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Abstract

INTRODUCTION: Factors responsible for the deposition of pathological tau in the

brain are incompletely understood. This study links macroscale tau deposition in the

human brain to cerebrospinal fluid (CSF) flow dynamics using resting-state functional

magnetic resonance imaging (rsfMRI).

METHODS:Low-frequency (<0.1Hz) resting-state global brain activity is coupledwith

CSF flow and potentially reflects CSF dynamics-related clearance. We examined the

correlation between rsfMRI measures of CSF inflow and global activity (gBOLD–CSF

coupling) as a predictor, interacting with amyloid beta (Aβ), of tau and cortical thick-

ness (dependent variables) across Alzheimer’s DiseaseNeuroimaging Initiative (ADNI)

participants fromcognitively unimpaired throughmild cognitive impairment (MCI) and

Alzheimer’s disease (AD).

RESULTS: Tau deposition in Aβ+ participants, accompanied by cortical thinning and

cognitive decline, is associatedwith decreased gBOLD–CSF coupling. Taumediates the

relationship between coupling and thickness.

DISCUSSION: Findings suggest that resting-state global brain activity and CSF move-

ments comodulate Alzheimer’s tau deposition, presumably related to CSF clearance.

KEYWORDS

Alzheimer’s disease pathology, brain atrophy, cerebrospinal fluid (CSF) flow, CSF dynamics-
related clearance, global resting-state fMRI signal, tau deposition

Highlights

∙ A non-invasive functional magnetic resonance imaging (fMRI) assessment of a CSF

clearance-related process is carried out.

∙ Global brain activity is coupled with CSF inflow in human fMRI during resting state.
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∙ Global fMRI–CSF coupling is correlated with tau in Alzheimer’s disease (AD).

∙ This couplingmeasure is also associated with cortical thickness, mediated by tau.

1 BACKGROUND

Alzheimer’s disease (AD) is pathologically characterized by the extra-

cellular accumulation of amyloid beta (Aβ) plaques and the intracellular
accumulation of hyperphosphorylated tau in the form of neurofibril-

lary tangles.1 Converging evidence has shown that Aβ accelerates tau
phosphorylation and promotes tau aggregation and oligomerization.2

Tau plays an especially critical role in cognitive decline,3,4 brain atro-

phy, particularly cortical thinning,5,6 and neuronal and synaptic loss.3,7

The deposition of tau aggregates in AD follows a stereotypical pat-

tern, beginning in the entorhinal cortex and hippocampus and then

propagating to areas that have been characterized in post mortem and

imaging studies as Braak stages.8,9 The neural mechanism underly-

ing such a stereotyped pattern of tau accumulation remains elusive.

