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Summary
Background We aimed to evaluate the incremental predictive value of metabolomic biomarkers for assessing the
10-year risk of type 2 diabetes when added to the clinical Cambridge Diabetes Risk Score (CDRS).

Methods We utilized 86,232 UK Biobank (UKB) participants (recruited between 13 March 2006 and 1 October 2010)
for model derivation and internal validation. Additionally, we included 4383 participants from the German ESTHER
cohort (recruited between 1 July 2000 and 30 June 2002 for external validation). Participants were followed up for 10
years to assess the incidence of type 2 diabetes. A total of 249 NMR-derived metabolites were quantified using nuclear
magnetic resonance (NMR) spectroscopy. Metabolites were selected with LASSO regression and model performance
was evaluated with Harrell’s C-index.

Findings 11 metabolomic biomarkers, including glycolysis related metabolites, ketone bodies, amino acids, and lipids,
were selected. In internal validation within the UKB, adding these metabolites significantly increased the C-index
(95% confidence interval (95% CI)) of the clinical CDRS from 0.815 (0.800, 0.829) to 0.834 (0.820, 0.847) and the
continuous net reclassification index (NRI) with 95% CI was 39.8% (34.6%, 45.0%). External validation in the
ESTHER cohort showed a comparable statistically significant C-index increase from 0.770 (0.750, 0.791) to 0.798
(0.779, 0.817) and a continuous NRI of 33.8% (26.4%, 41.2%). A concise model with 4 instead of 11 metabolites
yielded similar results.

Interpretation Adding 11 metabolites to the clinical CDRS led to a novel type 2 diabetes prediction model, we called
UK Biobank Diabetes Risk Score (UKB-DRS), substantially outperformed the clinical CDRS. The concise version with
4 metabolites performed comparably. As only very few clinical information and a blood sample are needed for the
UKB-DRS, and as high-throughput NMR metabolomics are becoming increasingly available at low costs, these
models have considerable potential for routine clinical application in diabetes risk assessment.
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Research in context

Evidence before this study
Existing diabetes risk prediction models primarily relied on
traditional risk factor. The potential of a broader range of
metabolomic biomarkers for enhancing risk prediction had
not been fully explored in large-scale settings. We searched
PubMed up until July 2024 for studies using the terms “type 2
diabetes”, “risk prediction”, “metabolomics”, “metabolite”,
and “risk score”. Most studies focused on small, specific
populations or included a limited number of metabolites.
Furthermore, very few studies had performed external
validation of their findings, a critical step for confirming the
generalizability of risk prediction models.

Added value of this study
This study leverages a comprehensive set of 249 metabolites
analyzed through high-throughput nuclear magnetic
resonance (NMR) spectroscopy, significantly expanding the
range of biomarkers considered in diabetes risk prediction.
Our development and external validation of the UK Biobank
Diabetes Risk Score (UKB-DRS) across two large cohorts,
including over 90,000 participants, distinguishes this work
from prior efforts. The UKB-DRS integrates both traditional
risk factors and a novel panel of 11 metabolites, providing a
more nuanced understanding of metabolic disturbances
leading up to type 2 diabetes. For translation purposes into

clinical routine, we also developed a concise model with 4
metabolites, which had a comparable predictive performance.
This is the largest study of its kind to date and the first to
perform such extensive external validation. Additionally, we
examined the incremental value of each metabolite to the
model’s predictive capability across both cohorts. Remarkably
consistent results were observed, which underscores the
reproducibility and robustness of the metabolomic
enhancements across different populations, further enhancing
the clinical applicability of our findings.

Implications of all the available evidence
The findings from this study suggest that integrating
metabolomic data into diabetes risk prediction models
significantly enhances their predictive accuracy. This could
lead to earlier and more precise identification of individuals at
high risk for type 2 diabetes, enabling targeted preventive
interventions. Given the increasing accessibility and
affordability of NMR-based metabolomic profiling, the
practical implementation of such advanced prediction models
in clinical settings is becoming feasible. This advancement has
the potential to transform preventive healthcare by allowing
for more personalized risk assessments and tailored
intervention strategies.
Introduction
The global prevalence of type 2 diabetes is on a signifi-
cant upward trend, associated with increased mortality,
diminished quality of life, and substantial economic
burden.1–3 Early identification of individuals at elevated
risk is essential, given the effectiveness of preventative
measures in mitigating or delaying disease onset.4

Although current models for predicting type 2 diabetes
risk effectively differentiate between individuals with
low and high future risks, their clinical applicability is
limited by a lack of specificity and an incomplete rep-
resentation of the complex risk factors.5–7

Recent advances in metabolomics, particularly
through the use of nuclear magnetic resonance (NMR)
spectroscopy, offer promising insights into the early
detection of type 2 diabetes.8,9 The comprehensive
metabolomic profiling enabled by NMR spectroscopy,
including its ability to measure a wide array of metab-
olites in a single assay, provides a more nuanced view of
the metabolic disturbances preceding type 2 diabetes.10,11

