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ABSTRACT: Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy
across the visible and near-infrared (NIR) range (400−1900 nm). Spectroscopic measurements were benchmarked with nucleotide
assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second
enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine
learning (ML) algorithms: linear discriminant analysis, Gaussian naiv̈e, weighted K-nearest neighbors, and an ensemble bagged tree
method. Dual-mode data fusion returned almost perfect accuracies (mean = 99.5 ± 0.51%), while single-mode ML analyses
(fluorescence, visible absorbance, and NIR absorbance) returned lower mean accuracies at greater spread (77.1 ± 10.1%). Single-
mode fluorescence accuracy was especially poor; however, via principal component analysis, we found that a truncated fluorescence
data set of four variables (wavelengths) could predict “fresh” and “spoilt” salmon fillet based on a subtle peak redshift as the fillet
aged, albeit marginally short of statistical significance (95% confidence ellipse). Thus, whether by feature selection of one spectral
data set, or the combination of multiple data sets through different modes, this study lays the foundation for better determination of
fish freshness within the context of rapid spectroscopic analyses.
KEYWORDS: fish freshness, food security, machine learning, data fusion, handheld spectroscopy

1. INTRODUCTION
Global food integrity, the assurance that consumer foodstuffs
are safe to eat, of expected quality and authenticity continues
to be of paramount concern,1 and increasingly complex supply
chains have offered unease over food safety, quality, and
outright food fraud.2,3 For instance, following the notable 2013
United Kingdom “horsemeat scandal”, an independent UK
review recommended increased authenticity testing, the setting
of threshold values for acceptable contamination, and better
sharing of information during a crisis incident.4 Fish freshness
is another prominent area of concern to food quality and
potentially fraudulent activity where difficulty lies in determin-
ing the accurate time of fish post-mortem, except by protracted
laboratory-based analyses.5 To this end, researchers have
sought ways to determine seafood freshness more rapidly
without decrease in accuracy, often with foci on device
portability and cost-effectiveness.6−13

Sorak (2012) et al. identified the potential for hand-held
vibrational spectroscopy [Fourier-transform infrared, near-
infrared (NIR), Raman] in application-spaces other than
their original design, homeland security.14 The move toward
smaller instrumentation for analytical measurements has been
driven by the industry need for devices that are inexpensive
and can be used in the field with mitigation to reduction in
performance and has been facilitated by progress in micro-
electro-mechanical systems and linear variable filters in a
miniaturized NIR context.15 This is being supported by
advancements in emerging lithographic techniques to
manufacture tiny components reproducibly, inexpensively,

and with high throughput.16 For instance, in a recent study
on coriander adulteration, McVey (2021) et al. reported on the
analytical performance of benchtop, portable and hand-held
NIR instruments, demonstrating minimal performance deficit
for smaller instrumentation.17 Similarly, Raman spectroscopy
has been used with simple chemical reactions and plasmonics,
the science of collective electron oscillations, to boost
sensitivity,18 and surface enhanced Raman spectroscopy
(SERS) studies can be viewed as quantitative.19−23 The
technique has recently found use in foodstuff studies,24 for
example, Ashley (2017) et al. quantitatively detected the
antibiotic cloxacillin in porcine samples via gold nanopillar
SERS and molecular imprinting to enhance analytical
sensitivity and analytical specificity/selectivity, respectively.25

Development and proper characterization of novel SERS
nanoplatforms across a wide range of application spaces is a
continuing research interest.26

Another avenue to promote quantification is in advanced
chemometric or machine learning (ML) analysis14,27 and has
been recently discussed by Guo (2021) et al., who have set out
a protocol for ML in a spectroscopy setting.28 Despite the
emergence of complex data strategies appearing to be very
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modern, chemometrics have been employed within analytical
sciences for rather quite some time,29 with their more recent
proliferation signaling greater accessibility to scientists at large
spurred by a buzz around artif icial intelligence. There is a push
for the adoption of ML in a variety of fields, including
biological sciences,30 and recently, Feng (2021) et al. have
reported on ML developments in foodstuff origin evaluation
via hyperspectral imaging and visible and infrared absorbance

spectroscopies.31 Recently, hyperspectral imaging, clustering
techniques, and dimensionality reduction have been employed
to investigate salmon freshness over a four-day time frame,
concluding that incorporating high spatial resolution alongside
spectral acquisition is useful for complete fillet freshness
assessment.32 McGrath (2018) et al. have reviewed chemo-
metrics and the movement toward identification of unknown
adulterants via spectroscopy within food fraud.33 Advanced