Current hypotheses have attributed tau spreading to altered neu-

ral activity10,11 and a “prion-like” mechanism manifested as abnormal

tau seeds transferring through anatomically connected brain regions

demonstrated in both cell and animal models12 and via functionally

connected cortical regions in humans.13–15

Beyond its aggregation patterns, tau clearance has received increas-

ing attention.16 For example, recent animal studies have identified the

critical role of glymphatic function in clearing brain wastes, including

Aβ and tau, via a pathway involving cerebrospinal fluid (CSF) flow and

the exchange between CSF and interstitial fluid (ISF).16–18 In mice, the

sleep–wake cycle regulates ISF tau, and sleep deprivation can signifi-

cantly increase ISF and CSF tau as well as tau spreading,19 presumably

due to inadequate sleep-dependentCSFdynamics-related clearance.17

While progress has been made in assessing CSF movement-related

clearance,18,20–24 a real-time non-invasive imaging method is still

needed to evaluate relationships between CSF dynamics and clear-

ance in humans. However, CSF clearance is linked to spontaneous

low-frequency (<0.1 Hz) resting-state global brain activity assessed

with the global blood-oxygen-level-dependent (gBOLD) signal in func-

tional magnetic resonance imaging (fMRI)25–27; observation of this

phenomenon during light sleep or low arousal states supports the

importance of this process in clearing brain waste28–30 due to the

strong sleep-dependent effect of CSF clearance.17 CSF movement, a

key determinant of CSF clearance,16–18 is coupled with gBOLD dur-

ing both sleep31 and wakefulness.25 This global brain activity and

CSF movement (gBOLD–CSF) coupling has recently been proposed

to reflect CSF dynamics potentially related to clearance and is also

correlated with cortical Aβ in AD,25,27 cognitive decline in AD and

Parkinson’s disease,25,26 and age.32

Although early resting-state fMRI (rsfMRI) studies assumed the

gBOLD signal was noise,30 an increasing number of studies have

suggested that gBOLD reflects slow global neural activity.28,33–35

Specifically, concurrent fMRI-electrophysiology studies in primates

have shown correlations between the gamma-band power of local

field potentials in the visual cortex and rsfMRI across widespread

brain regions, suggesting a significant portion of gBOLD is directly

linked to neural activity.28 Moreover, converging evidence also has

demonstrated that gBOLD fluctuation indicates a brain state related

to vigilance, and its amplitude increase during light sleep or low

arousal states28–30,34 implies a potential link with sleep-dependent

CSF clearance.17,19 In addition, cortical co-activations at prominent

gBOLD peaks display larger signal increases in the sensory-motor

network, accompanied by deactivations in the nucleus basalis, a crit-

ical component of the cholinergic system.34 Furthermore, gBOLD

correlates with strong sympathetic changes, including pupil size,33,36

respiratory and cardiac pulsation,37–41 and heart rate variability.42

These sympathetic activities may constrict pial arteries and facilitate

CSF movements or indirectly affect the slow (<0.1 Hz) modulation of

cardiac and respiratory pulsations, accepted as the driving forces of

CSF flow.43,44 Thus, despite the lack of direct evidence, gBOLD–CSF

coupling is a plausible surrogate measure of the global brain and CSF

dynamics related to clearance.

Therefore, a key question arises: Does coupling between global

brain activity and CSFmovement (gBOLD–CSF coupling) as a measure

of CSF clearance explain the amount of cortical tau deposition across

participants? To address the hypothetical question, we examined mul-

timodal data from the Alzheimer’s Disease Neuroimaging Initiative-3

(ADNI3; see the full ADNI investigators list at theAppendix 1) to inves-

tigate the relationship between gBOLD–CSF coupling, tau deposition

measured with PET, cortical thickness, and cognitive function.

2 METHODS

2.1 Participants and data

We included 95 participants from ADNI3 who had available tau

positron emission tomography (tau-PET) (18F-Flortaucipir [FTP]),

Aβ-PET (either [18F]florbetaben [FBB] or [18F]florbetapir [FBP]),

rsfMRI (TR = 0.607 s only), and structural MRI (cortical thick-

ness) data. Participants included four different clinical diagnosis

(http://adni.loni.usc.edu/study-design/): six AD patients, 22 with

mild cognitive impairment (MCI), five participants with subjec-

tive memory concern (SMC), and 62 healthy controls. We further

categorized the participants into cognitively impaired (AD and

MCI) and unimpaired (SMC and control) groups. Cognitive perfor-

mance was measured with the Montreal Cognitive Assessment

(MoCA). Our cohort thus includes 46 Aβ− and 49 Aβ+ par-

ticipants, including 21 unimpaired Aβ+ and 28 impaired Aβ+
individuals. All participants provided written informed consent.

http://adni.loni.usc.edu/study-design/
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Ethical approval from the individual Institutional Review Board (IRB;

http://adni.loni.usc.edu/wp-content/uploads/2013/09/DOD-ADNI-

IRB-Approved-Final-protocol-08072012.pdf) was granted to the

investigators at each ADNI participating site. All the ADNI data were

collected per the principles of the Declaration of Helsinki.

Aβ-PET status, tau-PET regional standardized uptake value ratios

(SUVRs), rsfMRI scans, cortical thickness, and MoCA were obtained

from the same study visit (the time interval between pairwise modal-

ities was no more than 183 days45). The file “UC Berkeley—AV1451

PVC 8 mm Res Analysis [ADNI2,3] (version: 2023-02-17)” was used

to provide the tau-PET SUVR.46,47 Both “UC Berkeley—AV45 8 mm

ResAnalysis [ADNIGO,2,3] (version: 2023-02-17)” and “UCBerkeley—

FBB 8 mm Res Analysis [ADNI3] (version: 2023-02-17)” were used to

provide the Aβ-PET status (thresholds for Aβ+ were AV45–Aβ > 1.11

SUVR or FBB–Aβ > 1.08 SUVR using the whole cerebellum as ref-

erence region).48 Cortical thickness was downloaded from ADNI as

“UCSF—Cross-Sectional FreeSurfer (6.0) [ADNI3] (Version: 2022-08-

17).” MoCA score was also directly acquired from ADNI as “Montreal

CognitiveAssessment (MoCA) [ADNIGO,2,3].” All thesedata, aswell as

the rsfMRI and cortical thickness, are publicly accessible on the ADNI

website (http://adni.loni.usc.edu/). It is worth noting that the cogni-

tively impaired group included only individuals who were Aβ+, while
the cognitively unimpaired group included Aβ+ and Aβ− individuals.

2.2 Image acquisition and preprocessing

All rsfMRI scans were acquired using 3 Tesla MR scanners from mul-

tiple ADNI participating sites following a unified protocol (http://adni.

loni.usc.edu/methods/documents/mri-protocols/). The MRI data used

in the current studywere collected on SiemensMRI scanners (Siemens

Medical Solutions, Siemens, Erlangen, Germany). Each MRI session

began with a T1-weighted (T1w) MPRAGE sequence (flip angle = 9◦,

spatial resolution = 1 × 1 × 1 mm3, echo time [TE] = 3.0 ms, repe-

tition time [TR] = 2300 ms), which was used for cortical thickness,

anatomical segmentation, and registration.49 During rsfMRI acquisi-

tion, 976 fMRI volumeswere collectedwith an echo-planar image (EPI)

sequence with TR/TE = 607/32 ms (flip angle = 50◦, spatial resolu-

tion = 2.5 × 2.5 × 2.5 mm3, slice thickness = 2.5 mm; see details at:

http://adni.loni.usc.edu/methods/documents/).