Furthermore, the high-throughput nature of NMR
spectroscopy, coupled with its low operational costs and
minimal batch-to-batch variation, makes it an ideal tool
for large-scale epidemiological studies.12

Despite the potential of metabolomics to enhance
risk prediction models, previous studies have often been
limited to investigating a small number or single sub-
classes of metabolomic biomarkers, leaving the value of
metabolomic analysis in predicting the risk of type 2
diabetes uncertain.13–16 This study is the first aiming to
www.thelancet.com Vol 79 January, 2025
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derive and externally validate a NMR metabolomics data
based risk score for type 2 diabetes in two large,
population-based cohort studies.
Methods
Study population
The UK Biobank (UKB) is a large prospective cohort
study with 502,493 participants, aged 37–73 years,
recruited from 13 March 2006 to 1 October 2010 across
22 assessment sites in England, Scotland, and Wales.17

The ESTHER study is an ongoing population-based
cohort study conducted in Saarland, a federal state in
South-West Germany, with 9940 participants, aged
Fig. 1: Flow-charts for participant inclusion and exclusion.

www.thelancet.com Vol 79 January, 2025
50–75 years. The recruitment occurred during standard
health checkups by general practitioners (GPs) from 1
July 2000 to 30 June 2002. Follow-ups were conducted
every two to three years thereafter.18 The inclusion and
exclusion criteria for the analyzed study population are
shown in Fig. 1 and Supplemental Text S1.

Metabolomic profiling
Nightingale Health’s high-throughput NMR metab-
olomics platform was used to measure 250 metabolites
from randomly selected baseline plasma samples of
UKB participants, alongside all baseline serum samples
from the ESTHER cohort with sufficient blood sample
quality.19 Glycerol was excluded because it could not be
3
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measured in most of the participants of both cohorts,
leaving N = 249 metabolites for the analyses. The
nomenclature and completeness of these metabolites
are shown in Supplemental Table S1.

Variables of the clinical CDRS and type 2 incidence
ascertainment
The CDRS is a predictive tool used to assess the risk of
individuals for future type 2 diabetes development. This
scoring system includes age, sex, body mass index
(BMI), family history of diabetes, smoking status, pre-
scription of anti-hypertensive medication and steroids.20

If blood samples can be taken, the clinical CDRS is
recommended to use, which additionally includes the
HbA1c.21 The assessment methods of the variables of the
clinical CDRS and of type 2 incidence in both cohorts
are shown in Supplemental Text S2 and Supplemental
Table S2.

Statistical analyses
General remarks
All analyses were performed using R software version
4.3.0 (R Foundation for Statistical Computing, Vienna,
Austria), and statistical significance for two-sided tests
was set at a P-value of <0.05. Missing values were
imputed using the Random Forest estimation method
in the r package missForest (version 1.5).22 This method
estimates missing values based on observed data pat-
terns in the original data set without creating multiple
datasets. The variables of the clinical CDRS and all 249
metabolites were used in the imputation model. The
completeness of each variable within the UKB and
ESTHER cohorts is detailed in Supplemental Table S1.
The highest proportion of missing values was 6%
(family history of diabetes in the UKB).

Metabolite selection and model derivation
To stabilize variance and reduce the influence of out-
liers, concentrations of all metabolites were log-
transformed. Although normality is not strictly
required for predictors in models like Cox proportional
hazards or Least Absolute Shrinkage and Selection
Operator (LASSO), log transformation helps mitigate
the skewness commonly seen in metabolomics data.
After log transformation, the metabolite values were
scaled to standard deviation units within each cohort,
facilitating comparisons across metabolites with
different distributions. The UKB cohort was divided
into a training set (70%) and a test set (30%). The
ESTHER study served as the external validation set. To
perform variable selection, we employed the LASSO
method using Cox proportional hazards models with
the r package ‘glmnet’ (version 4.1-7). The variables of
the clinical CDRS and all metabolite concentrations
were included as independent variables, and incident
type 2 diabetes was the dependent variable. Within the
training set, we conducted a bootstrap procedure with
1000 resamples to enhance the robustness and gener-
alizability of the variable selection process. For each
bootstrap sample, we performed ten-fold cross-valida-
tion to identify the optimal value of the regularization
parameter λ that minimizes the cross-validation error.
The LASSO Cox proportional hazards model was fitted
using the optimal λ in each bootstrap sample, which
shrinks some coefficients towards zero and others
exactly to zero.23 We recorded, which metabolites were
selected because they had non-zero coefficients in the
final Cox proportional hazards model in each bootstrap
sample. After completing all 1000 bootstrap samples,
we calculated the selection frequency for each metab-
olite in these 1000 bootstrap samples as the percentage
of times it was selected. Metabolites were subsequently
ranked based on their selection frequency, ranging
from 0% to 100%. Metabolites selected by LASSO in at
least 95% of the 1000 bootstrap samples were selected,
a threshold shown previously to enhance model
generalizability and minimize model overfitting.24 The
selected metabolites were subsequently incorporated
into the clinical CDRS to construct a new prediction
model.

