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Abstract

INTRODUCTION: Genetic mutation carriers of frontotemporal dementia can remain

cognitively well despite neurodegeneration. A better understanding of brain struc-

tural, perfusion, and functional patterns in the pre-symptomatic stage could inform

accurate staging and potential mechanisms.

METHODS:Weincluded207pre-symptomatic geneticmutation carriers and188 rela-

tiveswithoutmutations. The graymatter volume, cerebral perfusion, and resting-state

functional networkmapswere co-analyzed using linked independent component anal-

ysis (LICA). Multiple regression analysis was used to investigate the relationship of

LICA components to genetic status and cognition.

RESULTS: Pre-symptomatic mutation carriers showed an age-related decrease in the

left frontoparietal network integrity, while non-carriers did not. Executive functions

of mutation carriers became dependent on the left frontoparietal network integrity in

older age.

DISCUSSION: The frontoparietal network integrity of pre-symptomatic mutation car-

riers showed a distinctive relationship to age and cognition compared to non-carriers,

suggesting a contribution of the network integrity to brain resilience.
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Highlights

∙ Amultimodal analysis of structure, perfusion, and functional networks.

∙ The frontoparietal network integrity decreases with age in pre-symptomatic carri-

ers only.

∙ Executive functions of pre-symptomatic carriers dissociated from non-carriers.

1 BACKGROUND

Frontotemporal dementia (FTD) is characterized by the selective

degeneration of the frontal and temporal cortices, leading to progres-

sive deficits in behavior, social and executive function, or language.1

Genetic risk factors are important, with about 20%–30% of FTD cases

being familial.2 Highly penetrantmutations in threemajor genes, chro-

mosome 9 open reading frame 72 (C9orf72), microtubule-associated

protein tau (MAPT), and progranulin (GRN), account for about 60%

of cases of familial FTD.1 Given that neurobiological changes could

occur many years before the onset of symptoms of neurodegenera-

tive dementias,3–6 investigation at the early stage of diseases before

symptom onset is important for understanding factors that facilitate

the brain’s resilience. Genetic FTDwith highly penetrant geneticmuta-

tions provides the opportunity for early investigation before symptom

onset. Comparison between pre-symptomatic genetic mutation car-

riers and their family members without the mutation, allows one to

investigate the effect of early neurodegeneration without the con-

founding influence of medication and lifestyle changes after symptom

onset.

People carrying highly penetrant genetic mutations of FTD have

graymatter atrophy and a reduction in cerebral blood flow (CBF) more

than a decade before the expected symptom onset, as measured by

magnetic resonance imaging (MRI) and arterial spin labeling (ASL).4,6–8

However, functional network organization and connectivity are gen-

erally maintained despite significant atrophy in pre-symptomatic

genetic FTD.4,9 Moreover, a recent study indicates that functional

networks predict cognitive decline and symptomatic conversion in

pre-symptomatic genetic mutation carriers.10 A better understanding

of these changes in the pre-symptomatic stage would inform accu-

rate staging, facilitate clinical trials, and elucidate the mechanisms of

resilience by which gene carriers remain cognitively well for many

years despite biomarker evidence of neurodegeneration.

Here, we test whether pre-symptomatic differences in brain struc-

ture, cerebral perfusion, and functional network act synergistically or

independently on clinically relevant disease features such as cogni-

tive performance, and disease progression. Specifically, we used linked

independent components analysis ofmultimodal imaging to investigate

whether the interplay of brain gray matter atrophy, cerebral perfu-

sion, and functional network integrity explains difference between

pre-symptomatic FTD genetic mutation carriers and non-carriers.

2 METHODS

2.1 Participants

The Genetic Frontotemporal dementia Initiative (GENFI) study is an

international muti-center cohort study across Europe and Canada.

GENFI recruited participants with genetic mutations of FTD and

their relatives.6,7 Participants included carriers of genetic mutations

in C9orf72, GRN, and MAPT who have or have not shown symptoms,

and their relatives without genetic mutations. Most participants are

unaware of their genetic status at recruitment, and remain unaware

of their genetic status by a genetic-guardianship process. Participants

underwent a standardized clinical assessment consisting of a medical

history, family history, and physical examination. Symptomatic sta-

tus was based on the assessment by clinicians to determine whether

the participants fulfilled the diagnostic criteria for FTD.11–13 Partici-

pants were assessed by the global CDR Dementia Staging Instrument

plus National Alzheimer’s Coordinating Centre behavior and language

domains (CDR plus NACC FTLD),14 the Cambridge Behavioural Inven-

toryRevised version (CBI-R),15 and theMini-Mental State Examination

(MMSE). Participants not diagnosed with FTD who had functional,

cerebrovascular, and structural neuroimaging data with good quality

were included in this study (N = 395). There were 207 FTD genetic
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RESEARCH INCONTEXT

1. Systematic review: The authors systematically reviewed

the literature using PubMed, preprint repositories, and

research citing key articles. The alternations of brain

structure, function, and perfusion have been character-

ized at the pre-symptomatic stage of frontotemporal

dementia in literature but are often studied separately.