PET imaging was acquired according to standardized protocols at

each ADNI site. FTP-PET data were acquired from 75 to 105 min

after injection of 10 mCi tracer. FBP-PET and FBB-PET data were

acquired from the 50 to 70 min after injection of 10 mCi tracer

and the 90 to 110 min after injection of 8.1 mCi tracer,48,50

respectively (https://adni.loni.usc.edu/wp-content/uploads/2012/10/

ADNI3-Procedures-Manual_v3.0_20170627.pdf).

We preprocessed structural MRI using FreeSurfer version 7.1

(https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall5.

3)51 to derive FreeSurfer regions of interest (ROIs), that is, DKT-68

parcel,52 in participants’ native space and extract the parcel-based

cortical thickness. Following a previous study,25 we preprocessed

the rsfMRI data using FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)53 and

RESEARCH INCONTEXT

1. Systematic review: A systematic literature search was

carried out using traditional (eg, PubMed) sources to

identify articles studying tau deposition and clear-

ance in Alzheimer’s disease (AD). Despite the different

approaches that have been used to investigate cere-

brospinal fluid (CSF) flow clearance of tau, human studies

on tau clearance with non-invasive fMRI have never been

formally conducted.

2. Interpretation: Our findings suggest the decreased cou-

pling between CSF flow and global brain activity could

play a critical role in promoting tau pathology, presum-

ably through reduced CSF clearance. Tau mediates the

link between CSF clearance and brain atrophy.

3. Futuredirections: Future studiesmay investigate a causal

association between impaired CSF flow and tau accu-

mulation through a longitudinal study. Moreover, direct

evidence is needed to linkCSF inflow fMRI signal andCSF

dynamics-related clearance. Prospective studies should

also examinewhether global brain activity and associated

physiological processes, including cardiac and respiratory

functions, co-modulate CSF dynamics-related clearance.

AFNI (https://afni.nimh.nih.gov/)54 with a modification of excluding

rsfMRI sessions with excessive headmotion (session-mean frame-wise

displacement [FD] larger than 0.6 mm or the maximal FD larger than

3 mm).55 The general procedures for rsfMRI preprocessing include

motion correction, skull stripping, spatial smoothing (full width at half

maximum [FWHM] = 4 mm), and temporal filtering (bandpass filter,

0.01 to 0.1Hz). As in previous studies,25,40 we also removed the first 20

and last 20 volumes for each rsfMRI session to reduce the edge effect

from the temporal filtering and to ensure a steadymagnetization.

All participants (N = 95) had Aβ-PET (N = 32 FBP; N = 63 FBB)

and tau-PET data. To generate the PET data in DKT-68 parcels, several

preprocessing steps were performed, including image averaging, spa-

tial smoothing, and registration to the (structural)MRI space to extract

the tau or Aβ intensity in gray matter and each DKT-68 parcel.52 We

then normalized parcel-wise tau with the inferior cerebellar reference

region to derive the tau SUVR and further applied partial volume cor-

rection (PVC) to reduce the influence of low image resolution and

limited tissue sampling.47 Regarding the Aβ SUVR, we normalized the

FBP or FBB intensity in target gray matter using the whole cerebellum

reference region.

2.3 Extraction of gBOLD and CSF inflow signals

We derived the gBOLD signal by averaging the rsfMRI (Z-normalized)

time series across all voxels in the gray matter region (see a

http://adni.loni.usc.edu/wp-content/uploads/2013/09/DOD-ADNI-IRB-Approved-Final-protocol-08072012.pdf
http://adni.loni.usc.edu/wp-content/uploads/2013/09/DOD-ADNI-IRB-Approved-Final-protocol-08072012.pdf
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/
https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3-Procedures-Manual_v3.0_20170627.pdf
https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3-Procedures-Manual_v3.0_20170627.pdf
https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall5.3
https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall5.3
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://afni.nimh.nih.gov/
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representative example in Figure S1B, upper, green, corresponding

to the signal in Figure S1A, green).25 We used the Harvard-Oxford

cortical and subcortical structural atlases (https://neurovault.org/

collections/262/) to define the gray matter mask, which was then

transformed into the native fMRI space of each participant refer-

ring to previous studies.25,27 Thus, the subject-specific gray matter

mask was generated for each subject. The rsfMRI in individual original

space went through the above preprocessing procedures (not includ-

ing nuisance regression; to avoid the CSF signal regression attenuating

the CSF inflow signal and to avoid the motion parameter regression

weakening the gBOLDsignal; refer to the detailed explanation andpre-

processing steps in previous studies25,26,40). The preprocessed rsfMRI

signalwas averaged across each individual’s graymattermask toderive

the gBOLD signal for each participant.

To derive the CSF inflow signal, the preprocessed fMRI in the origi-

nal individual space was averaged across the CSF voxels at the bottom

sliceof fMRI acquisition tomaximize sensitivity to theCSF infloweffect

following previous studies.25,27 Because fresh spins in the bottom slice

that did not experience any radiofrequency pulse flow into the imag-

ing volume, their signals are higher than those of local spins that have

reached the steady state. All participants have individual CSF masks

(Figure S1B, lower, corresponding to the signal in Figure S1A, purple)

with similar voxel numbers (∼14).

