR‑449a and HDAC1 3'‑UTR (Fig. 6C). miRNAs, which 
occur in the cytoplasm, form part of RISC (RNA‑induced 
silencing complex). It has been demonstrated that Ago2 is a 
component of RISC, that is involved in the silencing of the 
miRNA‑mediated gene (33). Subsequently, the SNRNP70 
antibody was used as a positive control (Fig. 6E) and RNA 
immunoprecipitation (RIP) was performed using the Ago2 
antibody to analyze whether EGFR‑AS1 and miR‑449ap were 

present in RISC. The results showed that Ago2 antibody could 
enrich EGFR‑AS1 and miR‑449ap compared to the control 
(IgG) (Fig. 6D). These results suggest that EGFR‑AS1 regulates 
the miR‑449a/HDAC1 pathway through ceRNA in NSCLC.

EGFR‑AS1‑miR‑449a‑HDAC1 signaling is present in NSCLC 
tissues. The results of qPCR showed that among 80 patients 
with NSCLC, EGFR‑AS1 and HDAC1 mRNA were highly 
expressed in tumor tissues and lowly expressed in paracan‑
cerous tissues (Fig. 6A and B). miR‑449a was lowly expressed 
in tumor tissues and highly expressed in paracancerous tissues 
(Fig. 7C). Furthermore, it was found that the expression levels 

Figure 2. Influence of EGFR‑AS1 on the proliferation, invasion and metastasis of NSCLC. Quantification of EGFR‑AS1 expression during the transfer of 
siEGFR‑AS1 to (A) A549 cells and (B) PC9 cells. The viability of EGFR‑AS1‑silenced (C) A549 cells and (D) PC9 cells according to the CCK‑8 assay. 
Migration and invasion of EGFR‑AS1‑silenced (E, G and H) A549 cells and (F, I and J) PC9 cells (magnification, x200). **P<0.01; ***P<0.001. NSCLC, 
non‑small‑cell lung cancer; si, short interfering.
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of EGFR‑AS1 and HDAC1 mRNA were negatively correlated 
with miR‑449a (Fig. 7D and E), while the expression levels 
of EGFR‑AS1 was positively correlated with HDAC1 mRNA 
(Fig. 7F).

Discussion

It has been demonstrated that lncRNAs are essential for a 
number of types of human cancer (34). In addition, lncRNAs 
may be involved in the development of tumors by regulating 
ceRNA and downregulating gene expression. ceRNAs are 

lncRNAs and circular RNAs (circRNAs), which compete for 
miRNAs with mRNAs. It has been demonstrated that different 
lncRNAs are involved in the development and development of 
NSCLC and progressing as ceRNAs (35). EGFR‑AS1, a newly 
discovered lncRNA, has been implicated in NSCLC (20), 
gastric cancer (36) and bladder cancer (37). EGFR‑AS1 
expression is significantly upregulated in NSCLC tissues and 
cell lines, and is positively correlated with poor prognosis (20). 
In addition, EGFR‑AS1 inhibits the miR‑381/ROCK2 
axes (37). The present study analyzed the expression levels 
of EGFR‑AS1 in lung cancer and adjacent tissues. The results 

Figure 3. Effect of miR‑449A on cell proliferation and metastasis in NSCLC. (A) qPCR quantification of the expression of (A) miR‑449a and (B) HDAC1 in 
A549 cells transfected with miR‑449a mimics. (C) qPCR quantification of (C) miR‑449a and (D) HDAC1 expression in PC9 cells transfected with miR‑449a. 
Migration and invasion of (E) A549 and (F) PC9 cells transfected with miR‑449a mimics (magnification, 200). Viability of (G) A549 and (H) PC9 cells 
transfected with miR‑449a. **P<0.01; ***P<0.001. NSCLC, non‑small‑cell lung cancer; qPCR, quantitative PCR; miR, microRNA. 
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showed that the expression level of EGFR‑AS1 in cancer 
tissues was significantly higher compared with that in adjacent 
tissues. The expression level of EGFR‑AS1 in NSCLC cells 
A549 and PC9 was also significantly higher compared with 
that in normal lung fibroblasts MRC‑5. Downregulating the 
expression of EGFR‑AS1 in A549 and PC9 cells inhibited 
proliferation, invasion and metastasis. These results suggest 
that EGFR‑AS1 plays an oncogenic role in NSCLC.

miRNAs are mainly involved in the post transcriptional 
regulation of target genes. They are involved in the regulation of 
a variety of biological processes, including the occurrence and 
development of tumors. miRNAs have also been implicated in 

the therapeutic and prognostic effects of cancer. A number of 
trials have examined the particular role that miRNAs play in 
the formation and progression of NSCLC (38‑40). The bioin‑
formatic prediction of the present study showed that there was 
an EGFR‑AS1 binding site at miR‑449a and that EGFR‑AS1 
was then identified as a specific binding of EGFR‑AS1 to 
miR‑449a using a luciferase reporter and RIP assays. The rela‑
tionship between EGFR‑AS1 And miR‑449a was also found 
in NSCLC. Jiang et al (24) demonstrated that the inhibition 
of CREPT‑mediated Wnt/β‑catenin signaling can inhibit the 
development of breast cancer. It has been shown that miR‑449a 
is a useful diagnostic and prognostic indicator of glioma (25). 