The inter-correlated effects of brain structure, func-

tion, and perfusion in relation to genetic mutation status

and cognition are not well-characterized at the pre-

symptomatic stage.

2. Interpretation: Our results suggest that the frontopari-

etal network integrity of pre-symptomatic carriers

showed a distinctive relationship to age and cognitive

functions compared to non-carriers, despite age-related

atrophy and hypoperfusion. Functional network integrity

may contribute to brain resilience in pre-symptomatic

frontotemporal dementia, mitigating the effects of

atrophy and hypoperfusion in the late pre-symptomatic

stage.

3. Future directions: These results would inform possible

ways to delay symptom onset by maintaining functional

network integrity.

mutation carriers who had not shown symptoms fulfilling the diagnos-

tic criteria for FTDat the timeof recruitment, termedpre-symptomatic

genetic mutation carriers. There were 188 relatives of the mutation

carriers who are not genetic mutation carriers of known FTD genes,

termednon-carriers. Themajority of participants scored0 in their CDR

plus NACC FTLD, while 29 pre-symptomatic genetic mutation carri-

ers and 25 non-carriers scored 0.5 in their CDR plus NACC FTLD. The

demographics and assessment scores of the participants are shown

in Table 1. These variables were compared between pre-symptomatic

mutation carriers and non-carriers using one-way analysis of variance

(ANOVA) for continuous variables and using the chi-squared test for

categorical variables.

2.2 Neurocognitive assessment

Participants underwent a neuropsychological battery consisting of

tests from the Uniform Data Set,16 covering attention and pro-

cessing speed: Wechsler Memory Scale-Revised (WMS-R) digit span

forward,16 Trail-Making Test part A (TMTA),17 the Wechsler Adult

Intelligence Scale-Revised (WAIS-R) Digit Symbol Substitution test,16

Delis-Kaplan Executive Function System (DKEFS) Color-Word Inter-

ference Test color and word naming18; executive function: WMS-R

Digit span backward,16 TMT part B (TMTB),17 DKEFS Color-Word

Interference Test ink naming18; language: modified Camel and Cac-

tus Test,19 the Boston Naming Test (short 30-item version),16 verbal

fluency: category fluency and phonemic fluency16,20; memory encod-

ing: Free and Cued Selective Reminding Test (FCSRT) immediate free

and total recall21; memory recall: FCSRT delayed free and total recall,

Benson Complex Figure recall21; and visuoconstruction: Benson Com-

plex Figure copy. More details of the neurocognitive assessment in

this cohort can also be found in the previously published protocol.6 A

principal component analysis (PCA) with permutation (n = 1000) was

performed on the series of cognitive measures. Leading components

were selected for further investigation.

2.3 Neuroimaging acquisition and processing

2.3.1 Gray matter volume

T1-weighted MRI scans were collected on 3T scanners. A three-

dimensional T1-weighted magnetization prepared rapid gradient echo

sequence image was acquired for each subject accommodating dif-

ferent scanners at each site over at least 283 s (283 to 462 s) and

had a median isotropic resolution of 1.1 mm (1 to 1.3 mm), repetition

time (TR) of 2000 ms (6.6 to 2400), echo time (TE) of 2.9 ms (2.6 to

3.5 ms), inversion time of 8 ms (8 to 9 ms), and field of view (FOV)

256 × 256 × 208 mm (192 to 256 × 192 to 256 × 192 to 208 mm).

For participants with baseline and follow-up scans, the latest available

scans were examined. The co-registered T1 images were segmented

to extract probabilistic maps of six tissue classes: gray matter, white

matter, cerebrospinal fluid, bone, soft tissue, and residual noise. The

native-space gray matter and white matter images were submitted to

diffeomorphic registration to create equally represented gene-group

template images.22 The templates for all tissue types were normal-

ized to the Montreal Neurological Institute (MNI) template using a

12-parameter affine transformation. The normalized and modulated

graymatter volume (GMV) images were used in the analysis.

