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Room-temperature cavity quantum electrodynamics
with molecular materials in optical cavities offers
exciting prospects for controlling electronic, nuclear
and photonic degrees of freedom for applications in
physics, chemistry and materials science. However,
achieving strong coupling with molecular ensembles
typically requires high molecular densities and
substantial electromagnetic-field confinement. These
conditions usually involve a significant degree
of molecular disorder and a highly structured
photonic density of states. It remains unclear to
what extent these additional complexities modify the
usual physical picture of strong coupling developed
for atoms and inorganic semiconductors. Using
a microscopic quantum description of molecular
ensembles in realistic multimode optical resonators,
we show that the emergence of vacuum Rabi splitting
in linear spectroscopy is a necessary but not sufficient
metric of coherent admixing between light and
matter. In low-finesse multi-mode situations, we find
that molecular dipoles can be partially hybridized
with photonic dissipation channels associated with
off-resonant cavity modes. These vacuum-induced
dissipative processes ultimately limit the extent of
light-matter coherence that the system can sustain.
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1. Introduction
Strong coupling between a large ensemble of molecules and an optical cavity mode is still a
rapidly evolving field, despite being more than 25 years old [1], indeed, arguably much older
[2]. In strong coupling, hybridization takes place between a molecular resonance and a cavity
mode to yield two new polariton modes (states), modes that inherit characteristics of both light
and matter. Two broad schemes have attracted the most attention: exciton-polaritons, where an
excitonic molecular resonance is coupled to a cavity mode, and vibrational-polaritons, where
a molecular vibrational mode is coupled to a cavity mode. Despite considerable progress, an
underlying theoretical framework has yet to be established that provides a coherent picture of
strong coupling phenomena. Here, we identify and explore one largely ignored ingredient, the
multiple photonic modes nature of the cavities typically employed.

One of the main attractions of molecular strong coupling is that the key phenomenon, that of
an anti-crossing between a molecular resonance and a photonic mode, can be explained with a
very simple model based on two coupled oscillators, one oscillator representing the molecular
system (a large number of identical molecules are taken to behave as though they are a single
oscillator) the other representing a single photonic (cavity) resonance. This simple picture is a
powerful one but can do little to capture a wealth of important features, including dark states,
disorder and especially material behaviour such as reactivity. It is for this reason that so much
effort has been devoted to developing a wider theoretical framework. Significant progress has
been made by building more realistic models of the molecular systems involved, as reviewed
recently [3–5].

Much of the theoretical work on strong coupling in the past few years has been devoted
to incorporating the complexities that arise when including more realistic numbers of mole-
cules (typically models have less than 103, whilst in experiments there may be more than
108) [6], and the presence of disorder [7]. Various approaches have been explored, examples
include: employing a Holstein–Tavis–Cummings model [8–11] together with a Markovian
[12,13] approach for the dissipative dynamics of organic polaritons; ab-initio studies [14,15];
and multiscale molecular dynamics simulations [16]. Whilst these theoretical approaches strive
to include more realistic models for the molecular ensembles involved, little attention appears
to have been directed towards including photonic complexities.

It was recognized early on that the dispersion of the photon (cavity) modes was important
[17], and recent studies have focused on dispersion in connection with energy transport [18].
Whilst dispersion of a given photon mode is indeed important in several processes of interest
such as condensation [19] and lasing [20], the fact that most cavities that are currently employed
in strong coupling experiments involving molecules support several discrete cavity modes [21],
has, with some exceptions, see for example [22–24], been much less explored. A number of
studies have looked at this problem in the context of ultrastrong coupling [25–27] where the
Rabi splitting is comparable or greater than the free-spectral range (FSR). However, our focus
here is on strong rather than ultrastrong coupling, and more specifically in the parameter space
applicable to recent experiments [28].

An unwritten assumption in the context of polaritons involving organic materials seems to
have been that if the spacing between cavity modes (the FSR) is ‘sufficient’, then the presence
of many (rather than one) photonic modes can be ignored as having minimal influence on the
polariton properties. Indeed, this presumed minimal effect has led to the use of ‘off-resonance’
modes being employed to monitor changes in the constituents within a cavity [29]. Here, we
show explicitly that the presence of multiple photonic modes can have a significant effect on
the strong coupling process. Recently, the importance of this effect has been recognized in other
physical implementations of cavity QED, e.g. artificial atoms in superconducting resonators
[30]. The model elucidated here is an expanded version of an outline we recently presented
to explain polariton-mediated photoluminescence in low-finesse cavities [28]. Before looking at
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our multi-mode framework in detail, let us briefly discuss some of the prior work on multi-
mode cavities.

Multi-mode cavities have been employed in a large number of experiments, both for
excitonic strong coupling (see for example [23,31,32]) and vibrational strong coupling (see for
example [21,33–35]), but the implications of there being more than one mode have in general
only involved considering the presence of single couplings, i.e. coupling between the molecular
mode and each of the photonic modes. For example, when more than one photonic mode is
involved then one has to be careful about mode assignment owing to the overlap (in energy)
between different polariton bands [21]. However, as we show below, one also needs to consider
how the couplings between different photonic modes alter the overall picture. One of our major
findings is that such couplings can limit the extent of light-matter mixing and may thus limit
the coherence of polaritons, with possible consequences for a variety of phenomena such as
photoluminescence [28] and polariton transport [36].

Figure 1 provides a schematic overview of our model. In molecular strong coupling, an
excitonic resonance is usually considered to interact with a single cavity mode, depicted in
panel (a). Although other cavity modes might be present, they do not spectrally overlap with
the cavity mode being considered, they are too far detuned. However, when the finesse is low,
adjacent cavity modes may overlap and may thus couple to each other and to the excitonic
resonance, see panel (b). In this situation the strong coupling is no longer single mode (SM), the
exciton resonance now being ‘spread’ over more than one cavity mode. The work reported here
is the result of an investigation to explore the consequences of this ‘spreading’.

