Skip to main content
. 2024 Jul 2;14(11):101034. doi: 10.1016/j.jpha.2024.101034

Table 1.

Mechanisms of Chinese herbal medicine active ingredients regulating endoplasmic reticulum stress (ERS).

Active ingredients Chemical formula Mechanism and effect The disease of myocardial injury Experimental model Dose Refs.
Anisodamine C17H23NO4 ↓GRP78, CHOP, Cleaved Caspase-3 Myocardial injury after cardiac arrest and resuscitation in rats Cardiac and I/R injury and arrest Wistar rats (in vivo) 10 mg/kg [69]
Apigenin-7-O-β-d-(-6″-p-coumaroyl)-glucopyranoside C30H26O12 ↓PERK, p-PERK, eIF2α, p-eIF2α, CHOP, Bax, Cleaved Caspase-3, ↑Bcl-2, p-AMPK, AMPK, Myocardial hypoxia-reperfusion injury Myocardial ischemia/reperfusion injury isolated heart of adult SD rats (in vivo)
Hypoxia/Reoxygenation injury in primary neonatal rat cardiomyocytes (in vitro)
4 μM [70]
Araloside C C53H84O23 ↓PERK, eIF2α, ATF6, CHOP, Caspase-12, ↑HSP90 Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes 12.5 μM [71]
Astragaloside IV C41H68O14 ↓p-eIF2α, CHOP, Caspase-3, Caspase-9, ROS, ↑Bcl-2 Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro) 50, 10,
5, 1 and 0.5 μM
[72]
Atractylenolide Ⅲ C15H20O3 ↓GRP78, Caspase-12, Caspase-3, Ca2+ Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro) 15, 30 and 60 μM [73]
Berberine C20H18NO4]+ ↓ PERK, eIF2α, ATF4, CHOP Myocardial hypoxia-reperfusion injury Myocardial I/R injured in SD rats (in vivo)
Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro)
200 mg/kg/d for 2 week; 50 μM [74]
Crocin C44H64O24 ↓GRP78, Caspase 3, Bax, miR-34a, ↑SIRT1, Nrf2, HO-1 Myocardial hypoxia-reperfusion injury I/R-induced left ventricular dysfunction and infarct in C57BL/6 mice (in vivo)
Hypoxia/Reoxygenation injury in primary neonatal mouse cardiomyocytes (in vitro)
50 mg/kg/d for 1 week; 10 μM [75]
Elatoside C C46H74O16 ↓GRP78, CHOP, Caspase-12, JNK Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro) 25 μM [76]
Grape seed proanthocyanidins C30H26O13 ↓GRP78, CHOP, eIF2α, p-PERK Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro) 50, 100 and 200 μM [77]
Gypenoside C47H80O17 ↓CHOP, GRP78, CHOP, Caspase-12, PERK, eIF2α, ATF4 ↑PI3K, Akt, p-GSK3β Myocardial hypoxia-reperfusion injury; coronary heart diseases Myocardial I/R injured in Wistar rats (in vivo)
Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro)
200 mg/kg for 1 week [78]
Gypenoside XVII C48H82O18 ↓GRP78, PERK, IRE1, P-JNK, CHOP, Bad, BAX, Caspase-12, p38-MAPK pathway ↑Bcl-2, PI3K/Akt pathway Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro) 5, 10 and 20 μM [79]
Luteolin C15H10O6 ↓GRP78, p-eIF2α, IRE1α, XBP-1, ATF6, CHOP, Bax, Caspase-3, ↑Bcl-2 Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes (in vitro) 10 μM [80]
Lycopene C40H56 ↓CHOP, GRP78, ATF6, eIF2α, sXBP-1, Bax/Bcl-2, Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in primary neonatal rat cardiomyocytes (in vitro) 5 μM [81]