2.3.2 CBF

ASL sequences could be different across different sites. The sequences

included in this study were: pseudo-continuous ASL 3D fast-spin-echo

stack-of-spirals implementedon a3TGeneral ElectricMR750; pseudo-

continuous ASL 2D gradient-echo echo-planar imaging on a 3T Philips

Achieva,with andwithout background suppression; and pulsedASL3D

gradient-and-spin-echo on 3T Siemens Trio systems. The completeASL

parameters of each sequence have been described elsewhere.23

For ASL processing, the ExploreASL pipeline (v1.5.1) was used.24

The ExploreASL is optimized for multi-center data through the use

of advanced ASL markers (e.g., spatial coefficient-of-variation25 and

partial volume correction26). It has been employed so far in over 30

studies, consisting of ASL scans from three MRI vendors including

GE, Philips, and Siemens.24 A recent study using this ASL process-

ing method to analyze cerebral perfusion data from the GENFI study

has also confirmed the reliability of this method for integrating ASL
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TABLE 1 Characteristics of participants.

Parameter Non-carriers

Pre-symptomatic mutation

carriers

p-value (chi-squared
or ANOVA)

n 188 207

Age (years)

Mean± SD 45.6± 12.1 44.1± 11.6 0.23

Gender, n(%)

Females 117 (62.2) 139 (67.1) 0.29

Males 71 (37.8) 68 (32.9)

Gene, n(%)

C9orf72 62 (33.0) 76 (36.7) 0.14

GRN 83 (44.1) 97 (46.9)

MAPT 43 (22.9) 34 (16.4)

Mini-Mental State Examination

Mean± SD

29.4± 1.0 29.4± 1.0 0.49

Cambridge Behavioral Inventory,

mean± SD

4.6± 7.0 6.1± 9.7 0.10

CDR plus NACC FTLDGlobal Score,

mean± SD

0.067± 0.17 0.070± 0.17 0.98

Abbreviation: ANOVA, analysis of variance; CDR plus NACC FTLD, CDR Dementia Staging Instrument plus National Alzheimer’s Coordinating Centre

behavior and language domains.

data from different scanners specific to the GENFI cohort data.27

This denoising for scanner effectswas complementedwith data-driven

and model-driven correction at the subject level.28,29 In this study,

structural and functional image volumes across multiple sites, ven-

dors, and sequences were processed first. Briefly, structural images

were non-linearly registered to MNI space using Geodesic Shooting30

and transformationmatriceswere saved for subsequent application on

functional images. ASL scans were corrected for motion outliers using

rigid-body transformation coupled with the enhancement of auto-

mated blood flow estimates outlier exclusion algorithm,31 followed

by pairwise subtraction to produce perfusion-weighted images. Func-

tional proton-density weighted images were smoothed with a 16 mm

full width at half maximum (FWHM) Gaussian kernel to create a bias

field that avoided division artifacts during CBF quantification and

cancelled out acquisition-specific B1-field inhomogeneities. CBF quan-

tification itself followed a single-compartment model approach and

recommendations outlined in the ASL consensus paper.32 For quality

control, CBF images were reviewed independently by three authors

with 3–6 years of experience in handling ASL data. Disagreements

were resolved by consensus. CBF volumesweremasked by their struc-

tural T1 counterpart’s probability gray matter mask at ≥50%, and the

spatial coefficient of variation was calculated for the extracted voxels.

Images with a coefficient of variation values≥0.8 were discarded.

To adjust for differences arising from the effects of multiple sites,

scanners, and software, a spatially varying intensity normalization

approach was used,8 together with data-driven and model-driven

approaches at the between-subject level (see section Statistical anal-

ysis). The normalization approach uses the within-site CBF similar-

ity between participants to remove the between-site quantification

differences.8 Mean CBF images of these groupings were calculated

and smoothed using a 6.4 mm FWHMGaussian kernel. Smoothing was

constrained to a binary MNI brain mask. These group-specific mean

images were then averaged to calculate the population mean CBF

image, which in turn was rescaled uniformly such that the mean gray

matter perfusion equaled 60 mL/min/100 g. Group-specific rescale-

factor images were then calculated by dividing this population CBF

image by each group’s mean CBF image. Individual CBF images were

adjusted via multiplication against their group’s respective rescale-

factor image. To account for the effects of atrophy, partial volume

correction on rescaled CBF volumes was performed using a linear

regression approach.26 Further details of ASL processing are discussed

in a recent publication.27 Due to hyperintensities present in the cere-

bellum of many subjects which is not our interest of study, only the

CBF of the cortical region was included in the analysis of this study.

A cortical binary mask created from the Harvard-Oxford cortical atlas

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) was therefore applied to

all CBF images.