Figure 1. Overview of experimental techniques. (a) Schematics of (i) fluorescence, (ii) visible/NIR absorbance spectrometer devices, and (iii)
potentiometric device for measuring electrical signals through specimens, with [b(i−iii)] accompanying photographs. (c) Nucleotide extraction
procedure summary: (i) cooking fillet samples @ca. 100 °C (three replicates), (ii) blending/homogenizing, (iii) filtration, (iv) enzyme addition,
and (v) UV light absorbance measurement with plate reader. Part [a(i)] adapted and reprinted with permission from ref 40 Copyright 2023 MDPI
CC-BY-4.0 https://creativecommons.org/licenses/by/4.0/.
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Figure 2. Phase 1 benchmarking/exploratory experiments on salmon fillet. (a) Potentiometric readings for 12 different fillet locations on fillet head
region (6 skin side, 6 flesh side) for 11 day period (i−vii) with summaries for skin and flesh side in (viii,ix). Colored bars in (viii,ix) correspond to
FS as in (a) key (top). (b) Relative nucleotide percentages for inosine monophosphate (blue bar), inosine (green bar), and hypoxanthine (red bar)
over experiments (i−vi). K-Values and H-values indicated adjacent to the right-hand y-axis. Summary of variation in nucleotide relative percentages
given in organoleptic chart in (vii). Please see Supporting Information Section S4: “Nucleotide Assay” for more details. (c) Optical data for six
locations on fillet flesh side [as demarcated in (a)] over 11 experimental days (i−vii). Spectra, one/location, color-coded, key at (c) top. I, II, and
III series for visible absorbance (400−1000 nm), NIR (900−1900 nm), and fluorescence (400−700 nm) data, respectively. Fluorescence spectra
are truncated to the region of interest. All spectra are offset for clarity. All spectra acquired with glass slide spacer except those with adjacent
asterisks (iii,v) for visible range spectra (I series) where artifactual features were observed. (viii) Pooled NIR spectra showing difference between
mean of the six spectra Day0 + six spectra from Day1 “fresh” (green line) vs those from Days 3, 5, and 7 “spoilt” (red line). Note, power setting for
absorbance spectra was 30% higher for baseline (Day0) measurements and optimized on subsequent days at lower intensity (color in print/online).
For color-impaired and black and white readers, spectra in (c) are arranged 1A to 3B in order, top-to-bottom.
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data techniques have been used across a wide range of
foodstuffs, including in recent studies of cheese,34 milk,35

beef,36 and teas.37

Moreover, it may be that spectroscopy can detect matter
which more sensitive techniques cannot, for instance. Hawkes
(2019) et al. have reported organic compounds detectable by
UV−visible range absorbance spectroscopy that are invisible to
electrospray ionization mass spectrometry.38 Additionally,
reference structures may not be available in a nontargeted
analysis, and in this sense, matter has also been labeled “dark”
to sensitive analytics. A de novo approach is possible, but is
cumbersome, and only for known analytes, i.e., targeted
analysis.39 Instead, vibrational spectroscopy, such as NIR
absorbance, offers a “molecular fingerprint”, the spectra of
which can be deduced via computational chemistry.

Despite the proliferation of spectroscopic analyses within
food science and the adoption of statistical and ML strategies,
robust models are still lacking. Data from different modalities
are not routinely explored together. We propose that
combined data sets provide a more accurate determination
of produce freshness. This is an important application-space,
and the deployment of more carefully considered data analysis
schemes, such as spectral truncation and data fusion from
different sources, is still not prevalent. Previously, we reported
on using hyperspectral imaging technology to determine
salmon freshness. Here, a maximum classification accuracy
for freshness state over 4 days of 77% with a K-nearest
neighbors algorithm was observed for point-spectra derived
from the hyperspectral image. We noted the need to consider
spatial nonuniformity in freshness state, i.e., differences in
freshness across the fillet.32 Elsewhere, in a closely related
study, we explored multiple measurements and averaging in
fluorescence data for the determination of salmon fillet
freshness, alongside ML methods.40 The UK-based arm of
the study investigated fluorescence spectroscopy as a single
analytical modality in detail, plotting spectral trends as the fish
aged and noticing an increase in relative peak intensity ratio
between the two salmon fluorescence peaks. A maximum
classification accuracy (80% ± 1 day) for “fresh” vs “spoilt”
salmon fillets with a support vector machine model was
recorded. In the US-based arm of the study, a data fusion
strategy for the three spectroscopic modes returned close to
100% accuracies for salmon. The best single-mode salmon
classification accuracies were found from linear/quadratic
discriminant analysis algorithms (LDA/QDA), which only
showed minor deficit compared to fused data sets, often
>90%.40 Reference 40 also contains an extensive background
commentary on current methods within industry/research to
determine state of fish freshness.