2.4 Coupling between gBOLD and CSF inflow
signals

We also calculated the cross-correlation functions between the

gBOLD signal and the CSF inflow signal (by assessing Pearson’s cor-

relation) at the negative peak of the mean cross-correlation, a lag of

+4.856 s (arrow in Figure S1C), to evaluate the gBOLD–CSF coupling

for each participant, as was done previously.25

2.5 Correlating gBOLD–CSF coupling with
cortical Aβ, tau, thickness, and MoCA

We first compared gBOLD–CSF coupling (adjusted for age and sex)

between Aβ− and Aβ+ groups (two-sample t test). For each of these

subgroups (ie, the Aβ−, Aβ+, unimpaired Aβ+, and impaired Aβ+) and
the entire cohort, we correlated the gBOLD–CSF coupling (age- and

sex-adjusted) with cortical tau SUVR in each DKT-68 parcel and then

mapped this to the brain surface (using WorkBench software [version

1.5.0; https://www.humanconnectome.org/software/workbench-

command]) to see the spatial distribution of correlation coefficients.

We further tested the coupling-tau correlation in four ROIs, including

Braak V–VI ROI, Braak III–IV ROI,8,9 temporal meta-ROI,56 and

entorhinal cortex across participants within each subgroup. We

quantified the regional tau burden by (volume-weighted) averag-

ing FTP SUVR (PVC-ed; normalized to the inferior cerebellar gray

matter region) in these DKT-68 parcels belonging to Braak V–VI

and III–IV ROIs, as well as the temporal meta-ROI (referring to:

https://adni.bitbucket.io/reference/docs/UCBERKELEYAV1451/

UCBERKELEY_AV1451_Methods_2021-01-14.pdf).

Similarly, we calculated the regional thickness by averaging the

thickness in these DKT-68 parcels belonging to Braak V–VI and III–IV

ROIs, as well as the temporal meta-ROI.

2.6 Determining the mediating role of tau in the
coupling–thickness association

After examining the aforementioned relationships, we investigated

whether tau mediated the effect of gBOLD–CSF coupling on cortical

thickness. We first averaged tau SUVR and cortical thickness across

all participants and compared their distribution patterns by correlating

themacrossDKT-68parcels. Similarly, the tau difference betweenAβ+
andAβ− groups (reflecting the tau spreadingwithADprogression)was

spatially comparedwith that difference in thickness.We further evalu-

ated the inter-participant similarity between tau and thickness in each

of the above four ROIs across participants within each of these differ-

ent subgroups, including the Aβ−, Aβ+, unimpaired Aβ+, and impaired

Aβ+ ones. We then examined the hypothesis that tau mediated the

association between gBOLD–CSF coupling and cortical thickness using

a mediation analysis57 in the Braak V–VI ROI, Braak III–IV ROI, or

temporal meta-ROI among the groups of the whole cohort, Aβ+, and
impaired Aβ+, among which the coupling–tau and coupling–thickness

associations were significant in Figures 1 and 2. The possibility that

couplingmediated the relationship between tau and thicknesswas also

tested in these ROIs.

2.7 Statistical analysis

A two-sample t test was performed for group comparisons on

continuous measures. We used Fisher’s exact test58 to compare

categorical measures (ie, sex) between subgroups characterized

for Aβ pathology progression. Pearson’s correlation was used to

quantify the linear correlation between different variables. Single-

level mediation analysis57 was performed to test the hypothesis

of tau mediating the coupling–thickness link. We also applied this

mediation analysis to test the other possibility that coupling could

mediate the tau–thickness relationship. An interaction effect test was

also applied for the Aβ (or the diagnostic information) and coupling

measure on the tau deposition. A p-value of no more than 0.05 was

considered statistically significant. We applied a multiple comparison

correction with the false discovery rate (FDR) method for our major

results.