2.3.3 Resting-state functional networks

For rs-fMRI, echo planar imaging acquired 200 volumes with 42 slices

(slice thickness = 3.5 mm, TR = 2500 ms; TE = 30 ms; FOV = 192 mm

× 192 mm). Resting-state fMRI data were preprocessed using Auto-

matic Analysis33 calling functions from SPM12 implemented inMatlab

(MathWorks). Processing steps included (1) spatial realignment to cor-

rect for head movement and movement by distortion interactions,

(2) temporal realignment of all slices, and (3) coregistration of the

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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echo planar imaging to the participant’s T1 anatomical scan. The nor-

malization parameters from the T1 stream were applied to warp

functional images into MNI space. Resting-state fMRI data were fur-

ther processed using whole-brain independent component analysis

(ICA) of single-subject time series denoising, with noise components

selected and removed automatically using the ICA-based Automatic

Removal of Motion Artifacts toolbox.34 This was complemented with

linear detrending of the fMRI signal, covarying out six realignment

parameters, white matter and cerebrospinal fluid signals, their first

derivatives, and quadratic terms.35 Global white matter and cere-

brospinal fluid signals were estimated for each volume from the mean

value of whitematter and cerebrospinal fluidmasks derived by thresh-

olding SPM tissue probability maps at 0.75. Data were band-pass

filtered using a discrete cosine transform.

To identify the activation of functional networks from rs-fMRI,

group-level ICAwas performed to decompose the rs-fMRI data36 from

395 participants (including pre-symptomatic mutation carriers and

non-carriers). ICA dissociates signals from complex datasets with min-

imal assumptions, to represent data in a small number of independent

components (ICs)which here are spatialmaps that describe the tempo-

ral and spatial characteristics of underlying signals.36,37 The values at

each voxel reflect the correlation between the time series of the voxel

and that of the component. Each component can, therefore, be inter-

preted as blood oxygen level dependent (BOLD) co-activation across

voxels of a functional network at a resting state. The number of com-

ponents used, N = 15, matched a common degree of decomposition

previously applied in low-dimensional group-ICA of rs-fMRI38–40 and

generated network spatial maps that showed a high degree of over-

lappingwith network templates. Low-dimensional group-ICAwas used

because the purpose was to define each network with a single com-

ponent, and high-dimensional group-ICA would tend to decompose a

single network intomultiple components. The stability of theestimated

ICs was evaluated across 100 ICASSO iterations.41 Functional net-

works were identified from components by visualization and validated

by spatially matching the components to pre-existing templates,42 in

accordance with the previous methodology used to identify networks

from ICs.43 The dorsal and ventral default mode network, the salience

network, and the left and right frontoparietal network were selected,

which are higher-order functional networks known to be associated

with age- and FTD-related cognitive change.44–46

2.4 Statistical analysis

2.4.1 Linked ICA

Linked independent component analysis (ICA) was performed using

FLICA of FMRIB47,48 implemented in Matlab (MathWorks version

2021b). Linked ICA is a data-driven analytic method that allows for

the simultaneous characterization of multimodal imaging modalities

while taking into account the covariance across imaging modalities.47

In comparison with other commonly used multivariate approaches for

multivariate data integration such as canonical correlation analysis

and partial least squares, linked ICA is able to identify patterns of

covariance across more than two modalities. Linked ICA was run with

seven spatial map inputs: GMV, CBF, and five co-activation maps from

resting-state functional networks (i.e., the dorsal default mode net-

work, the ventral defaultmodenetwork, the saliencenetwork, the right

frontoparietal network, and the left frontoparietal network) identified

as described in 2.3.3. To ensure the results were not influenced dom-

inantly by non-gray matter regions (e.g., ventricles), all spatial maps

weremasked by thresholding SPMgraymatter tissue probabilitymaps

at 0.3. We refer to these imaging-derived spatial maps as modalities

in linked ICA. A summary flow chart of the processing and analysis of

imagingmodalities is presented in Figure 1.

Within each modality, images from all subjects were concatenated

into a single input matrix (participants-by-voxels) for linked ICA.

Linked ICA decomposed this n-by-m matrix of participants-by-voxels

into spatial components, with each component being an aggregate

of spatial patterns, one for each modality, along with a set of subject

loadings, one for each component.47 Each modality spatial pattern

is a map of weights that is later converted to a pseudo-Z-statistic by

accounting for the scaling of the variables and the signal-to-noise ratio

in that modality. Only modalities with significant contribution (i.e.,

weighting with Z-score > 3.34, which corresponds to p < 0.001) were

presented in this study. Linked ICA subject loadings for a given compo-

nent were shared among all modalities represented in that component

and indicated the degree to which that component was expressed

by any individual subject. Subject loadings were used as inputs to

the second-level between-subject regression analysis (see below

in 2.4.2).