Validation of the model’s predictive performance
The 30% UKB subsample was utilized as a test set, and
the ESTHER study served as an external validation set to
evaluate the predictive performance of the derived
models. The model’s predictive performance was
assessed with discrimination, risk stratification and
model calibration statistics. Discrimination was
assessed using Harrell’s C-index and the confidence
intervals were estimated with bootstrapping with 500
resamples (r package ‘survival’ (version 3.5-5)). Addi-
tionally, we assessed the receiver operating character-
istic curve (ROC). To determine whether the addition of
all selected metabolites improved model discrimination
compared to the clinical CDRS, the statistical signifi-
cance of improvements in the C-index was determined
using the ‘compareC’ package (version 1.3.2) in R, which
applies the approach of Kang L et al.25 Based on the
incremental predictive value of each selected metabolite,
we additionally developed a concise version of the UKB-
DRS using the clinical CDRS variables and only those
metabolites with a substantial C-index increase >0.005
in the external validation cohort. The continuous net
reclassification index (NRI) and the integrated discrim-
ination index (IDI) were assessed to evaluate risk
reclassification.26 The continuous NRI can range
from −2 to 2, where 0 indicates no net reclassification
improvement, positive values indicate improved reclas-
sification, and negative values indicate worse reclassifi-
cation. The detailed calculation method for the
continuous NRI can be found in Supplemental Text S3.
In addition, the C-index change, NRI and IDI of each of
the selected metabolite was assessed separately by add-
ing them individually to the clinical CDRS model. All of
www.thelancet.com Vol 79 January, 2025
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Baseline characteristics Derivation cohort Validation cohort

UK Biobank ESTHER

Number of participants 86,232 4383

Male sex, n (%) 39,442 (44.3) 1871 (42.7)

Age (years), mean (SD) 59.9 (5.4) 60.2 (5.5)

HbA1c (%), mean (SD) 3.1 (0.4) 3.2 (0.5)

BMI (kg/m2), mean (SD) 27.4 (4.5) 27.4 (4.3)

BMI category, n (%)

<25 kg/m2 27,626 (32.0) 1302 (29.7)

25–27.49 kg/m2 21,529 (25.0) 1193 (27.2)

27.5–29.99 kg/m2 16,666 (19.3) 958 (21.7)

≥30 kg/m2 20,411 (23.7) 984 (22.4)

Cigarette smoking, n (%)

Never 46,150 (53.5) 2233 (50.9)

Ex-smoker 32,075 (37.2) 1385 (31.6)

Current smoker 8007 (9.3) 765 (17.5)

Family history of diabetes, n (%)

None 71,783 (83.2) 2768 (63.2)

Parent or sibling 12,982 (15.1) 1384 (31.6)

Parent and sibling 1467 (1.7) 231 (5.3)

Prescribed medication, n (%)

Anti-hypertensive 11,502 (13.3) 1658 (37.8)

Steroid 1104 (1.3) 33 (0.8)

Abbreviations: BMI, body mass index; HbA1c, glycated hemoglobin; SD, standard deviation.

Table 1: Baseline characteristics of selected participants from the UK Biobank and ESTHER study.

Articles
these analyses were performed for both the internal
validation set and the external validation set.

To test, whether adding metabolites to the clinical
CDRS is especially useful (or not useful) for patients
with specific characteristics, we also computed the
model discrimination metrics for subgroup analyses by
age (</≥65 years), sex, obesity (BMI </≥ 30 kg/m2), and
clinical CDRS risk (</≥ median).

Calibration of the predicted probabilities was per-
formed using the Platt Scaling method, comparing the
observed incidence rate of type 2 diabetes events in
deciles of absolute predicted risk to their corresponding
predicted event rates.27

Associations of selected metabolites with incident type 2
diabetes
To derive the hazard ratios (HRs) and 95% confidence
intervals (CIs) of selected metabolites for 10-year type 2
diabetes risk, metabolites were individually added to
Cox proportional hazards regression models in the test
set and the external validation set. These models were
adjusted for the variables of the CDRS, using the r-
package survival (version 3.5-5). HRs and 95% CIs were
estimated per one standard deviation (SD) increase with
the metabolite concentrations in a log-transformed and
standardized format. Log transformation was applied to
remove the skewness of the metabolite concentration
distributions. Standardization to a mean of zero and a
SD of one was subsequently applied to facilitate
comparability across metabolites with different units
and scales.

Ethics
The UKB received ethical approval from the North-West
Multicentre Research Ethics Committee (REC refer-
ence: 11/NW/03820). The ESTHER study was approved
by the Ethics Committee of the Medical Faculty of the
University of Heidelberg (Application number: S-58/
2000). Both UKB and ESTHER study are conducted in
accordance with the 1964 Helsinki declaration and its
later amendments. All study participants of UKB and
ESTHER study gave written informed consent.