Herein, in the current study, which we term Freshness in
Salmon by Hand-held Devices (“FiSH”), we extend our
experiments to include more visible and NIR absorbance
optical data and explore spectral feature selection as a tool to
increase classification accuracy. We also benchmark results
against the gold standard for rapid freshness determination,
potentiometric analysis (the technique is detailed below),
which was not performed previously. As a further benchmark, a
greater number of nucleotide assays are performed to track
fillet spoilage.

2. MATERIALS AND METHODS
2.1. Sample Acquisition, Storage, and Preparation. The

study herein is a two-phase collaboration among Queen’s University

Belfast (QUB), UK, and SafetySpect Inc., ND, USA. The UK study
(Phase 1) used two salmon fillets; the US study (Phase 2) used one
salmon fillet (see Supporting Information Figure S1 for visual
description of experiments and timeline). In Phase 1 of experiments,
salmon fillet (“Fillet 1”) was purchased from a fresh seafood store in
Kilkeel, County Down, Northern Ireland, and transported to the QUB
ASSET laboratory, vacuum-packed. The salmon was farmed locally
and slaughtered, and bones along the lateral line were removed
(“pinning”) on the day of purchase. No further processing of the
salmon was performed, apart from cutting the fillet. The fillet was
refrigerated when not being analyzed at 4 °C (39 °F). An initial
salmon fillet (“Fillet 0”) was purchased similarly 14 days previous and
used for initial calibration measurements. Fillet 1 was divided into
head and tail sections (Figure 2a, top), where the head was used for
optical (flesh side only) and potentiometric measurements (skin side
and flesh side) and the tail side was used for nucleotide assays (skin
removed). Note, the cuts were taken from the most central regions of
the tail section, i.e., closest to head section cut, for most meaningful
comparison with optical measurements.

In Phase 2 of experiments, another salmon fillet (“Fillet 2”) was
acquired at SafetySpect Inc. in the USA and more measurements
taken for ML analysis. The salmon fillet was purchased from Fulton
Fish Market, New York, USA, a reputable online vendor that ensured
specimen traceability. The salmon was delivered frozen and placed
into a −20 °C (−4 °F) freezer before transfer to a 4 °C (39 °F) fridge
for 24 h before commencing experiments.
2.2. Spectroscopy Measurements: Visible/NIR Absorbance

and Fluorescence. Phase 1 visible/NIR (vis/NIR) absorbance
measurements (400−1900 nm) were taken through a glass slide to
avoid occlusion of the light by pieces of fish flesh, especially pertinent
past Day7 whenever the flesh became more viscous (with a surface
texture resembling “wood glue” i.e. polyvinyl acetate). To note, the
NIR region referred to here may also be designated “shortwave
infrared” (SWIR). The terms can be used largely interchangeably;
NIR covers a span from approximately 750−2500 nm, and SWIR an
overlap of this range from around 1400−3000 nm, although exact
definitions in the literature may differ slightly. A short protrusive
collar (ca. 0.5 mm) was also used to protect the fiber-optic cable head
[inset, Figure 1b(ii)]. Wavey spectral patterns due to interfacial
interference within the glass slide (Fabry−Perot etaloning) were
observed in some measurements, but this was not ubiquitous; an
antireflective coating may be useful in subsequent device designs. The
presence, or lack of appearance, of such optical interference fringes,
appearing as undulations in the spectra, was assumed to be related to
the alignment of the spectrometer fiber optic head with the slide and/
or the quality of manufacture of the optical cavity (glass slide).
Fluorescence measurements with excitation at 340 nm were taken
with a hand-held fluorescence spectrometer. The measurement
window was cleaned as necessary.

Across both experimental phases, at both research institutions,
identical devices were used, provided by INSION GmbH
(Obersulm−Willsbach, Baden-Wuerttemberg, Germany). Absorbance
data were divided by a Spectralon reference measurement. Dark
current was subtracted. Fluorescence spectra were not similarly
treated, in line with the standard fluorescence procedure; this is
viewed as unnecessary with variations less susceptible to external
interference.
2.3. Potentiometric Measurements. Potentiometric (electrical)