2.4.2 Multiple regression analysis

To investigate the effects of age (linear and quadratic) and genetic

mutation on cognition, multiple regression analysis was used with cog-

nition PCA component scores as the dependent variable. The group

was classified by genetic mutation status (i.e., pre-symptomatic muta-

tion carriers or non-carriers). Gender and site effect were included as

covariates. InWilkinson’s notation,49 themodel took the form:

Cognition component ∼ Group ∗ Age2 + Gender + Site.

To investigate whether brain patterns were predicted by age (linear

andquadratic), geneticmutation, and their interaction, subject loadings

of each linked ICA component (IC) of interest were investigated as the

dependent variable in multiple regression. Gender, total brain volume,

and site effectwere included as covariates. InWilkinson’s notation, the

model took the form:

IC ∼ Group ∗ Age2 + Gender + Total brain volume + Site.

Finally, to investigate the relationship between brain patterns and

cognitive variability, accounting for the effects of genetics and age (lin-

ear and quadratic), multiple regression was used taking the following
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F IGURE 1 Summary of processing and analysis of the imagingmodalities, comprising functional, cerebrovascular, and structural
measurements. CBF, cerebral blood flow; DMN, default mode network; FPN, frontoparietal network; GMV, graymatter volume; ICA, independent
component analysis; fMRI, functional magnetic resonance imaging; SN, salience network; T1w, T1-weighted.

form:

Cognition component ∼ IC ∗ Group ∗ Age2 + Gender

+ Total brain volume + Site.

A false discovery rate (FDR)-corrected p < 0.05 was considered

statistically significant. Analyses were performed inMatlab.

3 RESULTS

3.1 Relationship between age, gene group, and
cognitive function

The two significant PCA components are shown in Figure 2. The first

cognition component (varianceexplained36.6%,p<0.001)was related

to global cognitive function. No significant group-wise difference in

global cognitionwas foundbetweengeneticmutation carriers andnon-

carriers (p = 0.079). Both non-carriers and pre-symptomatic genetic

mutation carriers showed a decline in global cognition with age likely

reflecting the general age-relateddecrease in global cognitive function.

No significant difference was found in the age-cognition relation-

ship between genetic mutation carriers and non-carriers (Group:Age

interaction t = −0.97, p = 0.33; Group:Ageˆ2 interaction t = −0.73,
p= 0.47).

The second cognition component (variance explained 9.1%,

p < 0.001) indicated executive function, attention, and processing

speed with deficits in visuospatial memory. No significant group-wise

difference was found between genetic mutation carriers and non-

carriers (p = 0.28). Neither non-carriers nor pre-symptomatic genetic

mutation carriers showed age-related changes in these cognitive

functions. No significant difference was found in the age-cognition

relationship between genetic mutation carriers and non-carriers
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F IGURE 2 The two significant components from principal component analysis (PCA) on cognitive assessments. The top row shows the
loadings of each cognitive test in PCA components. The bottom row shows the scatter plots of the correlation between age and PCA cognition
component scores.

(Group:Age interaction t = −0.62, p = 0.53; Group:Ageˆ2 interaction

t= 0.58, p= 0.56).

3.2 Multimodal fusion using linked ICA

The relative weight of modalities in each linked ICA output compo-

nent is shown in Figure 3. Three components (IC10, IC14, and IC19)

were excluded from further analysis as they were dominated by sig-

nals from one or two subjects (e.g., due to regional hyperintensities

reflected by ASL images). We focused on components with variance

explained >1%. Note that there was little fusion between functional

signals and structural or vascular signals.

3.3 Relationship between age, gene group, and
neuroimaging components

Multiple regression analysis results of the linked ICA components of

interest are shown in Table 2. We focused on components with a sig-

nificant model fit (FDR-corrected p < 0.05 for adjusted R2, i.e., the

components that showed significant correlations with the variables

being tested). Strong linear age effects were observed particularly in

components indicating global CBF (IC1), ventral default mode net-

work (IC5), salience network (IC7), and head motion (IC9) (Figure 4).