Role of the funding source
The funders had no role in the study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
Baseline characteristics
Table 1 summarizes the characteristics of the clinical
CDRS variables among 86,232 participants in the UKB
cohort and 4383 participants in the ESTHER study. The
average age and sex distribution were similar across the
two cohorts, with participants in the UKB having an
average age of 59.9 years (SD 4.4) and comprising 44.3%
www.thelancet.com Vol 79 January, 2025
males. In the ESTHER cohort, the mean age was 60.2
years (SD 5.5), with 42.7% of the participants being
male. Furthermore, the BMI and HbA1c levels were
comparable. Compared to the UKB, a higher proportion
of participants in the ESTHER study were current
smokers (17.5% in ESTHER vs. 9.3% in the UKB), more
had a family history of diabetes (36.9% vs. 16.8%), and
more were prescribed anti-hypertensive medication
(37.8% in ESTHER vs. 13.3% in the UKB). Steroid
prescriptions were equally rare in both cohorts (0.8% in
ESTHER vs. 1.3% in UKB).

Associations of selected metabolites with incident
type 2 diabetes
Over a follow-up of up to 10 years, 3537 of 86,232 study
participants of the UKB developed diabetes (incidence
rate (IR) per 10,000 person-years (PY), 55.0) and 495 of
4383 participants of the ESTHER study (IR per 10,000
PY, 145.2).

Through LASSO analyses and bootstrapping, 11
metabolites were selected to enhance the predictive po-
wer of the clinical CDRS for the risk of type 2 diabetes in
the training set. These metabolites include four glycol-
ysis related metabolites (citrate, glucose, lactate, and
pyruvate), two ketone bodies (3-hydroxybutyrate and
acetate), two amino acids (glutamine and tyrosine), two
lipoprotein related metabolites (IDL-CE-pct (cholesteryl
esters to total lipids in IDL percentage) and M-LDL-TG-
5
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pct (triglycerides to total lipids in medium LDL per-
centage)), and a fatty acid-related metabolite LA-pct
(linoleic acid to total fatty acids percentage). Fig. 2 dis-
plays the Pearson correlation matrix of the selected 11
metabolites in their log-transformed and standardized
format, which transformed their distributions close to
normal distributions. Three biomarkers of glycolysis,
pyruvate, glucose, and lactate, were highly correlated
with each other (all one-on-one Pearson’s r > 0.5 in
ESTHER and for pyruvate and lactate in UKB).
Furthermore, the three lipoprotein related biomarkers
M-LDL-TG-pct, IDL-CE-pct, and LA-pct were highly
correlated in both cohorts (all Pearson’s r > 0.5). Except
for these two biomarker clusters, the correlations were
low to moderate.

The 11 selected metabolites alone (without any
covariates like age and sex) already predicted incident
diabetes cases in the next 10 years well, with a C-index
(95% CI) of 0.733 (0.715, 0.750) in the internal valida-
tion set and a C-index of 0.735 (0.713, 0.757) in the
external validation set. Fig. 3 presents the associations
between the 11 selected metabolites and incident type 2
diabetes within the test set of the UKB and the ESTHER
cohort, adjusted for the variables of the clinical CDRS
graphically, while the HRs with 95% CIs per SD in-
crements and P-values can be found in Supplemental
Table S3. All biomarkers except the ketone bodies 3-
hydroxybutyrate and acetate were statistically signifi-
cantly associated with type 2 diabetes in the UKB. Except
for 3-hydroxybutyrate, for which confidence intervals did
not overlap, the results were remarkably similar in the
ESTHER study. Results were also comparable for citrate
and pyruvate although these biomarkers lacked statisti-
cal significance in the ESHTER study.
Fig. 2: Correlation matrix of Pearson correlation coefficients for the 11
to total lipids in IDL percentage; LA-pct, linoleic acid to total fatty acids p
percentage.
Improvements in type 2 diabetes risk prediction by
metabolomic biomarkers
In the training set, the C-index for the clinical CDRS
[0.830 (0.821, 0.839)] was much higher than for the
CDRS [0.740 (0.731, 0.749)]. Thus, we compared the
predictive performance of the novel model of the clinical
CDRS extended by 11 metabolites to the clinical CDRS,
only. We call the novel model “UK Biobank Diabetes
Risk Score (UKB-DRS)” in the following. Coefficients
for all variables in the UKB-DRS are listed in
Supplemental Table S4. In the training set, test set and
external validation set, the UKB-DRS consistently had a
statistically significantly (P < 0.001) higher C-index (95%
CI) than the clinical CDRS, with comparable C-index
increases of 0.017, 0.019, and 0.028 units, respectively
(Table 2). The receiver operating curves (ROC) are
shown in Fig. 4. Moreover, an improved risk stratifica-
tion ability was observed, with a continuous NRI (95%
CI) of 39.8% (34.6%, 45.0%) and an IDI (95% CI) of
0.0216 (0.0170, 0.0262) in internal validation and a
continuous NRI of 33.8% (26.4%, 41.2%), and an IDI of
0.0016 (0.0012, 0.0019) in external validation.
Supplemental Text S3 provides the calculation how we
derived at a continuous NRI (95% CI) of 39.8% (34.6%,
45.0%). The model calibration of both the clinical CDRS
and the UKB-DRS was good in the internal and the
external validation set and the confidence interval bands
overlapped (Fig. 5).