2. Multi-mode theory of organic microcavities
Our aim is to build a model for molecular optical cavities that corresponds to an ensemble ofN electronic dipole emitters coupled to the full set of resonant optical modes supported by a
(planar) cavity structure. In what follows we restrict the discussion to molecular dipoles with a
negligible Huang–Rhys factor [37], such that their emission properties are accurately described
by considering only the vibration-less ground (S0 ≡ g) and first excited (S1 ≡ e) electronic states
(see [38,39] for examples). The system is described by a multimode Tavis–Cummings Hamilto-
nian of the form (ℏ ≡ 1 throughout)

(2.1)H = ∑qωqaq†aq + ∑i = 1

N ωiσi+σi− + ∑q ∑i = 1

N giqσi+ aq + giq∗ σi−aq†
where q = {q∥, q⟂} is generally a composite photonic mode index describing the continuous
in-plane component of the wavevector q∥ and the discrete transverse component q⟂ of confined
electromagnetic modes in planar cavities [40]. The local dipole transition operators between
ground |gi⟩ and excited state |ei⟩ are defined as σi− = |gi⟩⟨ei| for emission and σi+ = (σi−)† for
absorption. The electronic transition frequency ωi is in general inhomogeneously distributed,
although there are examples of organic emitters with negligible inhomogeneous broadening
[39]. Bosonic cavity field operators are aq and the local mode-dependent Rabi couplings are
denoted by giq.

Ideal planar cavities of length L have photon dispersion ωq = (c/nd)(q∥2 + q⟂2 (m))1/2, whereq⟂(m) = mπ/2L, with m ≥ 1 an integer, which determines the discrete set of allowed cavity mode
energies at normal incidence (q∥ = 0); c is the speed of light and nd the (real) dielectric constant
of the intracavity medium. The mode dispersion with respect to the in-plane wavevector q∥
determines the propagation properties of the normal modes of the coupled system, which for
strong light-matter coupling correspond to exciton-polaritons [41–43], and the FSR between
adjacent modes Δq ≡ ωq + 1 − ωq is controlled at normal incidence (q∥ = 0) by the cavity length as
Δ = cπ/2ndL. Throughout this work, we neglect dispersion and only study system properties atq∥ = 0.
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The explicit multimode structure of equation (2.1) generalizes early approaches that simplify
the mode structure of the microcavity to having a single dispersionless mode a [44], or a
dispersive mode aq∥ in a cavity with infinite FSR. Such simplifications are often introduced
as a necessity in favour of capturing relevant aspects of complexity of the internal degrees
of freedom of the molecular dipole emitters, such as high-frequency vibrations [8–12,45],
electron tunnelling [46] or the role of static disorder in establishing quantum transport regimes
[18,47,48]. Single-mode or single-branch theories are intrinsically limited with respect to their
ability to describe the influence of multiple transverse photonic modes in realistic organic
microcavities with finite FSR, Δ, as the value of Δ is not much larger than the frequency
separation between lower and upper polaritons, i.e. the Rabi splitting ΩR. For some systems Δ is
even smaller than ΩR [49].

3. Microcavities as open quantum systems
We model the organic microcavity microscopically as an open quantum system described by a
Lindblad quantum master equation for the light-matter reduced density matrix ρ, given by [50]

(3.1)

ddtρ = −i[H, ρ] + ∑q κq2 2aqρaq† − aq†aqρ − ρaq†aq
+∑i γi2 2σi−ρσi+ − σi+σi−ρ − ρσi+σi− ,

where κq is the bare radiative decay rate of the q-th cavity mode and γi is the bare spontaneous
decay rate of the i-th electronic dipole excitation, which includes radiative and non-radiative
contributions. For simplicity, we ignore cross-terms that could dissipatively couple different
cavity modes or different molecules, under the assumption that direct diagonal relaxation
channels are much faster.

The Lindblad master equation is the basis for deriving effective non-unitary propagators that
unravel the state evolution as an ensemble of wavefunction trajectories [51]. For the light-matter
state ansatz,

(3.2)|Ψ(t)⟩ ≈ 1 − ξ(t)|ψ(0)(t)⟩ + ξ(t)|ψ(1)(t)⟩,

C0

C+1

XC0

C+1

C–1 C–1

X

(a) (b)

Figure 1. Schematic: Left, panel (a). Although several cavity modes are present (C−1, C0 and C+1), our excitonic molecular
resonance X  interacts with a single discrete on-resonance cavity mode, C0. Right, panel (b). Now the finesse is low and
there is spectral overlap between adjacent photonic (cavity) modes. The excitonic resonance interacts directly with the
various cavity modes, and there is also direct interaction between adjacent photonic modes. The consequence is that the
excitonic resonances is now spread out over more than one cavity mode.
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with ξ≪ 1, as is relevant for weakly excited microcavities, we can ignore stochastic quantum
jumps coming from the recycling terms of the Lindblad equation [12] and account for dissipa-
tion as an exponential decay of the excited state population. This is equivalent to rewriting
equation (3.1) as

(3.3)ddtρ = −i[Heff, ρ] + L1[ρ],

with an effective non-Hermitian Hamiltonian

(3.4)Heff = H − i2∑q κqaq†aq − i2∑i γiσi+σi−.
As mentioned above, we ignore the recycling terms L1[ρ] ≡ ∑q κqaqρaq† + ∑i γiσi−ρσi+. This simplified
approach to the open system dynamics effectively reduces the problem to one of solving
a non-Hermitian Schrodinger equation with the effective Hamiltonian Heff. The weak excita-
tion assumption that justifies the neglect of recycling terms in equation (3.1) holds in strong
coupling as long as the ground state is predominantly populated and has the separable form
|G>|0>. For non-separable ground states that can arise in ultrastrong coupling, weak excitation
conditions can still be defined, but the quantum master equation needs to be reformulated [52].