To test the effect of headmotion onour couplingmetrics and tau,we

evaluated the participant-wise head motion with mean FD59 and cor-

related this with tau in the four aforementioned ROIs and gBOLD–CSF

coupling across participants from both the entire cohort and each sub-

group. The coupling–tau association was retested after regressing out

theparticipant-wiseheadmotionmeasure, themeanFD, fromgBOLD–

CSF coupling, and then correlating the coupling with tau in the Braak

https://neurovault.org/collections/262/
https://neurovault.org/collections/262/
https://www.humanconnectome.org/software/workbench-command
https://www.humanconnectome.org/software/workbench-command
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV1451/UCBERKELEY_AV1451_Methods_2021-01-14.pdf
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV1451/UCBERKELEY_AV1451_Methods_2021-01-14.pdf
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F IGURE 1 gBOLD–CSF coupling is correlated with cortical tau across whole cohort and Aβ+ participants. (A) gBOLD–CSF coupling was
positively correlated with tau inmost cortical regions across all participants, that is, participants with weaker (less negative) coupling hadmore tau
deposition. (B) gBOLD–CSF coupling (strength) significantly decreasedwithmore tau deposition in Braak V–VI, Braak III–IV, and temporal
meta-ROI across the whole cohort (all r> 0.22, all p< 0.033;N= 95). This association wasmarginally significant (r= 0.17, p= 0.09) for tau in
entorhinal cortex. The FDRwas used for themultiple comparison correction (pcorrected values were 0.044, 0.044, 0.044, and 0.09 for the first
column to the fourth column). (C–F) These associations between gBOLD–CSF coupling and regional tau were also evident among Aβ+ and/or
specifically impaired Aβ+ participants (all r> 0.32, all p< 0.040; in Braak V–VI, Braak III–IV, and temporal meta-ROI), but not for the Aβ− and
unimpaired Aβ+ participants (Figure S2). In Figure 1D, the pcorrected values were 0.014, 0.032, 0.032, and 0.082. In Figure 1F, the pcorrected values
were .052, .053, .053, and .28. Aβ+: cortical AV45–Aβ> 1.11 SUVR or cortical FBB–Aβ> 1.08 SUVR. Impaired group: AD andMCI participants.
Each point represents one participant. The linear regression line was estimated based on the linear least-squares fitting (the same hereinafter
unless noted otherwise). Aβ, amyloid beta; AD, Alzheimer’s disease; FBB, [18F]florbetaben; FDR, false discovery ratio; gBOLD–CSF, global brain
activity and CSFmovement; MCI, mild cognitive impairment; ROI, region of interest; SUVR, standardized uptake value ratio.

V–VI ROI, Braak III–IV ROI, and temporal meta-ROI among the whole

cohort, Aβ+, or impaired Aβ+ participants.

Similar to the foregoing analyses on the coupling–tau association,

we also correlated the gBOLD–CSF coupling with cortical thickness

in the same sets of ROIs or MoCA scores across the same groups of

participants.

3 RESULTS

3.1 Cohort demographics

Participant characteristics are shown in Table 1. Aβ+ and Aβ− partic-

ipants were different (p < 0.001) in age and MoCA but had a similar

sex ratio. The Aβ− participants were also relatively younger than both

the unimpaired and impaired Aβ+ individuals (both p< 3.7×10−3). The
impaired Aβ+ participants had a higher proportion of males than Aβ−
and unimpaired Aβ+ participants (p= 0.042).

3.2 fMRI-based CSF clearance measure is related
to tau across Aβ+ participants

CSF inflow rsfMRI signal was negatively correlated with gBOLD signal

with a+4.856-s time lag (Figure S1C; with a representative example in

Figure S1, A and B), similar to the previous finding.25 The gBOLD–CSF

coupling appeared to be stronger in the Aβ− group than in the Aβ+
group, showing a trend similar to that in the previous study,25 although

not significant (Figure S1D). Importantly, the coupling was positively

correlatedwith tau inmost cortical regions across all participants, that

is, participants with more cortical tau deposition had weaker (less neg-

ative) coupling (Figure 1A). This associationwas significant for regional

tau deposition in the Braak V–VI ROI (isocortical regions), Braak III–IV

ROI (limbic area; see Ref. 9 for detailed cortical regions), and temporal

meta-ROI56 across the whole cohort (all r > 0.22, all p < 0.033;N= 95;

pcorrected were 0.044, 0.044, 0.044, and 0.09 for the first column to

the fourth column; Figure 1B). A marginally significant correlation

was found between the coupling measure and tau in the entorhinal
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F IGURE 2 gBOLD–CSF coupling is correlated with cortical thickness across whole cohort and Aβ+ participants. (A) Participants with weaker
(less negative) gBOLD–CSF coupling had thinner cortices in themajority of brain regions, especially in the frontal, parietal, and temporal lobes,
including DMN and FPN. (B) The gBOLD–CSF coupling strength significantly decreasedwith thinner cortices in Braak V–VI, Braak III–IV, and
temporal meta-ROIs across the whole cohort (all r<−0.28, all p< 5.7×10−3;N= 95). Although not significant, the coupling–thickness association
in the entorhinal region showed a trend similar to those in other ROIs noted above (r=−0.16, p= 0.13). The FDRwas used for themultiple
comparison correction (pcorrected values were 8.0× 10−4, 4.0× 10−4, 7.6× 10−3, and 0.13 for the first to fourth columns). (C–F) Among Aβ+
participants, particularly impaired Aβ+ ones, the coupling–thickness association remained striking (all r<−0.34, all p< 0.019 in Braak V–VI, Braak
III–IV, and temporal meta-ROI in D and F), while this was not the case in the Aβ− and unimpaired Aβ+ participants (Figure S5). In Figure 2D, the
pcorrected values were 6.0× 10−3, 6.0 × 10−4, .024, and .35. In Figure 2F, the pcorrected values were .014, .013, .025, and .25. Each point represents
one participant. Aβ, amyloid beta; DMN, default mode network; FPN, frontoparietal network; gBOLD–CSF, global brain activity and CSF
movement; ROI, region of interest.

TABLE 1 Participant characteristics.