Notoginsenoside R1 C47H80O18 ↓Calnexin, BiP, CHOP, Caspase-3, ↑RyR2 Myocardial hypoxia-reperfusion injury Hypoxia/Reoxygenation injury in H9c2 cardiomyocytes, HL-1 cells, and primary cultured neonatal cardiomyocytes from Sprague–Dawley rats (in vitro) 20, 40, 80 and 100μg/mL [82]
Panax quinquefolium saponin ↓GRP78, Calreticulin, CHOP, Bax, ↑Bcl-2 Myocardial infarction Acute myocardial infarction in SD rats (in vivo) 50 and 100 mg/kg for 4 week [83]
Piperine C17H19NO3 ↓GRP78, CHOP, Caspase-12, BiP, ↑p-PI3K, p-AKT Myocardial ischemia/reperfusion injury Hypoxia/Reoxygenation injury in primary neonatal rat cardiomyocytes from Sprague-Dawley (in vitro) 20 μM [84]
Protocatechualdehyde C7H6O3 ↓eIF2α, p-eIF2α, Ero1-Lα, PERK, CHOP, BiP, IRE1α, ATF6, Caspase-3, BAX, HIF-1α, ↑Bcl-2 Myocardial ischemia/reperfusion injury Oxygen-glucose deprivation/reoxygenation in H9c2 cardiomyocytes, and primary neonatal rat cardiomyocytes from Sprague Dawley (in vitro) 5 μM [85]
Quercetin C15H10O7 ↓PERK, CHOP, Caspase-12, ↑SIRT1, TMBIM6 Myocardial ischemia/reperfusion injury Hypoxia/reoxygenation in H9c2 cardiomyocytes (in vitro) 150 mg/L [86]
Salidroside C14H20O7 ↓p-PERK, p-eIF2α, CHOP, p-PERK, ↑AMPK Myocardial ischemia/reperfusion injury Myocardial ischemia in SD rats (in vivo)
I/R injury in H9c2 cardiomyocytes (in vitro)
40 mg/kg; 10 μM [87]
Sulforaphane C6H11NOS2 ↓GRP78, CHOP, caspase-12, SIRT1, PERK, eIF2α, ↑Bcl-2 Myocardial ischemia/reperfusion injury Ischemia/reperfusion injury in H9c2 cardiomyocytes (in vitro) 0.1–5 μM [89]
Tanshinone IIA C19H18O3 ↓GRP78, CHOP, Caspase-12, ↑miR-133 Myocardial injury Tunicamycinc induced injury in primary neonatal rat cardiomyocytes (in vitro) 10 μM [90]
Tournefolic acid B C17H12O6 ↓CHOP, Caspase-12, JNK↑SOD、CAT, GSH-Px, p-PI3K, p-AKT, Bcl-2/Bax ratio Myocardial ischemia/reperfusion injury Hypoxia/reoxygenation injury in H9c2 cardiomyocytes (in vitro) 0.5, 1 and 2 μM [91]
Baicalin C21H18O11 ↓CHOP, ↑eNOS, NO Clotrimazole-induced apoptosis in cardiomyocytes Hypoxia/Reoxygenation injury in primary neonatal rat cardiomyocytes from SD rats (in vitro) 12.5, 25 and 50 μM [92]
Barbaloin C21H22O9 ↓GRP78, CHOP, PERK, p-PERK, ATF4, Caspase-12, Caspase-3, CNPY2 Myocardial I/R injured in SD rats (in vivo) 20 mg/kg/d for 1 week [93]
Berberine C20H18NO4 ↓CHOP, Caspase-12, Caspase-3 ↑Bcl-2/Bax ratio Cardiac remodeling of heart failure after myocardial infarction Myocardial infarction in Wistar rats (in vivo) 20 mg/kg for 4 week [94]
Echinacoside C35H46O20 ↓GRP78, P–I/REα, p-PERK, ATF6, CHOP, NADPH, ROS Heart failure Isoprenaline (ISO)-induced HF rats (in vivo)
Isoprenaline (ISO)-induced primary cardiomyocytes of neonatal from Sprague–Dawley rats (in vitro)
10 mg/kg/d for 2 week [95]
Ophiopogonin D C44H70O16 ↓Bip, Bax, Perk、ATF4, Caspase-12, CHOP Heart failure Isoprenaline (ISO)-induced cardiac hypertrophy injury in H9c2 cardiomyocytes (in vitro) 10 μM [96]