measurements were taken using the Distell Torrymeter (Distell
Industries Ltd., Fauldhouse, West Lothian, Scotland, UK): five per
measurement day, and a mean value calculated. The device is
depressed into fish fillet, and a small current is passed through the
sample measuring the resulting lag between the phase in the voltage
and current signals (phase angle, complex impedance), related to the
integrity of the fish cell membrane, which acts as a capacitor. The
device measurement head was cleaned as required. The device head
also includes additional two electrodes to monitor adequate sample
contact [see Figure 1a(iii)]. Potentiometry via the Torrymeter device
is evaluated with a Freshness Score (FS), which can be related to
sensory, i.e., organoleptic descriptors, and explanations of the
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acceptability of the product to consumers.41 Repeatability of
potentiometric measurements was assessed (Supporting Information,
Figure S2). A limited set of organoleptic measurements was also
conducted by independent observers alongside potentiometry
(Supporting Information Section Figure S3). Further details are in
Supporting Information Section S2.
2.4. Nucleotide Assay. Nucleotide extraction assays were

performed alongside optical and potentiometric measurements as
part of the Phase 1 experiments. The procedure involves the
determination of the relative amounts of specific metabolic molecules,
which, post-mortem, always degrade in one direction, i.e., catabolism.
Thus, their relative quantities can give an indication of the fish
freshness. The procedure is outlined in Figure 1c. Small portions (5 to
15 g) of fish were cut from the part of the fillet designated for the
nucleotide assay measurements (three replicates), and distilled water
was added and heated for 20 min at ca. 100 °C/212 °F. The fish was
then homogenized and filtered. When the filtrate was cloudy, it was
rectified by a subsequent centrifugation step. Enzymes were added to
determine the respective amount of inosine, inosine monophosphate
(IMP), and hypoxanthine (Hx) via the production of the metabolic
coenzyme, nicotinamide adenine dinucleotide (NADH)
(C21H27N7O14P2). The resulting well-plate was shaken at 600 rpm
for 60 s before absorbance measurements were taken each minute
over a period of up to 60 min to observe reaction kinetics. When IMP
was observed to be negative, or Hx greater than 100%, typically at
advanced fillet decay, values were set at 0 or 100. Mean values were
taken from replicates (n = 3). K-value and H-values were calculated.
The K- and H-values are metrics used to evaluate the freshness of fish
products based on the relative percentages of the three catabolites
(see eqs 1a and 1b). Full nucleotide assay procedure is available from
NovoCIB SAS, Lyon, France 69003.42 Additional details are in
Supporting Information Section S4.

= +
+ +

K Inosine Hx
Inosine IMP Hx (1a)

=
+ +

H Hx
Inosine IMP Hx (1b)

2.5. Additional Experiments. Two tangential experiments in
Phase 1 were also performed. First, a putrid salmon fillet (“Fillet 0”),
acquired similarly to the first fillet but purchased 14 days previous to
the start of the main exploratory experiment and kept in refrigeration

except when used for calibration measurements, was compared to
Fillet 1 on Day5 (Figure 3). Second, a portion of Fillet 1 was cut off at
ca. 22:00 on Day4 evening, covered, and left out on the lab bench in a
temperature-controlled environment (ca. 25 °C/77 °F) until
measurement on Day7 (ca. 30 h outside refrigeration), hereafter
referred to as the “Salmon Left Out” sample (SLO). Optical spectra
and nucleotide data were compared (see Figure 3).
2.6. Phase 2 Experiments. In experimental Phase 2, at the US-

based lab, experiments were conducted as above with some variations.
“Fillet 2” measurements were taken randomly spread across the fillet
with a focus on obtaining a greater number of measurements for ML
analysis. Data fusion was performed on the Fillet 2 salmon data set via
concatenation of the following:

1. fluorescence and visible absorbance data,
2. fluorescence and IR absorbance data, and
3. visible absorbance and NIR absorbance data,

all via the method of unique pairing.
This method involves the random assignment (pairing) of data

points from one data set to another. This is necessary where data sets
have no obvious way to combine them, offering an effective technique
to fuse analytical information from different devices/modalities. A
summary of the experiments is depicted in Supporting Information
Section Figure S1.
2.7. Data Analysis. Phase 1 data analysis was performed in R