N= 95 Aβ− (N= 46) Aβ+ (N= 49) p-value

Age 69.4 (7.8) 75.8 (6.9) 6.5×10−5

Sex (M/F) 17/29 23/26 0.4

Diagnosis (AD:MCI:SMC:Control) 0:0:1:45 6:22:4:17 –

MoCA 25.1 (2.8) (2 N/A) 22.3 (4.8) (1 N/A) 1.0×10−3

Note: Data represent the mean (SD) unless otherwise indicated. A two-sample t test was applied to compare the continuous measures, while a Fisher’s exact

test between groups was used for the sex ratio. Aβ+: cortical AV45–Aβ> 1.11 SUVR or cortical FBB–Aβ> 1.08 SUVR.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease group;M/F, male/female; MCI, mild cognitive impairment; MoCA,Montreal Cognitive Assessment;

SMC, subjectivememory concern; SUVR, standardized uptake value ratio, referring to whole cerebellum reference region.

cortex (r = 0.17, p = 0.09). The positive coupling–tau relationship was

evident for all Aβ+ and also just for the impaired Aβ+ participants

(Figure 1, C–F; pcorrected for Figure 1D: 0.014, 0.032, 0.032, 0.082;

pcorrected for Figure 1F: 0.052, 0.053, 0.053, 0.28), but not for the

unimpaired Aβ+ participants alone (Figure S2B). The Aβ and gBOLD–

CSF coupling showed a significant interaction effect on tau in the

Braak V–VI ROI (p = 4.3 × 10−3), Braak III–IV ROI (p = 0.020),

and temporal meta-ROI (p = 0.021), while the diagnostic group

and coupling showed no significant interaction effect on tau in the

ROIs (all p > 0.099), which was related to the limited sample size

of the cognitively impaired group. Among the Aβ− participants,

individuals with stronger coupling showed higher tau deposition

in the Braak V–VI ROI, Braak III–IV ROI, and temporal meta-ROI,

but this was marginally significant (all p > 0.052; Figure S2A). Of

note, head motion during fMRI was not associated with either tau

or gBOLD–CSF coupling (Figure S3), and tau remained strongly
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correlated with the gBOLD–CSF coupling after adjusting for head

motion (Figure S4).

Among the entire cohort, participants with stronger gBOLD–CSF

coupling (morenegative) hadhigherMoCAscores (r=−0.23,p=0.027;

N = 92). This trend was also found across Aβ+ individuals and the

impaired Aβ+ ones, although not significant (both r < −0.25, both
p< 0.11).

3.3 Tau partially mediates the strong association
between gBOLD–CSF coupling and cortical thickness

We next examined the coupling–thickness association, as tau is

closely associated with cortical atrophy and ultimately leads to cog-

nitive decline.3,4,60 Similar to the coupling–tau links discussed earlier,

gBOLD–CSF coupling was also significantly related to cortical thick-

ness in widespread cortical regions, including the Braak V–VI ROI,

Braak III–IV ROI, and temporal meta-ROI, across the entire group of

participants, and more specifically among the impaired Aβ+ partic-

ipants (Figure 2; see detailed puncorrected and pcorrected in the figure

caption), but not in the Aβ− and unimpaired Aβ+ groups alone (Figure

S5).

Cortical tau and thickness showed a similar spatial distribution pat-

tern averaged across the entire cohort and when contrasting Aβ+
and Aβ− participants (both p < 1.9×10−4; Figure 3A and B). Corti-

cal tau and thickness were also closely associated across participants

(all p < 0.05; Figure S6). Given the corresponding spatial pattern and

the predictive role of tau in brain atrophy,60 we used mediation anal-

ysis to examine whether tau in Braak V–VI ROI, Braak III–IV ROI, and

the temporal meta-ROI mediated the observed relationship between

gBOLD–CSF coupling and cortical thickness in the same regions. We

found that tau in the three ROIs played a significant role in mediat-

ing the coupling–thickness link across the whole cohort (p < 0.021;

Figure 3C; see detailed pcorrected in the figure caption). AmongAβ+ par-

ticipants, the mediation effect was marginally significant (p < 0.063)

for the Braak III–IV ROI and the temporal meta-ROI and significant for

the Braak V–VI (p = 0.039; Figure 3D). The mediation was less robust

in impaired Aβ+ participants (Figure 3E; only significant in the meta-

temporal region, p = 0.035), which may be attributed to the limited

sample size of this group (N = 28). Together, these results suggest that

tau is amediator of the association betweenCSFdynamics of clearance

relevance, reflected by gBOLD–CSF coupling and cortical thickness.

We also examined whether coupling mediated the tau–thickness

relationship (Figure S7) and found the mediation was significant for

the Braak V–VI and Braak III–IV ROIs (p < 0.042), although it was

marginally significant in the Braak III–IV among Aβ+ participants

(p= 0.055).