Since the ground state |ψ(0)⟩ has no electronic or photonic excitations, the dynamics of
polaritons is fully determined by the excited electron–photon wavefunction

(3.5)|ψ(1)⟩ = ∑i ci(0)|ei⟩|{0q}⟩ + ∑q cq(1)|g1g2, …, gN⟩|1q⟩,
where |{0q}⟩ is the multi-mode cavity vacuum, |ei⟩ describes a single excitation in the i-th
molecule with all other dipoles in the ground state; |1q⟩ describes a single photon in the q-th
transverse mode, all other modes being empty.

4. Strong coupling in high-finesse cavities
Consider N molecular dipoles coupled near resonantly with a q = 0 mode of frequency ω0 and
decay rate κ0. Higher- and lower-order cavity modes are detuned from the central frequency
by Δq = ωq − ω0, with Δq > 0 for higher-order and Δq < 0 for lower-order modes. They also have
bandwidths that in general differ from q = 0 by Δκq = κq − κ0. In the high-finesse limit, |Δq| ≫ Ω0,
with Ω0 = Ng0 being the single-mode Rabi coupling strength for a homogeneous molecular
ensemble, dipole excitations cannot exchange energy effectively with higher- and lower-order
cavity modes (note, the SM Rabi splitting, ΩRSM, is related to the SM Rabi coupling, Ω0, through
ΩRSM = 2Ω0). Consequently, light-matter hybridization leading to polariton formation only occurs
in the vicinity of the near-resonant q = 0 mode, see panel (a) of figure 1. However, far-detuned
modes do have an effect via second-order (two photons) processes, something we look at next.

Far-detuned higher- and lower-order modes evolve on a timescale of 1/Δq, which is
much faster than the Rabi oscillation period (τR ∼ 1/Ω0) between the near-resonant mode and
molecular excitations. These fast-oscillating mode variables thus adiabatically adjust to the
dynamics of the near-resonant manifold, which affects the process of polariton formation
around q = 0. This can be understood as the emergence of processes similar to a Lamb shift
in which molecules absorb and re-emit virtual photons from higher- and lower-order modes.
These two-photon processes result in a change to the energetics; a single-molecule frequency
shift of the form

(4.1)Γj″ = − ∑q ≠ 0
|gjq |2 Δq

Δq2 + (Δκq/2)2 ,

and an effective inter-molecular coupling with interaction energy given by
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(4.2)Jij′′ = − ∑q ≠ 0
giq*gjq Δq/2

Δq2 + (Δκq/2)2 .

The sign of the contributions per mode in these expressions is different for lower-order modes
(blue shift and repulsive interaction) and higher-order modes (red shift and attractive interac-
tions). In general, Jij′′ is a complex-valued quantity depending on the relative phase of the Rabi
frequency at the location of the two dipoles.

Cavity-induced frequency shifts and inter-dipole interactions induced by far-detuned modes
are well known from atomic physics [53] and have been used for quantum state preparation
in high-quality resonators [54]. Organic microcavities are qualitatively different from atomic
cavities in that their quality factors are much lower, typically Q ∼1–10, and changes in
bandwidth κq with mode order can be large. This is particularly true for modes close to the
region where absorption of metal mirrors cannot be neglected [55]. Therefore, in addition to
the changes in frequency and interaction energy discussed above, the dispersive interaction of
molecular dipoles with far-detuned lossy modes also changes the single-molecule dipole decay
rates by

(4.3)Γj′ = − ∑q ≠ 0
|gjq|2 Δκq/2

Δq2 + (Δκq/2)2 ,

and establishes the two-body loss rate

(4.4)Jij′ = − ∑q ≠ 0
giq*gjq Δκq/2

Δq2 + (Δκq/2)2 .

These are again signed quantities summed over all available modes, the contribution of which
depends on the relative bandwidths Δκq. If all relevant modes have bandwidths κq equal to
the resonant (q = 0) mode, then Δκq ≈ 0 and no second-order corrections to the decay rates are
expected. The bandwidth mismatch of sub-wavelength cavities thus introduces a phenomenol-
ogy that is not present in other cavity QED systems, we discuss one key aspect next.

The dispersive relaxation channels discussed above involving material degrees of freedom
could, in principle, alter the ability to establish strong coupling with the central q = 0 mode. To
assess this, consider a simplified homogeneous scenario in which all dipoles are identical (Dicke
regime) and the polariton wavefunction in equation (3.5) reduces to

(4.5)|ψ(1)⟩ = β|X⟩|0⟩ + α|g1g2, …, gN⟩|1⟩,
where |X⟩ = ∑j |ej⟩/ N is the fully symmetric excitonic state and the Fock states {|0⟩, |1⟩} refer to
the central q = 0 mode. The dynamics of the state vector x = [α, β]T can be written as ẋ = −iMx,
where

(4.6)
M =

0 Ω0

Ω0 −δN − iΔΓN
is the dynamical matrix for which the complex eigenvalues λ = E + iΓ/2 give the polariton
energies, E, and bandwidths, Γ. As before, Ω0 = Ng0 is the Rabi coupling strength. The effective
detuning δN and bandwidth mismatch ΔΓN can be written as

(4.7)δN = δ0 − Γ′′ − NJ′′,
(4.8)ΔΓN = − Δγ/2 + Γ′ + NJ′,

where δ0 = ω0 − ωe and Δγ = κ0 − γ are the bare detuning and bandwidth mismatch between theq = 0 mode and the dipole resonance, respectively. The one-body and two-body energy shifts Γ′′
and NJ′′ contribute to the detuning of the q = 0 mode from the molecular resonance; the one-
and two-body decay rates Γ′ and NJ′ contribute to the bandwidth mismatch. The microscopic
derivation of equation (4.6) starting from equation (3.4) is given in the appendix.
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The real part of the eigenvalues of M give the lower and upper polariton frequencies, ELP

and EUP, respectively. The Rabi splitting ΩR ≡ EUP − ELP can thus be written as

(4.9)ΩR = Re (NJ′′ − δ0 − i(NJ′ − Δγ/2))2 + 4Ω0
2,

where Γ′ and Γ′′ are neglected in the thermodynamic limit1. Equation (4.9) gives the usual
strong coupling result ΩR = 2Ω0 for infinite finesse, Δq → ∞ and finite N, since NJ′ ∼ 1/Δq2 andNJ′′ ∼ 1/Δq.