Studio, “prcomp” base R function was used for principal component
analysis (PCA) and plotted via package: “ggplot2”.43 The R Kohonen
package was used for self-organizing map (SOM) analysis and
plotting.44 Otherwise, Microsoft Excel was used. Phase 2: Python
SciKit Learn was used for LDA, weighted K-nearest neighbors
(WKNN), Gaussian naiv̈e (GN), and ensemble bagged tree (EBT)
classification.45 The ML algorithms can be summarized: PCA is a
well-known unsupervised dimensionality reduction technique that
seeks to “redefine” axes to explain maximal variance in reconstituted
variables known as principal components.46 PCA is often thus used as
a foundational tool in ML for purposes of parsimony/computational
tractability and the creation of more robust/rugged analytical
models.47 PCA was used as an initial step for the Phase 2 study for
feed into classifiers with an optimal number of PCs selected in each
case. LDA is also a dimensionality reduction technique but supervised,
i.e., class information is supplied, that minimizes scatter within classes
and maximizes variance between classes with a linear decision
boundary. GN is a Bayesian classifier that, by definition, incorporates

Figure 3. Additional experiments. (a) Comparison of Day5 salmon from Phase 1 experiment (“Fillet 1”, green line) and rotten salmon fillet (“Fillet
0”, red line) across (i) visible and (ii) NIR ranges. (iii) Photograph of rotten salmon fillet. Catabolite relative percentages performed on rotten
salmon fillet, Fillet 0, on Day5. Catabolite data for Day5 salmon fillet, Fillet 1, are in Figure 2b(iii). (b) Comparison of Day7 salmon fillet, Fillet 1,
which was refrigerated at 4 °C/39 °F when not being analyzed as normal (green line), and a cut of Fillet 1 that had been left out on the benchtop in
the temperature-controlled laboratory for ca. 30 h previous, for (i) visible and (ii) NIR ranges. Catabolite relative percentages for Day7 salmon fillet
(iii) refrigerated, and (iv) left out on lab bench (“SLO”). Inset: K-value and H-value. [b(iii)] is replotted from Figure 2b(iv) for easy comparison
with SLO catabolite percentages in [b(iv)]. Light blue lines in [a(i,ii)] and [b(i,ii)] represent difference spectra; blue dash = unity position (color
in print/online).
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prior probabilities of events into classification and that assumes data
in the training data set is normally distributed. It is distinct from the
Multinomial Naiv̈e Bayes classification method, which considers
discrete data sets. WKNN is a clustering algorithm that then matches
the newly supplied data to the most proximal data (spectral angle
calculation) already present, where the addendum of being “weighted”
assigns greater importance to closer data points in multidimensional
space, not considered in ordinary KNN models. SOM is an
unsupervised artificial neural network, similar to clustering when
used with low dimensional data, where “weight vectors”, which
describe how nodes in the network are connected, are updated as data
are continually added to the map. EBT is a supervised ML method
where a collection of decision trees is used and a randomly selected,
replaced subset of data is used to train each tree.

3. RESULTS AND DISCUSSION
3.1. Phase 1 Results (UK). Potentiometric measurements

correlated with nucleotide assay measurements showing a
general trend of decay. This is demonstrated by the increasing
FS number output on the Torrymeter device display and the
increase in percentages of the end-stage catabolites, Inosine,
and Hx (and consequently K-value metric).41 According to
potentiometric assessment (Figure 2a), the fillet was “fresh”
(generally, FS > 6, skin side) and “spoilt” by the stage of
Day5−Day7 (generally, FS < 4, skin side). Variation in FS in
different regions was noted, notably Day5 skin side, where
there were FSs across a significant part of the device range (0−
8). A graphical summary of the FS for the different prescribed
locations as a function of measurement day for skin and flesh
fillet sides is plotted in Figure 2a(viii,ix).

Nucleotide relative percentages are plotted in Figure 2b(i−
vi), K-values were calculated at 0.88 and 0.81 for Day1 and
Day3 and >0.90 thereafter. A nucleotide plot [Figure 2b(vii)]
shows the usual IMP → INO → Hx catabolic transition as the
fillet ages [Figure 2b(vii)].

Spectroscopic measurements for visible absorbance (400−
1000 nm), NIR absorbance (900−1900 nm), and fluorescence
spectroscopy (excitation @340 nm) are plotted in Figure 2c
for days 0−11 (i−vii) with the three different spectroscopic
modalities plotted adjacent for easy comparison (I, II, III
series). All spectra are on arbitrary intensity scales and are
offset for clarity. Visible range spectra were noisy and conveyed
only subtle spectra changes day to day. Contrariwise, NIR
spectra displayed an increase in gradient across the spectra
range evidenced by the 1100 nm-peak normalized mean
spectra in Figure 2c(viii), i.e., the red “spoilt” spectrum falls off
much more than the green “fresh” spectrum with regard to
intensity at longer wavelengths. Fluorescence data varied
greatly in spectral profile where a significant shoulder peak ca.
550 nm appeared erratically, sometimes as a distinct spectral
feature [e.g., Day1, location 3A, red line in Figure 2c(ii)(III)],
with no clear relationship to measurement day or fillet location
upon cursory visual inspection.