4 DISCUSSION

We show an association between resting-state global brain activity

and tau pathology, including the pattern of tau deposition and relevant

brain atrophy and cognitive decline. The coupling between global brain

activity, quantified by gBOLD, and CSFmovement was associated with

tau deposition in widespread neocortical regions that approximate the

later stages of tau deposition. This finding was evident in the whole

cohort but more striking for the Aβ+ and impaired Aβ+ participants,

as would be expected since the tau burden is likely to be greater for

these groups. The Aβ and gBOLD–CSF coupling showed a significant

interaction effect on tau. Weaker gBOLD–CSF coupling, which may

indicate decliningCSF clearance,was also associatedwith reduced cor-

tical thickness in the same regions, likely related to the mediating role

of tau. Together, these results suggest that resting-state global brain

activity helps to determine the stereotyped pattern of tau deposition

in the neocortex among individuals with elevated Aβ, presumably via

its effect on CSF dynamics-related clearance.

Pathological tau aggregation has received increasing atten-

tion because of its strong relation to brain atrophy and cognitive

impairment.3,7 While a majority of recent studies have attributed

the stereotyped pattern of tau accumulation over cortical regions to

neural activity and anatomical and functional connectivity,10–15,61,62

other data have repeatedly demonstrated that the brain’s clearance

system affects tau pathology16 through CSF flow.18,19 This pathway

clears brain waste through CSF movement pushing the exchange

between CSF and ISF and its solutes, including Aβ and tau.18,19

Our study investigated the association between tau deposition in

several Braak stages, indicative of different stages of tau pathology8,9

and the coupling between global brain BOLD and CSF inflow signals,

as a unique evaluation of CSF dynamics-related clearance. Previous

studies suggested that Aβ facilitated the spread and pathogenicity of

tau.63 Consistently, particularly among the participants with elevated

Aβ, our study emphasizes that gBOLD–CSF coupling could also affect

tau deposition and further affect cortical thickness, particularly in the

neocortex, including Braak III–IV, V–VI, and meta-ROI regions, but not

in the Braak I region, that is, entorhinal cortex, where tau deposits in

normal aging without Aβ elevation.64 This would imply the different

mechanisms of tau deposition in the entorhinal cortex and other Braak

staging regions and that tau deposition in the latter appears to bemore

complicated and related to the comodulation of Aβ and CSF clearance
assessed by the gBOLD–CSF coupling. In addition, our observations

suggest that the coupling-relatedCSFclearanceof tau ismore sensitive

to AD stages with fast tau accumulation (ie, Aβ+ stage). In this stage,

tau deposition in entorhinal cortex is elevated but could have slower

accumulation that is more difficult to capture by the couplingmeasure.

Furthermore, the spatial location of atrophy is closely associated with

tau deposition, especially when Aβ is elevated.63 This may also explain

why the coupling was correlated with thickness in the regions where

tau was significantly associated with the couplingmetrics.

Our results showed a close association between the global BOLD

and CSF inflow fMRI signal at rest. Several lines of evidence support

a link between resting-state global brain activity and CSF dynamics-

related clearance. First, global brain activity,measured by gBOLD fMRI

signal and whole-brain electrophysiology signals,30,34 is coupled with

CSF movement,25–27,31,32 a key determinant of CSF clearance.16–18

This coupling is particularly striking during sleep,31 when glymphatic
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F IGURE 3 The association between couplingmetrics and thickness is mediated by tau. (A and B) Averagedmap of cortical tau and thickness
across all participants (r= 0.44, p= 1.9×10−4), as well as the difference between Aβ− and Aβ+ participants (r=−0.67, p= 4.8×10−10), indicative of
tau and atrophy distributions were similar. This close association between tau pathology and atrophy is also consistent with their significant
correlation across participants (Figure S6). (C–E) Across entire cohort and Aβ+ participants, taumediated the significant association in Figure 2
between gBOLD–CSF coupling and thickness throughout cortex, including Braak V–VI, Braak III–IV, andmeta-temporal area (p< 0.039, except for
themarginally significant relationship [p< 0.063] in Braak III–IV andmeta-temporal among Aβ+ participants), whereas themediation effect was
weaker for impaired Aβ+ ones, whichmight be attributed to the limited sample size. In Figure 3C, the pcorrected values were 0.021, 0.021,
and 0.021. In Figure 3D, the pcorrected values were .063, .063, and .063. In Figure 3E, the pcorrected values were 0.16, 0.16, and 0.11. Significant direct
andmediation effects were highlightedwith black and red bold formatting, respectively. gBOLD–CSF, global brain activity and CSFmovement.