To check, whether glucose is the main source of the
model improvement, we compared the predictive per-
formance metrics of the UKB-DRS with the clinical
CDRS augmented with glucose as the reference model
(Supplemental Table S5). The UKB-DRS had a higher C-
index (95% CI) [0.834 (0.820, 0.847) vs. 0.820 (0.805,
selected metabolites. Abbreviations: IDL-CE-pct, cholesteryl esters
ercentage; M-LDL-TG-pct, triglycerides to total lipids in medium LDL

www.thelancet.com Vol 79 January, 2025
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Fig. 3: Associations between selected metabolites and incident type 2 diabetes in the test set (30% of UK Biobank, N = 25,870) and
external validation set (ESTHER, N = 5904). Notes: Hazard ratios are expressed per 1 standard deviation of the respective metabolite
concentration and are adjusted for the variables of the clinical CDRS. The exact HRs with 95% CIs and P-values per SD increments and the SDs of
the metabolites are shown in Supplemental Table S3. Abbreviations: CI, confidence interval; IDL-CE-pct, cholesteryl esters to total lipids in IDL
percentage; LA-pct, linoleic acid to total fatty acids percentage; M-LDL-TG-pct, triglycerides to total lipids in medium LDL percentage; SD,
standard deviation.
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0.834) in internal and 0.798 (0.779, 0.817) vs. 0.773
(0.755, 0.791) in external validation set] and a statistically
significant NRI (95% CI) [26.3% (21.2%, 31.4%) in in-
ternal and 13.2% (7.1%, 19.2%) in external validation
set] compared to the clinical CDRS extended by glucose.

To further explore whether the addition of the 11
metabolites was particularly useful in specific sub-
groups, we conducted subgroup analyses by age, sex,
obesity, and clinical CDRS risk. As shown in Fig. 6, the
UKB-DRS consistently outperformed the clinical CDRS
across all subgroups in both internal and external vali-
dation. There was no subgroup with a particularly low or
high C-index change.

Fig. 7 illustrate the incremental improvement in the
C-index and Supplemental Table S6 the NRI and IDI for
each of the 11 selected metabolites after their incorpo-
ration into the clinical CDRS in internal and external
validation. Especially glucose, IDL-CE-pct, LA-pct, and
M-LDL-TG-pct enhanced the discriminative ability of
the model in both cohorts with C-index changes >0.005
in the external validation cohort. The other seven me-
tabolites showed low increases in C-statistic at best.
Thus, we additionally developed a simplified model,
termed the concise UKB-DRS, which incorporated only
these four key metabolites (glucose, IDL-CE-pct, LA-pct,
www.thelancet.com Vol 79 January, 2025
and M-LDL-TG-pct) alongside the traditional CDRS
variables. With a C-index (95% CI) of 0.830 (0.815,
0.844) in internal validation and 0.786 (0.766, 0.805) in
external validation, the concise UKB-DRS had a com-
parable discriminative performance compared to the full
UKB-DRS, including 11 metabolites. Fig. 4 shows that,
compared to the ROC curves of the full UKB-DRS, the
ROC curves of the concise UKB-DRS were almost
identical (in internal validation) or just a little lower (in
external validation). The NRI (95% CI) and IDI (95% CI)
of the concise UKB-DRS in internal validation (36.7
(31.4, 41.9) and 0.0205 (0.0162, 0.0248), respectively)
and external validation (24.4 (16.7, 32.2) and 0.0011
(0.0008, 0.0015), respectively) were also just a little
weaker than for the full UKB-DRS. Moreover, the cali-
bration curves of the full and concise UKB-DRS were
also comparable (Fig. 5).
Discussion
To our knowledge, this study represents the largest-scale
investigation to date on the predictive utility of metab-
olomic biomarkers for type 2 diabetes risk, leveraging
data from two large European cohorts comprising over
90,000 middle-aged and older adults of whom more
7
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Metrics

Derivation set (70% of UK Biobank)

Sample size/incident type 2 diabetes N = 60,362/2477

C-index (Clinical CDRSa) 0.830 (0.821, 0.839)

C-index (Concise UKB-DRSb) 0.846 (0.837, 0.856)

C-index (UKB-DRSc) 0.847 (0.838, 0.855)

ΔC-index (UKB-DRSc vs. Clinical CDRSa); P-value +0.017; P < 0.0001

Internal validation set (30% of UK Biobank)

Sample size/incident type 2 diabetes N = 25,870/1059

C-index (Clinical CDRSa) 0.815 (0.800, 0.829)

C-index (Concise UKB-DRSb) 0.830 (0.815, 0.844)

C-index (UKB-DRSc) 0.834 (0.820, 0.847)

ΔC-index (UKB-DRSc vs. Clinical CDRSa); P-value +0.019; P < 0.0001

Continuous NRI (%) (UKB-DRSc vs. Clinical CDRSa); P-value 39.8 (34.6, 45.0); P < 0.0001

IDI (UKB-DRSc vs. Clinical CDRSa); P-value 0.0216 (0.0170, 0.0262); P < 0.0001

External validation set (ESTHER)