Additional optical absorbance measurements on Day5
showed spectral differences between the Day5 fillet and a
rotted salmon fillet [pictured, Figure 3a(iii)], for visible data
and again for NIR, displaying a further increasing spectral
gradient, as in Figure 2c. The increased decay of the rotted
fillet was also evident by nucleotide analysis where K = 0.97

Figure 4. Feature selection as a method to improve fresh vs spoilt classification accuracy in fluorescence data. PCA (PC1 vs PC2) for (a) visible (b)
NIR and (c) fluorescence data as a function of day. Confidence ellipses at 95%. [d(i)] Pooled data PCA plot (PC1 vs PC2) with feature selection
showing discrimination between “fresh” (Days 0 and 1, orange ellipse) and “spoilt” (Days 5, 7, 9, and 11, purple ellipse). Day3 classes at
“intermediate” (green ellipse). Nonpooled data PCA plot in the Supporting Information Section Figure S4. Features selected are wavelengths: 453,
455, 457, and 459 nm (to nearest integer value). Confidence ellipses set at 95%. Inset: yellow bar indicates approximate range of variables selected
for truncated data set in [d(i)]. Expanded blue bar represents extended 13-variable model (435−459 nm), which provides poorer pooled class
discrimination (see Supporting Information Section Figure S9). [d(ii)] Self-organizing maps “codes plot” displaying the map of the importance of
each of the four variables (wavelengths: λ1−4 i.e., 453, 455, 457, and 459 nm) across all spectral data (color in print/online).
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and H = 0.92 [Figure 3a(iv)], in comparison to K = 0.99 and
H = 0.72 [Figure 2b(iii)] for Day5 fillet, which showed a
higher inosine level. In the second tangential experiment, on
Day7, SLO of refrigeration for 1 weekend period in a
temperature-controlled laboratory was compared to the data
for the Day7 Salmon fillet (refrigerated at 4 °C/39 °F as
normal). The SLO sample did not show any noticeable color
or olfactory difference relative to the salmon fillet kept in
refrigeration, and comparable relative nucleotide percentages
were obtained. Thus, a nucleotide assay could not discriminate
between the SLO fillet and Day7 fillet (refrigerated K = 0.97, H
= 0.83; SLO/nonrefrigerated K = 0.98, H = 0.81) [Figure
3b(iii,iv)]. However, spectral measurements demonstrated
subtle changes across the full visible and NIR ranges [Figure
3b(i,ii)].

PCA was performed on the full spectroscopic data sets,
visible (Figure 4a), NIR (Figure 4b), and fluorescence (Figure
4c) data sets. Classes (days) were statistically inseparable in all
cases, as evidenced by overlapping 95% confidence ellipses.
Feature selection of four variables (wavelengths) in the 453−
459 nm spectral range for fluorescence data returns some
significant separation (Supporting Information Figure S4),
which can be visualized by pooled classes: designating Day0
and Day1 as “fresh”, Day3 as “intermediate” freshness, and
days 5, 7, 9, and 11 as “spoilt” [orange, green, and purple data
points, respectively, Figure 4d(i)]. The separation results from
a small redshift in the low-wavelength fluorescence band ca.
450 nm (Supporting Information Figure S8) and can be
evidenced by a SOM analysis, which displays a map of the
most important variables (wavelengths) across the inputted
(truncated) four-variable spectral data set [Figure 4d(ii)].
3.2. Phase 2 Results (USA). In Phase 2, ML was

performed on the second more extensive salmon data set in
the form of LDA, WKNN, Gaussian naiv̈e (GN), and EBT. 5-
fold cross-validation (CV) and a test procedure were executed,
and ±1 day accuracies were recorded for an optimal number of
PCs for both single-mode and dual-mode data fusion (Figure
5). Single-mode data sets returned a mean overall classification
accuracy of 78%, which improved to 99% with dual-mode

fusion. NIR produced the highest single-mode accuracy at
84%, although the fluorescence GN models did not compute.
All dual-fusion methods (Flu−vis, Flu−NIR, vis−NIR) were
comparable, with recorded accuracies >96%. CV and test
accuracies were comparable across all algorithms and whether
single- or dual-mode was applied, bar an EBT model (CV-test
accuracy ratio = 0.71), which was also markedly poor in
absolute accuracies (CV: 79%; test: 56%). LDA, WKNN, GN,
and EBT models returned mean classification accuracies for
test data of 89.2% (S: 78.9%; F: 99.5%), 91.1% (S: 82.3%; F:
99.8%), 88.4% (S: 72.9%; F: 98.8%), and 86.4% (S: 73.0%; F:
99.9%), respectively, across fused (F) and nonfused/single-
mode (S) data sets.
3.3. Discussion. Potentiometric measurements show