Resveratrol C14H12O3 ↓GRP78, GRP94, CHOP, ↑Bcl-2/Bax ratio Cardiac hypertrophy Isoprenaline (ISO)-induced cardiac hypertrophy injury in H9c2 cardiomyocytes (in vitro) 50 μM [97]
1, 8-cineole C10H18O ↓GRP78, PERK, ATF4, CHOP, ROS, Bcl-2/Bax ratio, p-Caspase 3 Heart failure Isoprenaline (ISO)-induced cardiac hypertrophy injury in H9c2 cardiomyocytes (in vitro) 10, 15, 20, 25, 30, 35 and 40 μM; 120, 60 and 30 mg/kg/d for 4 week [98]
Astragalus polysaccharides C10H7ClN2O2S ↓ATF6, PERK, CHOP Diabetic cardiomyopathy Streptozotocin-induced type 1 diabetic ratsl (in vivo)
High Glucose (HG)-Induced H9c2 cardiomyocytes (in vitro)
1 g/kg/d for 16 week; 0.8 mg/mL [99]
Beta carotene C40H56 ↓ROS, Bax, ATF4, GRP78, CHOP, Beclin 1, p62, LC3II/LC3I ratio, ↑Bcl-2, p-PI3K, p-AKT, p-mTOR, SOD, GSH-Px Diabetic cardiomyopathy Advanced glycation end products-induced H9c2 cardiomyocytes (in vitro) 40 μM [100]
Berberine C20H18NO4]+ ↓XBP1, ↑AMPK, p-eNOS Diabetes-Associated Endothelial Dysfunction High-fat diet and streptozotocin induced diabetes in C57BL/6 J mice (in vivo)
High sugar or clindamycin-treated HUVECs cell (in vitro)
11.3, 14.5, 12.2 and 1 μM [101]
Curcumin C21H20O6 ↓GRP78, CHOP, Caspase 3, BAX, Diabetic cardiomyopathy Palmitate treated H9c2 cardiomyocytes (in vitro) 10 μM [102].
Curcumin C21H20O6 ↓p-PERK, p-eIF2α, and ATF4, ↑LC3-II Lipotoxic cardiomyopathy Palmitate treated H9c2 cardiomyocytes (in vitro) 100 μM [103]
Linderalactone C15H16O3 ↓ATF6, p-ERK, p-JNK, p38, CHOP, MAPKs Diabetic cardiomyopathy Streptozotocin-induced type 1 diabetes in C57BL/6 J mice (in vivo) 2.5 or 5 mg/kg for 5 week [104]
Mangiferin C19H18O11 ↓GRP78, CHOP, TXNIP, NLRP3, Caspase-3,↑AMPK, NO Endothelial dysfunction induced by diabetes High sugar treated EA.hy926 cells (in vitro) 10 μM [105]
Resveratrol C14H12O3 ↓PERK, eIF2α, ATF6, CHOP, IRE1α, JNK, ↑SIRT1 Diabetic cardiomyopathy Streptozotocin-induced diabetes in Sprague–Dawley rats (in vivo)
High sugar treated H9c2 cardiomyocytes (in vitro)
10 μM [106]
Tanshinone IIA C19H18O3 ↓GRP78, ATF4, ATF6, XBP-1s, P-eIF2α, CHOP, ↑SIRT1, Diabetic cardiomyopathy High-sugar, high-fat diet induces diabetes in C57BL/6 J mice (in vivo)
High sugar treated primary neonatal rat cardiomyocytes from C57BL/6 J mouse (in vitro)
10, 50 and 250 mg/kg/day for 14 week; 1.5 and 6.25 μM [107]
Black tea ↓ATF3, ATF6, p-eIF2α, ROS Hypertension-associated endothelial dysfunction Angiotensin II (Ang II)-induced hypertension in Sprague–Dawley rats (in vivo) 15 mg/kg/day for 2 week [108]
Berberine C20H18NO4]+ ↓AFT3, ATF4, XBP1, COX2, ROS, ↑AMPK Spontaneously hypertensive carotid artery tissue of Spontaneously hypertensive rats (in vivo) 1 μM [109]
Nobiletin C21H22O8 ↓GRP78, GRP94, CHOP, Caspase-3 Renal vascular hypertension and left ventricular remodeling Renal vascular hypertensive Wistar rats (in vivo) 100 mg/kg/d for 4 week [110]
Paeonol C9H10O3 ↓GRP78, ATF6, eIF2α, ROS, ↑AMPK, PPARδ, NO Atherosclerosis Tunicamycin induced C57BJ/6 J and PPARδ wild type (WT) mouse aortas (in vivo)