To estimate the magnitude of NJ′ for typical high-finesse cavities (|Δq| > ΩR), consider a
model three-mode cavity with a central q = 0 mode at ω0, a lower-order mode (q = −1) detuned
from q = 0 by Δ−1 = −Δ and a higher-order mode (q = +1) detuned by Δ+1 = Δ, with Δ > 0.
The mode-dependent decay rates are {κ−, κ0, κ+}, respectively. We assume linear scaling of the
bandwidth with mode order, i.e. κq = κ0 + q ζ with positive ζ for increasing bandwidth and
negative otherwise. We also allow the Rabi coupling strength to depend on mode order as
Ω±1 ≡ Ng±1, for collective coupling of dipoles to q = ±1 cavity modes. From equation (4.4), the
two-body rate can be written as

(4.10)NJ′ = Ω−1
2 −Ω+1

2 ζ/2
Δ2 + ζ2/4

≈ ζfΩ0
2

Δ2 + ζ2/4
,

where in the second equality we use Ω±1 = Ω0(1 ± f) with |f| < 1. This contribution to the
polariton decay can either increase or decrease the bandwidth of LP and UP resonances around
the q = 0 mode, depending on the sign of ζf.

Figure 2 shows the magnitude of NJ′ from equation (4.10) as a function of the variation
in Rabi coupling per mode δΩ = fΩ0 and the variation in bandwidth δκ = ζ, estimated for a
system with Ω0 = 0.35 eV and FSR Δ = 1.0 eV. We consider a two-mode cavity (panel a), whereq = 0 is the lowest-order mode (Ω−1 = 0) and modes beyond q = 1 are ignored, as well as the
three-mode scenario (panel b). In general, the magnitude of NJ′ is smaller than kBT (approx.
26 meV) for multi-mode microcavities with relatively weak mode-dependence of the Rabi
coupling and photon bandwidth (δΩ ∼ δκ ∼ 10−2 eV [28]), but the analysis above is general
and larger polariton bandwidth modifications could be expected for other high-finesse photonic
structures with greater cavity bandwidths and coupling variations with mode order.

In summary, the presence of far-off-resonance cavity modes can introduce adiabatic
corrections to the Rabi splitting ΩR established in strong coupling. Such corrections originate
from coherent and incoherent two-photon processes in which dipoles scatter virtual photons
from far-detuned higher- and lower-order modes, primarily leading to changes in the dipole
bandwidth (figure 2). Since adiabatic corrections to ΩR scale as (Ω0/Δ)2, it can be difficult
to measure their contribution in typical high-finesse Fabry–Perot microcavities (F ≡ Δ/κ0 ≳ 10,
Ω0/Δ ≲ 0.1).

5. Strong coupling in low-finesse cavities
The adiabatic elimination procedure described in §5 is strictly valid for ΩR/Δ ≪ 1 and breaks
down if the Rabi splitting is no longer much smaller than the FSR, even when the bare cavity
finesse is nominally high (F ≥ 10).

For microcavities with lower finesse, there is no significant separation of scales between κ, γ,
Ω0 and Δ, although typically κ ∼ γ < Ω0 < Δ in strong coupling [28]. For the light-matter system
discussed above, with N identical dipoles at ωe resonant with a reference q = 0 cavity mode atω0, having Rabi coupling strength Ω0, the frequency separations Δ±1 of adjacent higher-order

1The thermodynamic limit being N → ∞, with Ω0 = Ng0, NJ′ and NJ′′ finite.
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and lower-order modes (q ± 1) are comparable with the bare Rabi couplings Ω±1 to those modes
and thus the direct coupling of dipoles to neighbouring modes needs to be considered.

For the homogeneous dipole ensemble, the simplest extension of the light-matter state vector
includes the next-order modes q = ±1, i.e. x = [α−1,α0,α+1, β]T, where αq is the photon amplitude
in the q-th mode. The dynamical matrix for this (3+1) system can be written as

(5.1)

M =

d−1 0 0 e−1
0 0 0 e0

0 0 d+1 e+1e−1 e0 e+1 p
,

where we use the simplified notation dq = Δq − iΔκq/2, eq = Ωq and p = −δ + iΔγ/2. From the
eigenvalues of M, λ = E + iΓ/2, the coupled energies E and decay rates Γ are obtained. In general,λ is a root of the polynomial

(5.2)Φ(λ) ≡ p − λ + e0
2λ − e−12d−1 − λ − e+1

2d+1 − λ ,

which for Ω±1 = 0 gives the quadratic eigenvalue equation

(5.3)λ(δ − iΔγ/2 − λ) −Ω0
2 = 0,

which is often used to derive conditions for strong coupling in the single-mode picture. In
particular, for resonant bandwidth-matched light-matter interaction with the q = 0 mode (δ = 0,γ = κ0), equation (5.3) gives the LP and UP frequencies E± = ±Ω0 (ΩR = 2Ω0) with Γ± = κ for the
decay rates.2

Direct coupling of dipoles to the q = ±1 modes modifies the LP and UP energies and
bandwidths. In the appendix, we derive a general expression for the lowest-order corrections
to the energies and bandwidths of the single-mode polariton problem, owing to the presence
of neighbouring cavity modes. These corrections scale nonlinearly with the Rabi couplings
Ω±1 and mode detunings Δ±1, and have a strong dependence on the change in bandwidth
Δκq between different cavity modes. For a resonant, bandwidth-matched interaction with the

2In the frame where M in equation (5.1) is defined, coupled bandwidths are given by Γ = κ0 + 2Im[λ], where λ is an
eigenvalue of M, see the appendix.