Figure 4. Effect of HDAC1 downregulation on NSCLC cell proliferation, invasion and metastasis. Quantification of the mRNA of HDAC1 in HDAC1 
siRNA transfection in (A) A549 cells and (B) PC9 cells. the proliferation of HDAC1‑silenced (C) A549 cells and (D) PC9 cells. Migration and invasion of 
HDAC1‑silenced (E, G and H) A549 and (F, I and J) PC9 cells (magnification, 200). **P<0.01; ***P<0.001. HDAC1, histone deacetylase 1; NSCLC, non‑small‑cell 
lung cancer; si, short interfering. 
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In addition, miR‑449a has been shown to be antioncogenic in 
gastric cancer (22), lung cancer (23), glioma (25), hepatic cell 
carcinoma (26), ovarian cancer (27), retinoblastoma (28) and 
endometrium (29). The present study discovered a significant 
decrease in the expression of miR‑449a in NSCLC compared 
with adjacent tissue or healthy lung fibroblasts, indicating 
that it may be able to suppress the proliferation, invasion and 
metastasis of NSCLC. Together, the findings suggested that 
miR‑449a may also be involved in the progression of NSCLC.

Epigenetic modifications, such as histone acetylation, are 
critical for regulating gene expression. It has been demonstrated 
that pathological epigenetic changes in cancer cells facilitate 
and sustain the growth and progression of tumors (41). Histone 
acetylases and deacetylases regulate gene expression by regu‑
lating histone acetylation (42). HDAC1 participates extensively 

in transcription control, which is crucial for cancer develop‑
ment. The results of TCGA and qPCR demonstrated the high 
expression of HDAC1 in NSCLC. The luciferase reporter and 
RIP findings showed that the HDAC1 3'‑UTR is specifically 
associated with the inhibition of HDAC1. In addition, there 
was a negative correlation between miR‑449a and HDAC1 
mRNA in NSCLC. In addition, EGFR‑AS1 downregulation 
or miR‑449a upregulation may suppress HDAC1 expression 
in NSCLC cells, thus suppressing its proliferation, inva‑
sion and metastasis. Overall, EGFR‑AS1 is associated with 
NSCLC proliferation, invasion and metastasis by regulating 
the miR‑449a‑HDAC1 axis. Although the present study found 
a correlation between the expression levels of EGFR‑AS1, 
miR‑449a and HDAC1 in NSCLC tissues, it was unclear 
whether the high expression level changes only occurred in 

Figure 5. Effect of EGFR‑AS1 on miR‑449a and HDAC1 expression in NSCLC cells. Quantification of (A) EGFR‑AS1, (B) miR‑449a and (C) HDAC1 
mRNA expression in A549 cells cotransfected with siEGFR‑AS1 and miR‑449a inhibitor. (D) EGFR‑AS1, (E) miR‑449a and (F) HDAC1 mRNA in PC9 cells 
cotransfected with siEGFR‑AS1 and miR‑449a inhibitor. (G) Quantification of HDAC1 in A549 cells cotransfected with siEGFR‑AS1 and miR‑449a inhibitor 
as detected by western blotting. (H) Quantification of HDAC1 in PC9 cells cotransfected with siEGFR‑AS1 and miR‑449a inhibitor as detected by western 
blotting. ***P<0.001. miR, microRNA; HDAC1, histone deacetylase 1; NSCLC, non‑small‑cell lung cancer; qPCR, quantitative PCR; si, short interfering. 
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specific cells. In the future, single‑cell sequencing will be used 
to analyze their expression levels in different cells of NSCLC 
tissues. This will contribute to a more comprehensive under‑
standing of the mechanisms through which EGFR‑AS1 and 
HDAC1 operates in NSCLC. Network pharmacology could 
possibly be used to screen inhibitors for them for the treatment 
of NSCLC (43).

In conclusion, the present study found that EGFR‑AS1 
expression level was upregulated in NSCLC and it served as 
a molecular sponge to antagonize miR‑449a, upregulate the 
expression of HDAC1 and promote the occurrence and devel‑
opment of NSCLC. The results suggested that upregulating 
miR‑449a or downregulating EGFR‑AS1 and HDAC1 expres‑
sion might be an effective approach to inhibit NSCLC cancer. 

Figure 6. EGFR‑AS1 plays the role of ceRNA and regulates HDAC1 with miR‑449a. (A) ENCORI predicted the EGFR‑AS1 and the miR‑449a binding sites 
of the HDAC1 3'‑UTR the respective wild type and mutated luciferase reporter vectors. (B) Luciferase assay for EGFR‑AS1 and miR‑449a for the specific 
association of EGFR‑AS1 with miR‑449a. (C) Luciferase assay test for the specific association of miR‑449a with HDAC1 3'‑UTR. (D) Ago2‑RIP enrichment 
for EGFR‑AS1 and miR‑449a. (E) SNRNP70‑RIP (positive control). ce, competing endogenous; HDAC1, histone deacetylase 1; miR, microRNA; Ago, 
argonaute‑; RIP, RNA immunoprecipitation.

Figure 7. Study on the Clinical Significance of EGFR‑AS1‑miR‑449a‑HDAC1 in patients with NSCLC. qPCR quantitation of (A) EGFR‑AS1 (B) miR‑449a 
and (C) HDAC1 mRNA quantification in NSCLC and adjacent tissues. Correlation between the expression levels of (D) EGFR‑AS1 miR‑449a and (E) correla‑
tion between the expression levels of HDAC1 and miR‑449a. (F) The correlation between the expression levels of EGFR‑AS1 and HDAC1 mRNA. miR, 
microRNA; HDAC1, histone deacetylase 1; NSCLC, non‑small‑cell lung cancer; qPCR, quantitative PCR.
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The present study revealed a new mechanism of NSCLC 
progression, providing new targets for cancer treatment.
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