Sample size/incident type 2 diabetes N = 4383/495

C-index (Clinical CDRSa) 0.770 (0.750, 0.791)

C-index (Concise UKB-DRSb) 0.786 (0.766, 0.805)

C-index (UKB-DRSc) 0.798 (0.779, 0.817)

ΔC-index (UKB-DRSc vs. Clinical CDRSa); P-value +0.028; P < 0.0001

Continuous NRI (%) (UKB-DRSc vs. Clinical CDRSa); P-value 33.8 (26.4, 41.2); P < 0.0001

IDI (UKB-DRSc vs. Clinical CDRSa); P-value 0.0016 (0.0012, 0.0019); P < 0.0001

Abbreviations: CDRS, Cambridge Diabetes Risk Score; IDI, integrated discrimination improvement; NRI, net
reclassification improvement, UKB-DRS, UK Biobank Diabetes Risk Score. aThe clinical CDRS consists of the
following diabetes risk factors: (age, sex, BMI, smoking status, family history of diabetes, prescription of anti-
hypertensive medication and steroids, and HbA1c).

bThe concise UKB-DRS is based on the traditional diabetes
risk factors of the clinical CDRS (see above) and the following 4 metabolites: glucose, IDL-CE-pct (cholesteryl
esters to total lipids in intermediate density lipoproteins percentage), LA-pct (linoleic acid to total fatty acids
percentage), and M-LDL-TG-pct (triglycerides to total lipids in medium low-density lipoproteins percentage).
cThe UKB-DRS is based on the traditional diabetes risk factors of the clinical CDRS (see above) and the following
11 metabolites: glucose, citrate, lactate, pyruvate, 3-hydroxybutyrate, acetate, glutamine, tyrosine, IDL-CE-pct,
LA-pct, and M-LDL-TG-pct (see footnote above for Abbreviations).

Table 2: Comparison of the predictive performance of the clinical Cambridge Diabetes Risk Score
and the novel developed UK Biobank Diabetes Risk Score for 10-year type 2 diabetes risk
prediction.
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than 4000 developed type 2 diabetes during 10 years
of follow-up. We developed and validated the UKB-
DRS that integrates an established risk prediction
model (clinical CDRS) with 11 metabolites for
enhanced predictive performance of 10-year type 2
diabetes risk. In both internal and external validation,
the UKB-DRS demonstrated significant improve-
ments in the C-index compared to the clinical CDRS,
with increases of 0.019 and 0.028, respectively.
Additionally, we examined the incremental value of
each metabolite to the model’s predictive capability
across both cohorts, finding similar results in internal
and external validation for all 11 metabolites. These
findings confirm the robustness and generalizability
of the new algorithm in enhancing the predictive ac-
curacy for the risk of type 2 diabetes.

The association between circulating metabolomic
biomarkers and the risk of type 2 diabetes has been
extensively documented. Ahola-Olli et al. investigated
four Finnish cohorts and identified that approximately
half of the 229 NMR-based metabolomic biomarkers
examined were significantly associated with incident
type 2 diabetes.28 Similarly, Seah et al. observed that
multiple metabolites were linked to an increased risk of
type 2 diabetes in cohorts with Asian ethnicity.29 More-
over, to enhance the accuracy of existing prediction
models for type 2 diabetes risk, numerous studies have
investigated the incremental value of metabolomic bio-
markers.30 Many traditional prediction models already
achieve high predictive accuracy, making significant
improvements upon these models challenging.5,6 Previ-
ous studies often focused on the impact of specific types
of metabolomic biomarkers, with several studies finding
that incorporating pre-selected metabolomic biomarkers
into traditional risk prediction models did not enhance
risk identification capabilities.31,32 However, other
studies have shown that screening among a large
number of metabolomic biomarkers tends to improve
model discrimination.15,33 The European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam
study, which measured 163 metabolites for 800 incident
type 2 diabetes cases (with an average follow-up of 7
years) and 2282 controls, showed that adding 14
metabolomic biomarkers selected from 163 metabolite
candidates to a traditional risk model significantly
improved the model’s discriminative ability (C-index
increased from 0.901 to 0.912).15 The EPIC-Potsdam
study is the second largest study after the UK Biobank
using untargeted metabolomics data. Prior to our study,
a study from the UKB, which did not have the full
number of metabolomics data available had the largest
sample size (N = 65,684 participants analyzed, including
1719 type 2 diabetes cases).33 The authors conducted
internal validation after incorporating metabolomic data
into the Framingham Diabetes Risk Score, significantly
enhancing the model’s C-index (95% CI) from 0.802
(0.791, 0.812) to 0.830 (0.822, 0.841) (ΔC-index = 0.028).
However, a lack of external validation remains a major
barrier to translating metabolomic based models into
clinical applications, which we overcame by our joint
analysis of the UKB and ESTHER cohort. Furthermore,
we included more than twice the number of incident
type 2 diabetes case in our UKB analysis (N = 3536)
compared to the previous UKB study by including more
study participants with metabolomics data (N = 86,232)
and by the additional use of primary care records for the
outcome assessment.