Only one component, IC4, showed differential age effects between

pre-symptomatic and non-carriers (Group:Age interaction t = −2.82,
p = 0.0051). As age increased, pre-symptomatic genetic mutation car-

riers showed decreased activation of the left frontoparietal network

(IC4, r = −0.30, p < 0.001), while non-carriers did not (r = −0.0087,

p = 0.91). Brain visualization of IC4 and its scatter plot against age

are shown in Figure 5. Further analyses to examine for possible speci-

ficity to GRN, MAPT, or C9orf72 carriers showed that the interaction

betweengeneticmutation status andage (Group:Age) in the regression

model was significant within the GRN mutation carriers (Group:Age

interaction t = −2.44, p = 0.016), but was not significant in the rest of

the pre-symptomatic genetic mutation carriers excluding GRN muta-

tion carriers (Group:Age interaction t=−1.43, p= 0.16). It was neither

significant within the C9orf72 mutation carriers (Group:Age interac-

tion t = −1.53, p = 0.13) nor within the MAPT mutation carriers

(Group:Age interaction t = −1.42, p = 0.16) alone. Brain spatial maps

of other components are presented in Figure S1.

3.4 Relationship between neuroimaging
components and cognitive function

All linked ICA components that showed cognition-related differences

between the two groups reflected a single neuroimaging modality.

No component showed a different association with cognition compo-

nent 1 between non-carriers and pre-symptomatic mutation carriers

(Table S1).

In regards to component 2 (Table S2), IC2, indicating global GMV,

showed an interaction with genetic mutation in predicting cognition

component 2 (IC:Group t = −2.73, p = 0.0066): non-carriers showed

a positive association between IC2 subject loadings and good perfor-

mance on executive functions and poor performance on visuospatial

memory tasks (r = 0.17, p = 0.026), while this association was not sig-

nificant in pre-symptomatic mutation carriers (r = −0.12, p = 0.10).

There was a significant three-way interaction between group, age,
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F IGURE 3 The relative weight of modalities in each component generated from linked independent component analysis (ICA) and the
percentage of variance explained of each component. CBF, cerebral blood flow; dDMN, dorsal default mode network; FPN, frontoparietal network;
GMV, graymatter volume; SN, salience network; vDMN, ventral default mode network.
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F IGURE 4 Brain visualization and scatter plots of subject loadings against age of the linked independent component analysis components (ICs)
showing strong age effects.

and IC subject loadings of the left frontoparietal network (i.e., IC4,

IC:Group:Ageˆ2 t = −2.20, p = 0.029) in predicting cognition compo-

nent 2. Visualizing the results (Figure 6) indicates that as age increased,

an increased association between the left frontoparietal network and

good performance on executive functions and poor performance on

visuospatial memory tasks was found in pre-symptomatic genetic

mutation carriers. This result was confirmed in a post-hoc test showing

that a significant two-way interaction between IC4 and age in pre-

dicting these cognitive performances was found in pre-symptomatic

geneticmutation carriers (IC:Ageˆ2 t=−2.14,p=0.033) but not innon-

carriers (IC:Ageˆ2 t = 1.70, p = 0.090). Significant 3-way interactions

(IC:Group:Ageˆ2) were also observed for the component of ventral

defaultmodenetwork (IC5, t=−2.73,p=0.0068) and saliencenetwork

(IC7, t=−3.14, p= 0.0018). The effects in both components suggested

an age-varying association between network activity and performance

onexecutive functions and visuospatialmemory in non-carriers but not

in pre-symptomatic mutation carriers (Figure 6).

In a post-hoc analysis to examine the relationship between age and

executive functions, which are the most commonly affected cognitive

domains in FTD, we have selected only the tests examining executive

functions, attention, and processing speed and performed a PCA on

them (Figure S2). We examined the relationship between age and the

significant PCA component (i.e., principal component (1) representing

the overall performance of these tests. Results showed a negative

association between age and this component in both pre-symptomatic

mutation carriers (Age t = −6.78, p < 0.001; Ageˆ2 t = −2.73,
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F IGURE 5 Brain visualization of linked independent component analysis component 4 (IC4), showing the left frontoparietal network (FPN).
For visualization, the brain spatial map threshold is set to 3< |Z|< 10. The scatter plot shows the correlation between age and IC4 subject
loadings, separated by pre-symptomatic genetic mutation carriers (r=−0.30, p< 0.001) and non-carriers (r=−0.0087, p= 0.91).

p= 0.007) and non-carriers (Age t=−4.21, p< 0.001; Ageˆ2 t=−3.37,
p< 0.001).

4 DISCUSSION

In this study, we co-analyzed GMV, CBF, and functional network

integrity. Interplay across modalities did not relate to genetic groups

or cognition. Pre-symptomatic genetic mutation carriers showed

a decrease with age in the left frontoparietal network integrity

while non-carriers did not, suggesting a gene-related neurodegener-

ative consequence above normal aging. Executive functions of pre-

symptomatic mutation carriers dissociated from the level of atrophy

but became dependent on the left frontoparietal network integrity

with age. Results suggest that maintaining frontoparietal network

integrity may support cognitive function despite age-related atrophy

and hypoperfusion in pre-symptomatic FTD.