0.5

(a) (b)

0.4

0.3

0.2

0.1

0 0.05

Two modes

0.10

δW (eV)

δ K
 (

e
V

)

0.15 0.20

10

30

50

70

NJ' (meV)

0.5

0.4

0.3

0.2

0.1

0 0.05

Three modes

0.10

δW (eV)

0.15 0.20

10

20

30

40

50

60

NJ' (meV)

Figure 2. Modified polariton decay in high-finesse cavities: Two-body contribution to the polariton decay rate NJ′, as a
function of the change in Rabi coupling δΩ and change in bandwidth δκ relative to a reference q = 0 strongly coupled
resonant mode for two cases; (a) two-mode cavity where q = 0 is the lowest-order mode; (b) three-mode cavity with one
lower and one higher-order mode. We use Ω0 = 0.35 eV and Δ = 1.0 eV.
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q = 0 mode, and ignoring possible changes of the Rabi coupling for different cavity modes
(Ωq = Ω), the modified Rabi splitting and polariton bandwidths around the q = 0 mode can be
approximated as

(5.4)ΩR = 2Ω 1 − Ω2(Ω2 + Δ2)
(Ω2 + Δ2)2 + Δ2ζ2 ,

and

(5.5)Γ± = κ0 ± 2Ω Ω2Δζ
(Ω2 + Δ2)2 + Δ2ζ2 ,

where again Δ±1 = ±Δ and κq = κ0 + qζ are assumed. These expressions reduce to the single-mode
case, when Ω ≪ Δ and |ζ| ≪ Δ, which is the high-finesse regime discussed in the previous
section. Although the correction to the splitting also scales as (Ω/Δ)2 for Δ ≫ Ω as in the
high-finesse problem, now the presence of nearby modes in finite-finesse cavities directly
modifies the polariton energies E± around the dipole resonance via level repulsion. In contrast,
adiabatic corrections introduce an overall dipole shift via two-photon processes which can in
principle be compensated for by tuning the cavity frequency.

Similar to the adiabatic corrections in equation (4.10), the changes of the polariton decay
rates Γ± predicted for low-finesse cavities also scale linearly with the difference in bandwidth
Δκq of nearby modes relative to the near-resonant q = 0 mode. However, whilst adiabatic
bandwidth corrections vanish for systems with mode-independent Rabi couplings, equation
(5.5) suggests that the mode-order dependence of the bare bandwidths is more important
than variations in the field profile (Rabi coupling) of different cavity modes to establish the
bandwidths of the LP and UP resonances.

Figure 3a shows the Rabi splitting ΩR (in eV) predicted by equation (5.4) as function of
the bare Rabi coupling Ω0 with the central mode (Ωq = Ω) and the FSR Δ, for a system with
decreasing mode bandwidth with increasing mode order (ζ = −0.1 eV). Even for relatively
large values of Δ (approx. 1 eV), the direct interaction of dipoles with q = ±1 modes signifi-
cantly reduces the multi-mode Rabi splitting from the usual single-mode value (ΩRSM = 2Ω0). In
practical terms, the requirements for establishing a light-matter interaction strength that gives a
desired polariton splitting become more demanding as the finesse decreases.

Figure 3b shows the complementary effect on the LP and UP bandwidths Γ± given by
equation (5.5), as functions of Δ. The bare mode bandwidth is κ = 0.15 eV and a small linear
decrease of the bandwidth with mode order is assumed (ζ = −50 meV). The polariton level
(UP) closer in frequency to the narrower mode (q = +1), becomes narrower as Δ decreases, and
the level (LP) closer to the broader mode (q = −1) broadens. Even for relatively large mode
separations (Δ = 1.2 eV, F ≈ 8), the LP and UP bandwidths are asymmetric and can differ
significantly from the single-mode prediction Γ±

SM = (κ + γ)/2. The deviation from Γ±
SM grows

with increasing coupling strength Ω0.
In addition to the changes in Rabi splitting and polariton bandwidths introduced by the

direct interaction of dipoles with neighbouring modes, the microscopic composition of the
LP and UP polariton wavefunctions can be very different in low-finesse cavities relative to
a single-mode picture. Understanding this can improve the ability to control the emission
properties of organic microcavities [11,12].

In an ideal single-mode cavity under strong coupling conditions ΩR > (κ0 + γ)/2, the LP and
UP states can be accurately described by equation (4.5) with |β| = |α| = 1/2, i.e. equal exciton and
photon content. For the three-mode problem centered around q = 0, molecular dipoles can also
admix with the lower- and higher-order modes q = ±1. Therefore, a more realistic description of
LP and UP states would be

(5.6)|ψ⟩ = β|X⟩|00⟩ + |g1g2, …, gN⟩ ⊗ α−1|1−1⟩ + α0|10⟩ + α+1|1+1⟩ ,
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where |nq⟩ denotes a Fock state of the q-th cavity mode; |β|2 is the exciton fraction and |αq|2
the fraction of the q-th cavity mode in the polariton state. Equation (5.6) highlights the fact
that dipoles exchange energy and coherence with a single-photon wavepacket,3 not an individual
Fock state. Since |ψ⟩ is normalized, the photon fraction associated with the near-resonant mode|α0|2 = 1 − |β|2 − |α−1|2 − |α+1|2 is always smaller than the single-mode limit (Δ → ∞,α±1 → 0).