different rates of spoilage across different fillet regions. In
some cases, FS readings increase, e.g., Region 1A, skin side
between Day1 and Day3 [Figure 2a(ii,iii)]. While this could be
a result of device variation (see Supporting Information Figure
S2), it may also be that there is some variation of freshness
within each area. We note that some surface regions may have
experienced some local fissure or have a higher microbacterial
load, which may affect the rate of cell membrane integrity
decay, i.e., the ability of the membrane to act capacitively.
Similarly, nucleotide measurements from day-to-day were from
proximal but nevertheless different fish cuts, which may have
differing local nucleotide concentrations. Moreover, potentio-
metric and nucleotide measurements were from different fish
segments, head, and tail (caudal). Tail regions tend to be
thinner, and a greater surface-to-volume ratio would appear to
speed up decay.40 The Torrymeter is intended for use on the
skin-side and on the upper shoulder, just above the lateral
(middle) line; however, our results suggest that it may be
accurate in predicting decay for analysis elsewhere on the fillet
and on the flesh (skin-off) side. This is useful because larger
fish species may appear as cuts rather than full fillets and some
species may have all skin removed. Both potentiometry and
relative nucleotide analysis suggest that Day5−Day7 is the
point of spoilage in our study where at Day5, the K-value is
first >0.90 [Figure 2b(iii)], a cutoff value prescribed by

Figure 5. Phase 2 single-mode and dual-mode classification. (a) Salmon fillet classification accuracies ±1 day for 5-fold cross validation and test
data sets for single-mode and dual-mode fusion for fluorescence (Flu), visible absorbance (vis), and NIR absorbance (NIR) phenomena, for four
different classification algorithms: LDA, WKNN, Gaussian naiv̈e (GN), and EBT. Accuracies color-coded: green: 90−100%; yellow: 80−89%;
orange: 70−79%; red: 60−70%; brown 50−60%; and gray: no classification. “# of PCs” refers to the number of PCs retained for each classification
model. An optimal number of PCs were selected for each model. Data were acquired from a second salmon fillet/set of experiments (Fillet 2, Phase
2). Data graphed in (b) for (i) single-mode and (ii) dual-mode. CV and test data are plotted for each algorithm (color in print/online).

ACS Food Science & Technology pubs.acs.org/acsfoodscitech Article

https://doi.org/10.1021/acsfoodscitech.4c00331
ACS Food Sci. Technol. 2024, 4, 2813−2823

2819

https://pubs.acs.org/doi/suppl/10.1021/acsfoodscitech.4c00331/suppl_file/fs4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsfoodscitech.4c00331/suppl_file/fs4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsfoodscitech.4c00331/suppl_file/fs4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsfoodscitech.4c00331/suppl_file/fs4c00331_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00331?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00331?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00331?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00331?fig=fig5&ref=pdf
pubs.acs.org/acsfoodscitech?ref=pdf
https://doi.org/10.1021/acsfoodscitech.4c00331?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Gopakumar (2002) as spoilt,48 or at Day7 most potentiometric
FS readings are first <2 [Figure 2a(v)]. We note that the
relatively low percentage of initial catabolite IMP at any stage
suggests advancing decay at the purchase point, which is
probably usual for shop-purchased fish given the rapid
metabolism of IMP. K-Value can be as low as 0−20 in freshly
slaughtered fish.48

Optical absorbance measurements, across the full visible−
NIR i.e. 400−1900 nm range, are relatively featureless, barring
some noise, e.g., Day11 <600 nm; >800 nm; differences are
subtle. NIR absorbance spectral data were most promising as
(an isolated) the spectral tool for fillet freshness determination,
where a spectral gradient change was observed as the fillet aged
[Figure 2c(viii)], albeit with low resolution (pooled days).
Moreover, for NIR, some spectra patterns across locations are
very uniform [Day5, Figure 2c(iv)(II)], others are much more
erratic, e.g., Day7 [Figure 2c(v)(II series)], therefore averaging
is still required. Day3 is classified as spoilt in NIR analysis due
to the spectral similarity of Day3 with advancing days’
measurements and distinctness of the Day0 and Day1 NIR
spectral profiles [Figure 2c(v)(II series)]. This may be as a
result of using the flesh side, which may be decaying more
rapidly than the fillet skin, which is supported by
potentiometric measurements on the flesh side in Figure 2a.
The comparison of the Day5 fillet with rotted salmon fillet in
Figure 3 demonstrates that the gradient changes observed in
the NIR spectra in the exploratory analysis (Figure 2c) may
constitute meaningful changes corresponding to chemical/
biological alteration to the fillet: the further increase in the
gradient for the rotted salmon sample then represents an end
point for the transition. In the second tangential experiment,
the spectral differences observed in the absorbance data for the
SLO sample vs Fillet 1 on Day7 [Figure 3b(i,ii)] provide
evidence that spectroscopic means may be able to discern
subtle biological/chemical changes that are not otherwise
observable, even by nucleotide analyses [Figure 3b(iii,iv)].