CSF clearance can be 20-fold stronger than wakefulness.17 More

recently, the coupling between gBOLD and CSF inflow rsfMRI signals

is correlated with various AD risk factors, cortical Aβ deposition,25,27

older age,32 and cognitive decline in AD and Parkinson’s disease

(PD),25,26 further supporting the relationship between global brain

activity and CSF dynamics-related clearance. Second, neuronal fir-

ing cascades that underlie global spontaneous brain events33 and

gBOLD signal are often accompanied by the modulation of sympa-

thetic outflow, including cardiac and respiratory pulsations,37–41

heart rate variability,42 and pupil size.33,36 The sympathetic activity

could not only facilitate peri-arterial CSF movements via arterial

constriction41,65 but also arouse slow (<0.1Hz)modulations of cardiac

and respiratory pulsations, considered as the major driving forces

of glymphatic CSF movement.43,44 Third, the intrinsic subcortical

vasoactive pathways,65 particularly the basal-cortical projections66

relevant to the cholinergic system and astrocytes, are involved with
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themodulation of global brain activity on vascular tone.41 Importantly,

while a small proportion of perivascular neurons have direct contact

with the vessel wall, most abut astrocytic endfeet65 constituting the

astroglial aquaporin-4 (AQP4) channels that facilitate CSF flow.18

A recent study suggested that intrinsic large astrocytic Ca2+ spikes

were coupled with the negative gBOLD peaks.67 In short, global brain

activity and specific neural and physiological factors play a critical role

in supportingCSF flowand thus could affect ADprogression bymoder-

ating the “accumulation-removal balance” of toxic proteins, such as Aβ
and tau.

In our study, we observed the strength of gBOLD–CSF cou-

pling reflecting CSF dynamics-related clearance decreased with tau

deposition. Recent studies in animal models have repeatedly demon-

strated the role of CSF clearance or glymphatic function in tau

aggregation.19,68–70 Using intracortical injection of human tau into

mice, a previous study tracked the tau clearance pathway and found

that tau could be removed by CSF flow, especially in traumatic brain

injury, a risk factor for tau aggregation.68 Further investigations on

tau and CSF clearance suggested that tau was cleared from the brain

by an AQP4-dependent mechanism.69,70 For example, a recent mouse

study suggested that impaired CSF–ISF exchange and AQP4 polar-

ization, especially using an AQP4 inhibitor, in the glymphatic system

could exacerbateor even inducepathogenic accumulationof tau.69 The

same study further showed an inverse association between CSF clear-

ance and tau deposition in the healthy mouse cortex.69 In addition, the

glymphatic CSF clearance was hypothesized to affect the cell-to-cell

propagation of tau in brain,71 since tau can be secreted and taken up

by both neurons and glia,72 and tau secretion to the extracellular space

plays an important role in intracellular tau spreading.68,73 Beyond

these mouse studies, a recent human study identified the relation-

ship between reduced whole-brain CSF clearance activity, assessed

with diffusion tensor image analysis along the perivascular space

(DTI-ALPS), and the deposition of tau using PET along with cogni-

tive decline.74 All these studies suggest the role of CSF movement

clearing tau, which supports the idea that the CSF clearance-related

gBOLD–CSF coupling is related to tau deposition.

It is not surprising that we observed that tau mediated the asso-

ciation between CSF clearance and cortical thickness. Our results

showing an association between coupling and atrophy were consis-

tent with a recent study showing that the impaired CSF clearance in

TAR DNA-binding protein 43 transgenic mice, mimicking the pathol-

ogy of amyotrophic lateral sclerosis, was accompanied by neocorti-

cal atrophy.75 More importantly, middle-aged AQP4 knock-out mice

showed elevated tau in both CSF and hippocampus, as well as severe

brain atrophy with thinner cortices and hippocampus.70 This brain

atrophy was attributed to neuronal loss, including the reduction of

dentate granule cells and pyramidal cell layer neurons in the piri-

form cortex, presumably modulated by tau aggregation induced by the

AQP4 deficiency.70 Of note, our results may also pose the possibility

that the coupling mediates the tau–thickness association. This could

result from the very strong association between tau and thickness and

their significant correlations with the coupling metrics. However, it is

hard to determine the causal relationship between variables, and a

longitudinal study is needed.

There are a few limitations of the present study. First, we used a

cross-sectional analysis that did not have information about rates of

tau accumulation. In addition, it is possible that elevated tau accumula-

tion in the cortical brain influencesCSFdynamics and clearanceor even

global brain activity, which further leads to a decreased gBOLD–CSF

coupling. A longitudinal design should be used to test the hypothesis

that the tau accumulation rate is linked to fMRI-based gBOLD–CSF

coupling or an alternative hypothesis that the tau deposition leads

to a decrease of CSF inflow or global brain activity and the coupling

measure over years. Second, direct evidence that gBOLD–CSF cou-

pling reflects CSF dynamics-related clearance is needed to validate

and extend our findings that global brain activity affects CSF flow and

may further modulate CSF clearance. We also note that some of the

main results were marginally significant or not significant after multi-

ple comparison corrections, which could come from imaging noise and

the imperfect methodology to quantify the coupling strength between

CSF inflow and gBOLD. Third, the lack of electroencephalogram (EEG)

monitoring of sleep or arousal state was also a limitation of this study.

Although it is challenging to acquire EEG-fMRI data for both healthy

aging and AD patients, at rest or during sleep, it would be interest-

ing for future studies to investigate the role of sleep and arousal state

in the association between tau pathology and the coupling between

global brain activity and CSF inflow.

In summary, this study provides initial evidence that CSF dynamics,

reflected by the coupling between global brain activity and the CSF

movement signals, is closely associated with tau pathology in people

with elevated Aβ, presumably because poorer CSF clearance promotes

abnormal protein aggregation.
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