The age-related decreases in CBF and default mode network activ-

ity found in this study are consistent with the commonly observed

changes in perfusion50,51 and functional network52 in normal aging.

Global GMV also decreased with age, consistent with previous mul-

timodal neuroimaging fusion studies43,53 and aging pattern of the

brain.54 The component representing global GMV (IC2) in this study

did not significantly differ between pre-symptomatic mutation carri-

ers and non-carriers accounting for age. The main reason may be this

component is dominated by the effect of aging, as linked ICA identi-

fies components in a data-drivenmanner. Signals in this component are

mostly influenced by age-related variances, which can be attributed to

thewideage rangeof participants, spanning from20 to83yearsold.On

the other hand, studies employing hypothesis-driven approaches iden-

tified atrophy patterns that are optimized to detect pre-symptomatic

differences.4,7 Thus, the difference in atrophy patterns identified in

those studies might be specific to pre-symptomatic mutation carriers

versus age-matched controls,7,55 while IC2 in our study predominantly

reflects age-related atrophy as reported in previous studies.43,53,56

More importantly, we illustrated the age- and cognition-relevant

divergence of frontoparietal network integrity between pre-

symptomatic mutation carriers and non-carriers. Pre-symptomatic

mutation carriers showed a decrease in left frontoparietal network

integrity with age, while non-carriers did not, suggesting that the

lateralized frontoparietal network is the functional network most

affected by FTD mutations with age. Salience network connectivity is

commonly reduced in symptomatic behavioral variant FTD (bvFTD)

and associated with disease severity,45,57 but remains unchanged at
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F IGURE 6 Linked independent component analysis components showing three-way interactions between subject loadingswith group (genetic
mutation) and age in predicting cognition component 2. IC4 indicates the left frontoparietal network (FPN), IC5 indicates the ventral default mode
network (DMN), and IC7 indicates the salience network (SN). The brain visualization and scatter plots are shown. The scatter plots show the
correlation between linked independent component analysis (IC) subject loading scores and principal component analysis (PCA) cognition
component 2 scores, for visualization purpose separated by pre-symptomatic genetic mutation carriers and non-carriers and three age groups.

the pre-symptomatic stage.58 Altered default mode network con-

nectivity has been found in both pre-symptomatic MAPT mutation

carriers and bvFTD subjects.45,58 In this study, we did not find the

default mode network or the salience network significantly different

between genetic mutation carriers and non-carriers. Nevertheless,

when relating to executive function, attention, and processing speed,

the associations of the ventral default mode network and the salience

network, respectively, with performance in these functions were

found in younger non-carriers but not in pre-symptomatic mutation

carriers, suggesting cognitive reliance on these functional networks

breaks down in genetic mutation carriers and during aging. Under-

standing such an effect would be important for gaining insights into

the mechanisms of cognitive decline and the maintenance of executive

functions.

Although pre-symptomatic mutation carriers maintain similar

global cognition to non-carriers, they showed a trend of more rapid

decline in global cognition with age. We found no significant associ-

ation between age and executive function, attention, and processing

speed in either group, contrasting previous reports of age-related

declines in executive functions,59 potentially due to different anal-

ysis methods. Here, executive functions were represented by the

second principal component, which should be interpreted in relation

to the negatively loading visuospatial memory and in the context of

the first principal component. Principal component 1 captured the

well-documented age-related decline in global cognition including

executive functions and memory.60,61 Principal component 2 may

represent aspects of executive functions, that are independent of

the general cognitive decline, possibly reflecting individual variability

specific to the cognitive tests. Hence, the age-related differences in

these executive functions might be moderated by the age-related

effect of visuospatial memory, while executive functions declining

alongside memory are likely already captured by principal component

1. Post-hoc analysis showed a negative age-executive functions associ-

ation, consistent with reported age-related executive declines.59 The

performance related to attention, processing speed, and executive

function correlated with global GMV in non-carriers, while correlated

with left frontoparietal network integrity in pre-symptomatic muta-

tion carriers especially as they get older. It suggests that in genetic

mutation carriers, executive functions dissociated from GMV and

were maintained by frontoparietal network integrity. Frontoparietal

network is important for cognitive flexibility especially for executive

function,62,63 one of the most commonly affected cognitive domains in

FTD.1 A recent study found that pre-symptomatic C9orf72 mutation

carriers showed lower attention and executive function compared to
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non-carriers.61 Our study provides further evidence suggesting that

these cognitive domains are sensitive to alternations at the earlier

stage of the disease. Given that CBF and GMV significantly decreased

with age regardless of genetic mutations, and the reliance on other

functional networks for cognitive performance broke down in genetic

mutation carriers, maintaining frontoparietal network integrity might

be the key to slowing cognitive decline, particularly executive declines,

at the pre-symptomatic stage of FTD.