Figure 4a shows the material (exciton) content of the LP state as a function of the bare
coupling Ω0, obtained from the eigenvectors of the three-mode matrix M in equation (5.1),
parametrized with realistic frequencies and bandwidths from [55] (ωe = 2.15 eV, γ = 0.37 eV,ω−1 = 1.45 eV, ω0 = 2.14 eV, ω+1 = 2.76 eV, κ−1 = 38 meV, κ0 = 90 meV, κ+1 = 90 meV); Ω0 = Ω±1 is a
free parameter. The q = −1 mode is significantly narrower than q = 0, but no significant variation
is seen for q = 1. The standard single-mode picture of strong coupling suggests that for Rabi
splittings ΩR > (κ0 + γ)/2 ≈ 0.24 eV (Ω0 > 0.12 eV) the exciton fraction should be |β|2 ≈ 0.5. In
contrast, the exciton fraction of the LP state in figure 4a decreases with increasing Rabi coupling.
We also show results for a hypothetical scenario where the lower- and higher-order mode
frequencies are varied as ω±1′ = ω±1 ∓ ε (reducing Δ), with all other parameters kept constant.4 We
find that even for moderate values of cavity finesse Δ/κ ∼ 4–5, the exciton fraction of the LP
can be lower than 30% even when the Rabi coupling Ω0 exceeds the bare bandwidths κ0 and γ
(Ω0 > 0.3 eV, ΩR > 0.5 eV).

Figure 4b shows a complementary view of the photon content per mode of the LP state,
for the same system parameters shown in figure 4a. As the bare Rabi coupling increases, the
contribution of the q = 0 mode decreases below the single-mode limit and the q = −1 contri-
bution increases significantly. The changes in the q = 0 and q = −1 components with Ω0 are
stronger with decreasing inter-mode separation Δ. The higher-order q = +1 state component
is less sensitive to Ω0 and Δ, because it is further detuned from the LP. Taken together the
results shown in figure 4 indicate that in situations of low finesse a significant reduction in
photoluminescence associated with the LP is to be expected, as recently found [28].

3The continuous-variable version of the single-photon wavepacket in equation (5.6) arises naturally when describing dipole
emission in macroscopic QED [56].

4In real microcavity structures, the mode bandwidths and Rabi couplings also vary with mode frequency.
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6. Conclusion and outlook
It has been understood for many years that taking account of some of the real-world complex-
ities, especially disorder, is important in building up a full conceptual model of molecular
strong coupling. In this contribution, we have shown that it is also important to take into
account off-resonance photonic modes supported by a cavity if one is to properly understand
molecular strong coupling. In particular, we have shown that in low-finesse situations the
extent of light-matter mixing (hybridization) is altered. When adjacent photonic modes are
spectrally overlapped then the molecular content (here we considered excitons) is spread over
several photonic modes, resulting in a lower-matter content in any given polariton mode. This
conclusion is supported by a similar finding in the context of circuit QED [30]. We have also
shown that the extent of the Rabi-splitting can be curtailed by the effect of extra photonic
modes.

Looking ahead it will be important to explore these issues further, especially in conjunction
with experiment. We have already made a start in this direction [28], where we monitored
luminescence from a range of planar samples, since luminescence probes the extent of light-
matter mixing more directly than, for example, reflectivity. It would be useful to build on this
start with a more systematic study. For example, one could envisage a series of experiments
on Fabry–Perot planar cavities that employ metal mirrors, where the metal-mirror thickness is
altered to control the cavity mode-width, and hence the finesse.

Regarding development of the model that we have outlined here, future extensions should
include frequency disorder of dipole transitions, which in most cases is the dominant contribu-
tion to material absorption lineshape [57]. Disorder leads to the formation of semi-localized
states in the spectral region where the uncoupled dipoles also absorb [58,59], adding complex-
ity to the analysis of spectroscopic signals not present in the homogeneous dipole (Dicke)
models we discussed here. We anticipate that disorder will introduce quantitative changes
to the dependence with finesse of the polariton splitting and polariton bandwidths relative
to the homogeneous model predictions here, but the qualitative physics should remain. We
already find evidence of the reduction of the exciton content of exciton-polariton states owing
to multimode light-matter interaction in a realistically disordered system [28]. A more general
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theoretical framework should be able to treat the simultaneous coupling of molecular dipoles
to multiple discrete transverse modes and continuous in-plane momenta in a microcavity. Such
a theory would be complex but may enable studies of controlled excitation transport along
a polariton branch by possibly driving off-resonant coupled photonic branches with external
fields.
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Appendix
Adiabatic elimination of far-detuned cavity modes
In this section, we derive equation (4.6), presented in the main text.
The non-degenerate ground state has no excitations in the electronic and cavity modes and is
given by |ψ(0)⟩ = |g1g2, …, gN⟩|0−K, …, 0−1, 00, 0+1, …, 0K⟩. We consider M = 2K + 1 discrete transverse
modes. The single-excitation electron-photon wavefunction can be written as

(A 1)|ψ(1)⟩ = ∑i ci(0)|ei⟩|{0q}⟩ + ∑q cq(1)|g1g2, …, gN⟩|1q⟩,
where |{0q}⟩ is the multi-mode cavity vacuum, |ei⟩ describes a single excitation in the i-th
molecule with all the other dipoles in the ground state, and |1q⟩ describes a single photon in theq-th mode, with all the other modes in the vacuum state. There are no other restrictions on the
material and photonic coefficients ci(0) and cq(1) except for normalization ∑i |ci(0)|2 + ∑q |cq(1)|2 = 1.
We derive evolution equations for the material and photonic wavepacket amplitudes ci(0) and cq(1)

from the single-excitation ansatz (A 1), directly from the non-Hermitian Schrödinger equation
(d/dt)|ψ1⟩ = −iHeff|ψ(1)⟩, with Heff given by equation (3.4). Given the global phase freedom of the
wavefunction, we rewrite the state amplitudes as cj(0) = c~j(0) exp[−iω~0t] and cq(1) = c~q(1) exp[−iω~0t],
where ω~0 = ω0 − iκ0/2 is the complex frequency of the free q = 0 mode. In this new q = 0 frame, we
obtain the following system of (M + N) coupled equations for the amplitudes:

(A 2)ddtc~j(0) = (iδj + Δγj/2)c~j(0) − i∑q gjqc~q(1),

(A 3)ddtc~q(1) = −(iΔq + Δκq/2)c~q(1) − i∑j gjq* c~j(0),

where δj = ω0 − ωj is the detuning of the reference (q = 0) mode relative to the i-th dipole
frequency, ωq = ω0 + Δq is the frequency of the q-th higher (Δq > 0) or lower-order mode (Δq < 0)
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relative to q = 0; Δγj = κ0 − γj is the decay mismatch between dipoles and the reference mode,
and Δκq = κq − κ0 is the decay mismatch relative to q = 0. Different equations of motion could
be derived by adopting other rotating frame choices, but the resulting spectrum and state
populations would not change. The (M + N) coupled equation model is the most general model.
Frequently (M + 1) coupled equations or (2M) models are used [22,23,32], but these are versions
with a restricted range of validity [24], the appropriate choice depending on the detailed
structure of the cavities considered. Indeed, interim choices may also be appropriate [24],
highlighting the need for a more extensive investigation in the future.
We derive a reduced set of coupled equations of motion for the N excited state amplitudesc~j(0) and the single-photon amplitude of the reference mode c~0(1), under the assumption that
only the reference mode q = 0 interacts resonantly with the dipolar ensemble, but higher and
lower-order modes (q ≠ 0) are sufficiently detuned from the dipole frequencies ωj to prevent
significant exchange of energy and coherence between light and matter. In this case, the
off-resonant modes simply follow adiabatically the dipole polarization to the lowest order ingjq. The stationary off-resonant mode amplitude is obtained from equation (A 3) to give

(A 4)c~q ≠ 0
(1) = −i ∑i = 1

N giq* c~i(0)iΔq + Δκq/2 .

Separating equations (A 2) and (A 3) into resonant (q = 0) and non-resonant mode contributions,
and inserting the adiabatic solution into equation (A 4) for the lower and higher-order modes,
we obtain a reduced set of (1 + N) equations of motion of the form

(A 5)ddtc~j(0) = i(δj − Γj″)c~j(0) + (Δγj/2 − Γj′ )c~j(0) − igj0c~0
(1) − ∑i ≠ j(Jij′ + iJij″ )c~i(0),

(A 6)ddtc~0
(1) = − i∑i gi0∗ c~i(0),

where we introduce the effective one-body and two-body decay rates,

(A 7)Γj′ = − ∑q ≠ 0
|gjq|2 Δκq/2

Δq2 + (Δκq/2)2 ,

(A 8)Jij′ = − ∑q ≠ 0
giq*gjq Δκq/2

Δq2 + (Δκq/2)2 ,

and effective frequency shifts given by

(A 9)Γj′′ = − ∑q ≠ 0
|gjq|2 Δq

Δq2 + (Δκq/2)2 ,

(A 10)Jij′′ = − ∑q ≠ 0
giq*gjq Δq/2

Δq2 + (Δκq/2)2 .

In these expressions, the sum-over-modes exclude the reference q = 0 cavity resonance. The
reduced equations of motion equations (A 5) and (A 6) can accurately describe strong coupling
between the N oscillators and the near-resonant q = 0 mode, and improves over previous
treatments in the literature by including the effect of far-detuned higher- and lower-order
modes self-consistently. The quasi-static solution for non-resonant modes in equation (A 4)
is accurate for modes that do not significantly admix with dipole transitions, which requires|Δq| > ∑j |gjq|2 for each q ≠ 0.
In the idealized Dicke regime where the N dipoles have equal transition frequencies (ωi = ωe),
Rabi couplings (giq = gq) and relaxation rates (γi = γ), the reduced dynamical equations (A 5) and
(A 6) further simplify by writing c~i = β/ N and c~0 = α0. The evolution equation for the collective
dipole coherence X~ = ∑i c~i(0) = Nβ, can be obtained by summing equation (A 5) over all dipoles,
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approximating N − 1 ≈ N in the two-body terms, to obtain two coupled equations for α0 and β
that can be written in matrix form as

(A 11)

α̇0β̇ =
0 −i Ng0

−i Ng0 iδN − ΔΓN
α0β ,

with

(A 12)δN = δ0 − Γ′′ − NJ′′,
(A 13)ΔΓN = − Δγ/2 + Γ′ + NJ′ .

This is equation (4.6), as presented in the main text; δ0 = ω0 − ωe, Δγ = κ0 − γ, and g0 refer to
properties of the near-resonant q = 0 mode.

Approximate Rabi splitting and polariton bandwidths in low-finesse three-mode cavities
In this section, we derive equations (5.4) and (5.5), presented in the main text.
We consider a three-mode cavity model with a central q = 0 mode at ω0 tuned near resonance
with a homogeneous ensemble of N dipole transitions at ωe. The dipoles also couple to
the lower-order mode q = −1 and a higher-order mode q = +1, with frequencies ω±1 = ω0 + Δ±1,
respectively. The evolution equations (A 2) and (A 3) reduce in this case to a (3+1) system for the
collective coherence X~ = ∑j c~j0 = Nβ, (δj = δ0, Δγj = Δγ, gjq = gq) and photon amplitudes c~q(1) ≡ αq,
with q = {−1,0,1}. The resulting system of equations can be written in matrix form as ẋ = −iMx,
with x = [α+1,α0,α−1, β]T and M written in arrowhead form as

(A 14)