The ensemble of metabolites identified in our study
captures a broad spectrum of biochemical pathways
integral to the metabolic dysregulation that precedes
type 2 diabetes. The identified metabolites stem from
the tricarboxylic acid cycle (citrate, glucose, lactate, and
pyruvate), are ketone bodies (3-hydroxybutyrate and ac-
etate), amino acids (glutamine and tyrosine), lipopro-
teins (IDL-CE-pct and M-LDL-TG-pct), and a fatty acid
(LA-pct). This metabolic signature characterizes an
impaired glucose and lipid metabolism that is detectable
in blood samples up to 10 years prior diabetes diagnosis
www.thelancet.com Vol 79 January, 2025
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Fig. 4: ROC curves with 95% confidence interval bands for the UKB-DRS, concise UKB-DRS, and clinical CDRS in internal validation (30%
UK Biobank, N = 25,870) and external validation (ESTHER, N = 4383). Abbreviations: ROC, receiver operating characteristic; CDRS,
Cambridge Diabetes Risk Score; UKB-DRS, UK Biobank Diabetes Risk Score.
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Fig. 5: Calibration plots for the UKB-DRS, Concise UKB-DRS, and Clinical CDRS in internal validation (30% UK Biobank, N = 25,870) and
external validation (ESTHER, N = 4383). Notes: Confidence intervals are represented by shaded regions for each model. Abbreviations: CDRS,
Cambridge Diabetes Risk Score; UKB-DRS, UK Biobank Diabetes Risk Score.
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and might also give new insights into the mechanisms
of type 2 diabetes pathogenesis.

Citrate is a key metabolite in the tricarboxylic acid
cycle and not only facilitates energy production but also
plays a vital role in fatty acid synthesis, thereby linking
glycolytic processes with lipid metabolism.9 Concur-
rently, glucose as a direct participant in glycolysis, pro-
vides critical insights into the disrupted glucose
www.thelancet.com Vol 79 January, 2025
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Fig. 6: Subgroup analyses comparing the C-index of the UKB-DRS and the clinical CDRS in internal validation (30% UK Biobank,
N = 25,870) and external validation (ESTHER, N = 4383). Notes: Middle-aged is defined as <65 years and older age as ≥65 years. Obesity is
defined as a BMI ≥ 30 kg/m2. Abbreviations: CDRS, Cambridge Diabetes Risk Score; UKB-DRS, UK Biobank Diabetes Risk Score; CI, confidence
interval.
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homeostasis that is characteristic of diabetes.34 The
presence of lactate and pyruvate, products of anaerobic
and aerobic glycolysis respectively, signals a shift to-
wards inefficient energy utilization, a common obser-
vation in insulin-resistant states. These shifts are
believed to reflect the underlying mitochondrial adap-
tations that compromise cellular energy management
and exacerbate hyperglycemic conditions.35
www.thelancet.com Vol 79 January, 2025
Ketone bodies, including 3-hydroxybutyrate and ac-
etate, accumulate during increased fatty acid oxidation
—a compensatory response to impaired glucose utili-
zation in diabetes. Elevated levels of these ketone bodies
indicate the body’s attempt to maintain energy balance
under conditions of insulin resistance.36

Furthermore, the amino acids glutamine and tyro-
sine are noted for their dual roles in metabolic and
11
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Fig. 7: The incremental discrimination of each metabolite for the model after the selected metabolites were added to the clinical
Cambridge Diabetes Risk Score in the test set (30% of UK Biobank, N = 25,870) and external validation set (ESTHER, N = 4383).
Abbreviations: CI, confidence interval; IDL-CE-pct, cholesteryl esters to total lipids in IDL percentage; LA-pct, linoleic acid to total fatty acids
percentage; M-LDL-TG-pct, triglycerides to total lipids in medium LDL percentage.
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neurotransmitter pathways. Glutamine is involved in
gluconeogenesis and plays a crucial role in maintaining
glucose homeostasis. Tyrosine is associated with cate-
cholamine synthesis and may influence stress responses
that exacerbate beta-cell dysfunction and insulin
resistance.34

Lipoprotein-related metabolites, including IDL-CE-
pct and M-LDL-TG-pct, reflect changes in lipoprotein
metabolism that contribute to a dyslipidemia pattern
commonly associated with insulin resistance.37 Addi-
tionally, the percentage of linoleic acid, a crucial
component in inflammatory pathways, has been asso-
ciated with variations in dietary intake and metabolic
status, influencing cellular functions pivotal to insulin
sensitivity.38

Overall, the identified metabolic profile comprising
glycolysis-related metabolites, ketone bodies, amino
acids, lipoprotein-related metabolites, and fatty acids not
only contributes evidence to the biological pathways
from early metabolic disturbances to type 2 diabetes
development but also adds predictive power to tradi-
tional risk factor models, which will allow to detect those
better who are at risk to develop type 2 diabetes and
profit most from early preventive interventions.

This study stands out from previous research pri-
marily due to its substantial sample size and the
confirmation of our model’s robustness through
external validation. We employed a well-established,
clinically approved targeted NMR metabolomics plat-
form with absolute quantification of 250 biomarkers.
This feature does not only facilitate comparative ana-
lyses across different populations but also enhances the
potential for clinical translation.