The atrophypatterns canbedifferent across different geneticmuta-

tions. The GRN genetic mutation is known for causing asymmetric

atrophy while the atrophy patterns of FTD associated with MAPT

genetic mutation are typically symmetric.7,55,64 We observed asym-

metric relationship between functional network integrity and age in

GRN mutation carriers, indicating that the asymmetric vulnerability

to genetic mutation can be manifested at the pre-symptomatic stage.

Specifically, we observed a relationship between age and the left

frontoparietal network in GRN mutation carriers, although the lack

of significance in other genetic groups may be attributed to smaller

sample sizes compared to GRN mutation carriers. Such finding is con-

sistent with previous studies showing selective vulnerability of the left

hemisphere.55,65,66 Moreover, there is inherent asymmetry in several

human cognitive systems, including language and executive functions,

which couldbe significantly impaired inFTD.67–69 Although the cellular

mechanisms of selective vulnerability are notwell understood, itwould

be important to investigate the laterality of changes in future stud-

ies, especially considering the dynamical interactions between brain

networks which shape cognition.

This study benefits from pathological confidence arising from

genetic characterization, and the large sample size of pre-symptomatic

mutation carriers through the multi-center GENFI study. This study

combinesGMV, CBF, and functional networks in pre-symptomatic FTD

geneticmutation carriers. Linkingneurobiological changes is important

given potential synergistic effects. Although, we found no interplay

across modalities, relating the frontoparietal network to other unex-

plored pathologies like tau, amyloid, and neurotransmitters may be

informative,45,58,70,71 given its age- and cognition-related distinctions

between genetic mutation carriers and non-carriers observed in our

study.

The study also has limitations. First, the variability of MRI acqui-

sition scanners and sequences through the multi-center cohort is

higher than in a single-center study. However, wemitigated the effects

through the use of normalization, denoising, and statistical adjustment

for side effects.We recognize thatmulti-center andmulti-scanner cor-

rection for ASL could potentially be improved. A standard approach

would be the use of flow phantoms for calibrating a scanner’s ASL

signal to a ground-truth flow rate.72 Currently, however, this is not

implemented in most ASL studies. Existing methods of pre-model

or within-model corrections73 along with data-driven and model-

driven corrections for sites and scanners remain the most pragmatic

approach. Second, this study is cross-sectional. This should be noted

when interpreting age effects, as dynamic aging effects require lon-

gitudinal data. More follow-up visits of the ongoing GENFI cohort

will allow a longitudinal examination. Third, only adults were included,

thus potentially missing the changes manifested before adulthood

caused by genetic mutation. A new cohort within GENFI is starting

which aims to study family members below the age of 18. Fourth,

there were some pre-symptomatic genetic mutation carriers with

a CDR plus NACC FTLD global score of 0.5, indicating that they

might have mild clinical symptoms but were not diagnosed as FTD.

However, the pre-symptomatic mutation carriers did not differ from

non-carriers in their groupwise CDR plus NACC FTLD score, CBI-R,

or MMSE. This suggests that the difference in functional networks

observed in this study is not likely to be related to mis-assigned

early-symptomatic patients carrying mutations. Future studies can

implement a more refined and multidimensional classification of the

pre-symptomatic stage, such as the mild cognitive and/or behavioral

and/or motor impairment (MCBMI) criteria,74 to distinguish those

at different “pre-symptomatic” stages. Finally, our study focused on

integrating spatial maps of network activity in relation to atrophy

and perfusion. Functional connectivity between networks is another

important factor to be considered.4 The joint consideration of activity

and connectivity might better characterize brain dynamics and cog-

nitive performance.75 Future research could investigate the intercor-

relations between functional connectivity and multiple neuroimaging

modalities.

In conclusion, we demonstrated that frontoparietal network

integrity might support cognitive function in pre-symptomatic FTD.

Linking neuroimaging, especially functional network integrity, with

other neuropathological changes may be a future study direction

for pre-symptomatic genetic FTD. The dissociation of changes in

structure, perfusion, and network activity in pre-symptomatic FTD

has implications for strategies to prevent or treat cognitive decline in

people at high risk of FTD.
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