Tunicamycin-induced human umbilical vein endothelial cells, H5V cells (in vitro)
0.1 μM [111]
Pterostilbene C16H16O3 ↓PERK, eIF2α, ATF4, CHOP, ↑SIRT1 Atherosclerosis TNF-α- induced H9c2 cells (in vitro) 0.1, 0.5, or 1 μM [112]
Curcumin C21H20O6 ↓GRP78, CHOP, cTn-I, Ang II, ↑Bcl-2 Heat-stress-induced cardiac injury Heat stress exposure C57BL/6 J mice (in vivo) 50, 100 and 200 mg/kg/day for 4 week [113]
Rosa canina L, methanolic extract ↓p-PERK, p-eIF2α, CHOP, Caspase 8 Heat-stress-induced cardiac injury Heat stress exposure Wistar rats (in vivo) 500/1000 mg/mL [114]
Ursolic acid C30H48O3 ↓p-PERK, p-eIF2α, CHOP, ↑Mcl-1 Heat stress Heat stress exposure ICR rats (in vivo) 20 or 40 mg/kg [115]
Panax quinquefolium saponin ↓Erk1/2, CaMKII, HDAC4, CK-MB, cTnT, IMA, ↑AMPK Cardiac remodeling induced by simulated microgravity Unloading induced cardiac remodeling SD rats (in vivo) 200 mg/kg/d for 8 week [116]
Astaxanthin C40H52O4 ↓GRP78, p-PERK, p-eIF2α, ATF4, ATF6, p-IRE1, XBP-1, CHOP, Caspase-12 Alcoholic cardiomyopathy Ethanol induced Alcoholic cardiomyopathy in C57BL/6 J mice (in vivo)
Ethanol treated H9c2 cardiomyocytes and primary cardiomyocytes (in vitro)
20 mg/kg/d for 8 week; 10 μM [117]

GRP78: glucose regulated protein78; CHOP: C/EBP homologous protein; I/R: ischemia/reperfusion; PERK: protein kinase RNA (PKR)-like endoplasmic reticulum (ER) kinase; eIF2α: eukaryotic translation initiation factor 2α; Bcl-2: BCL2 apoptosis regulator; AMPK: 5′ adenosine monophosphate-activated protein kinase; SD rats: Sprague-Dawley rats; ATF6: activating transcription factor 6; HSP90: heat shock protein 90 alpha family class A member 1; ROS: reactive oxygen species; ATF: activating transcription factor; SIRT1: silencing information regulator 1; Nrf2: nuclear factor erythroid-2-related factor 2; HO-1: heme oxygenase 1; JNK: c-Jun N-terminal kinase; RyR2: type 2 ranibodin receptor; Bip: binding-immunoglobulin protein; HIF-1α: hypoxia inducible factor 1 subunit alpha; TMBIM6: transmembrane BAX inhibitor-1 motif-containing 6; CNPY2: cardiomyocyte-specific protein canopy homolog 2; NADPH: nicotinamide adenine dinucleotide phosphate oxidase; LC3II: microtubule associated protein 1 light chain 3 beta; XBP1: X-box-binding protein 1; MAPK: mitogen-activated protein kinase; TXNIP: thioredoxin interacting protein; NLRP3: NLR family fyrin domain containing 3; eNOS: endothelial-type nitric oxide synthase; HUVECs: human umbilical vein endothelial cells; NO: nitric oxide; ATF3: activating transcription factor 3; COX2: cyclooxygenase-2; PPARδ: peroxisome proliferator activated receptor gamma; cTn-I: cardiac troponin I; TNF-α: tumor necrosis factor-α; Ang II: angiotensin II; Mcl-1: MCL1 apoptosis regulator, BCL2 family member; GRP94: glucose regulatory protein94; HDAC4: histone deacetylase 4; CK-MB: creatine kinase-MB; cTnT: cardiac trophoblast protein T; CaMKII: Ca2+/calmodulin-dependent protein kinase II; IMA: ischemia-modified albumin; −: no data.