However, our study is not without limitations.
Although we only included UKB participants with
available primary care records to ascertain the incidence
of type 2 diabetes, the IR remained significantly lower
than in the ESTHER study (55.0 vs. 145.2 per 10,000
person-years, respectively). This difference is likely due
to an underreporting in the UKB and a more complete
ascertainment in the ESTHER study, in which the GPs
of the study participants were asked to provide their
medical records and these were screened for diabetes
diagnoses and glucose-lowering drugs. In addition,
there are differences between the two cohorts regarding
the blood samples. The UKB used plasma and ESTHER
serum samples to determine the metabolites. Further-
more, only a small proportion of blood samples in the
UK Biobank cohort were collected under fasting condi-
tions, defined as no consumption of food or drink for at
least 8 h (3.3%), whereas the majority of participants in
the ESTHER study were not fasting (90.6%). However, a
comparison of the levels of the 11 selected metabolites
by fasting status in the UKB and ESTHER study shows
that the differences in metabolite concentrations be-
tween fasting and non-fasting individuals are small in
both cohorts (see Supplemental Table S7). This is in
agreement with a previous study, which has shown that
the duration of fasting has little impact on the variability
of these metabolites.39 Thus, the novel UKB-DRS is
www.thelancet.com Vol 79 January, 2025
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robust towards fasting status and use of either serum or
plasma samples. However, it is unknown how the
model will perform in different populations. As its
derivation and validation are based on British and
German populations aged 50–69 years, extending its
application to ethnically diverse populations or other age
groups requires further validation.

Although the absolute improvement in the C-index
for the UKB-DRS over the clinical CDRS alone was
modest, this improvement is clinically meaningful for
several reasons. First, even small gains in the discrim-
inative power of risk prediction models can have sub-
stantial population-level implications when applied to
large populations. In the context of type 2 diabetes,
earlier and more accurate identification of individuals at
risk can enable timely intervention strategies, potentially
preventing thousands of cases annually.40 Second, in a
clinical setting, the use of metabolomic biomarkers as
an adjunct to traditional risk factors may help to
reclassify individuals whose risk of developing diabetes
was previously underestimated or overestimated. In this
context, the moderately increased continuous NRI of
>30% of the UKB-DRS, is more clinically relevant than
the modest C-index increase. These reclassifications
could refine decision-making processes related to life-
style interventions or pharmacotherapy.34 Lastly, the
metabolomic biomarkers selected in this study were
derived from NMR spectroscopy, a high-throughput and
cost-effective platform that, compared to liquid chro-
matography with tandem mass spectrometry (LC-MS/
MS), is more suitable to be used in large-scale clinical
routine settings.41 In this context, the concise UKB-DRS
with just 4 added metabolites is likely the most cost-
effective approach.

In conclusion, this study provides large-scale evi-
dence from the UKB that a specific metabolomic profile
indicative of alterations in glucose and lipid metabolism
has additional value for the prediction of type 2 diabetes
compared to a traditional risk factor-based model
including the HbA1c. The derived novel UKB-DRS,
which combines these traditional risk factors with 11
metabolomic biomarkers was robust in external valida-
tion using an independent, population-based German
cohort. Furthermore, a concise UKB-DRS was devel-
oped as well, using only four key metabolites, which
maintained considerable high predictive accuracy,
making it an attractive, clinically feasible alternative.
These findings have important future translational im-
plications. With increasing clinical accessibility to high-
throughput, targeted metabolomics analyses with the
NMR technology, the use of these biomarkers in clinical
risk prediction models is feasible. This can be useful for
risk communication aiming at lifestyle changes and
prioritizing cost-intensive preventive interventions (e.g.,
semaglutide injections for weight loss) to those at high
risk for future type 2 diabetes development.
www.thelancet.com Vol 79 January, 2025
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29 Seah JYH, Hong Y, Cichońska A, et al. Circulating metabolic bio-
markers are consistently associated with type 2 diabetes risk in
Asian and European populations. J Clin Endocrinol Metabol.
2022;107(7):e2751–e2761.

30 Satheesh G, Ramachandran S, Jaleel A. Metabolomics-based pro-
spective studies and prediction of type 2 diabetes mellitus risks.
Metab Syndr Relat Disord. 2020;18(1):1–9.

31 Tillin T, Hughes AD, Wang Q, et al. Diabetes risk and amino acid
profiles: cross-sectional and prospective analyses of ethnicity,
amino acids and diabetes in a South Asian and European cohort
from the SABRE (Southall And Brent REvisited) Study. Dia-
betologia. 2015;58:968–979.

32 Fall T, Salihovic S, Brandmaier S, et al. Non-targeted metabolomics
combined with genetic analyses identifies bile acid synthesis and
phospholipid metabolism as being associated with incident type 2
diabetes. Diabetologia. 2016;59(10):2114–2124.

33 Bragg F, Trichia E, Aguilar-Ramirez D, Bešević J, Lewington S,
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