M =

Δ−1 − iΔκ−1/2 0 0 Ω−1

0 0 0 Ω0

0 0 Δ+1 − iΔκ+1/2 Ω+1

Ω−1 Ω0 Ω+1 −δ + iΔγ/2

≡

d−1 0 0 e−1
0 0 0 e0

0 0 d+1 e+1e−1 e0 e+1 p
,

where Ωq = Ngq (with gq = gq*), δ = ω0 − ωe, Δγ = κ0 − γ, Δκq = κq − κ0 and Δq = ωq − ω0. We
introduced a simplified notation in the second equality. The arrowhead interaction matrix is not
the only possibility, other alternatives have also been explored, see [24] and references therein.
For our purposes, the arrowhead approach provides a convenient starting point to explore the
physics we wish to investigate. In the cases we study here the molecules often occupy a limited
part of the cavity mode, so that orthogonality does not strictly hold, as a consequence there will
be cross-coupling of cavity modes induced by excitons. Future work will need to explore other
choices of the interaction matrix M and examine the ensuing consequences.
The complex eigenvalues λ = E + iΓ/2 of M are roots of the characteristic polynomial [60]

(A 15)Φ(λ) ≡ p − λ + e0
2λ − e−12d−1 − λ − e+1

2d+1 − λ .

We are interested in corrections to the polariton splitting ΩR ≡ Re[λUP] − Re[λLP] and bandwidths
ΓLP = 2Im[λLP], ΓUP = 2Im[λUP], from their values in a single-mode scenario where q = 0 is
resonant with the dipoles (δ ≈ 0). Corrections are due to the presence of the adjacent q = ±1
modes. We thus solve for x in Φ(λ± + x) = 0, where λ± denotes the pair of coupled single-mode
solutions to equation (A 15) obtained for Ω±1 = 0, giving λ±(p − λ±) + e0

2 = 0. For Δγ = δ = 0 (p = 0),
the single-mode LP and UP solutions are λ± = ±Ω0, giving the bare splitting ΩR = 2Ω0 and
bandwidths ΓLP = ΓUP = κ.
Linearizing the polynomial Φ(λ± + x) = 0 around x = 0 gives the general solution

(A 16)x± = −λ±[e−12 d+1 + e+1
2 d−1 − (e−12 + e+1

2 )λ±]P(λ±)
,
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with

(A 17)P(λ±) = d+1(e0
2 + e−1

2 ) + d−1(e0
2 + e+1

2 ) − d−1d+1p − 2(e0
2 + e−1

2 + e+1
2 − d+1p − d−1p − d−1d+1)λ± − 3(d−1 + d+1 + p)λ±

2 + 4λ±
3 .

The solution λLP = λ− + x− gives the LP frequency and decay rate and λUP = λ+ + x+ gives the UP
properties. The denominator P(λ±) can be reduced by setting p = 0, which holds for a resonant
single-mode scenario (δ0 = 0) without decay mismatch (Δγ = 0), giving

(A 18)

x± = −λ± ×d+1e−12 + d−1e+1
2 − λ±(e−12 + e+1

2 )d+1(e0
2 + e−12 ) + d−1(e0

2 + e+1
2 ) − 2(e0

2 + e+1
2 + e−12 − d−1d+1)λ± − 3(d−1 + d+1)λ±

2 + 4λ±
3 .

For the special case where there are no mode-order variations of the Rabi coupling and cavity
mode bandwidth, i.e. Ωq = Ω and κq = κ for all q, and assuming modes that are equally spaced
(Δ± = ±Δ), we have d+1e−12 + d−1e+1

2 = +ΔΩ2 − ΔΩ2 = 0 in equation (A 18) and corrections to the LP
and UP eigenvalues become purely real:

(A 19)x± = −λ±
Ω2

3Ω2 + Δ2 − 2λ±
2 = ∓Ω Ω2

Ω2 + Δ2 ,

with Δ > Ω and λ± = ±Ω. Therefore, without mode-order variations of the cavity parameters,
level pushing from the higher-order and lower-order modes gives the reduced Rabi splitting

(A 20)ΩR = 2Ω + x+ − x− = 2Ω Δ2

Δ2 + Ω2 ,

but there are no changes to the polariton bandwidths relative to the single-mode scenario.
The simplest ideal scenario with corrections to the LP and UP bandwidths is one where the
Rabi couplings do not depend on mode order (Ωp = Ω), but cavity modes can differ in band-
width (Δκq ≠ 0). From equation (A 18), neglecting quadratic terms in Δκ±1 relative to Δ2 + Ω2, we
obtain in this case,

(A 21)Re[x±] ≈ ∓Ω Ω2(Ω2 + Δ2)2

(Ω2 + Δ2)2 + (Δ(Δκ−1 − Δκ+1) ∓ Ω(Δκ−1 + Δκ+1)/2)2 ,

and,

(A 22)2Im[x±] = ∓Ω Ω(Δκ−1 + Δκ+1)(Ω2 + Δ2)/2 ± Ω2[Δ(Δκ−1 − Δκ+1) ∓ Ω(Δκ−1 + Δκ+1)/2]
(Ω2 + Δ2)2 + (Δ(Δκ−1 − Δκ+1) ∓ Ω(Δκ−1 + Δκ+1)/2)2 .

From these expressions, we may obtain the lower and upper polariton energies E± = ±Ω + Re[x±]
and decay rates Γ± = κ + 2Im[x±]. For linear changes in mode bandwidth of the form Δκq = qζ,
with ζ positive or negative, the LP and UP energies can then be written as

(A 23)E± = ±Ω 1 − Ω2(Ω2 + Δ2)
(Ω2 + Δ2)2 + Δ2ζ2 ,

from where equation (5.4) in the main text is obtained. From equation (A 22), the polariton
bandwidths for linear bandwidth changes with mode order are thus

(A 24)Γ± = κ ± 2Ω Ω2Δζ
(Ω2 + Δ2)2 + Δ2ζ2 ,

which is equation (5.5) in the main text.
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