While changes in the visible range (400 to 900 nm) across
measurement days were minor in the Phase 1 data, the visible-
range data improve classification accuracy in the dual-mode
fusion analyses for Phase 2, and this suggests that these subtle
variations may have some discriminatory power. Moreover,
spectral differences in the visible range were evident in the
comparisons with the rotting and SLO fillet samples. Likewise,
fluorescence data also performed well as a fused data set (with
NIR or visible absorbance) despite poor performance as an
individual data set. This poor accuracy returned by single-
mode fluorescence could be predicted from the erraticism of
the spectral profile in the exploratory fluorescence measure-
ments in Phase 1. We have addressed this variation previously,
where we discuss intraclass variance with fluorescence spectral
data and show the need for multiple fluorescence measure-
ments for accurate freshness day classification.40

Feature selection is common in chemometric analyses. In
early commentary, Wold (1995) lists feature selection as a use
of PCA.49 Similarly, and commonly, discriminant analysis and
genetic algorithms can be used to select variables among
others, conferring the advantage of not only a reduced data
load to input into a subsequent classifier but also more
accurate models: only meaningful data are retained. Often
features retained in spectroscopic data refer to variables
(wavelengths) that correspond to entire peaks, i.e., peaks
related to the target substance aside from other matrix
constituents or interloping signatures otherwise. However,

this does not abrogate partial peak selection, and herein, we
observe a slight redshift in the fluorescence spectra as the
salmon fillet ages, and thus, the isolation of a mere four
variables around the escalation point of the cardinal
fluorescence band (ca. 453−459 nm) provides discrimination
of fresh and spoilt fillets. Interestingly, a modest increase in
variables selected, to 13 (Supporting Information Figure S9),
results in a loss of discriminatory power. We note that a four-
variable model may not be optimal, and the inclusion of more
wavelengths may capture the redshift more fully. The bunching
of the reference data in Figure 4d(i) indicates that the changes
are not artifactual, i.e., device-dependent.

The attraction in fluorescence feature selection is that single
measurements might give a rough estimation of fillet freshness
with a technology that is already well-established. Further,
single-mode data are clearly cheaper and easier to work with
than multimodal devices and data sets, and moreover, single-
mode may be more accurate on external data; overfitting is less
likely. Analogously, while broader spectral ranges incorporated
in hand-held NIR devices at the cost of inferior signal-to-noise
have been determined best for qualitative analyses, truncated
spectral ranges and better signal-to-noise have proved optimal
for quantitative determination.15 We observe that the high
accuracies in fused data in our Phase 2 study may indicate
overfitting, suggested by the high number of optimum PCs in
the fused data models (10, 10, and 14). The high accuracy is
also a result of a generous classification accuracy metric: ±1
day. A different strategy may be to examine all higher PCs
closely and include only those showing class separation,
regardless of optimum classification test accuracies for varying
PC numbers (Supporting Information Figure S5). Further
testing of externally acquired data will be necessary (external
test data). Classification based on the exact day, especially over
early days post-mortem, would be useful. Moreover, some ML
models can be optimized, for example, by tuning the k-
hyperparameter in KNN models, which corresponds to the
number of proximal data points considered in class assignment
for new data, or varying the KNN weighting kernel, which
prescribes the function used to weight proximity for
classification. Weighting has also been proposed in the context
of improving Bayesian models.50 The nature of the decision
boundary can also be altered in discriminant analysis, e.g.,
QDA and a common extension of EBTs are random forests
where a subset of random features are also selected. We note
that SOMs, like KNNs, when used as classifiers, may also be
used in supervised fashion for classification, having recently
appeared in the context of sugars identification,51 as well as
outside of a foodstuff context in ocular constituent
identification,52 and sex determination in saliva used as an
auxiliary diagnostic.53

Data fusion can be viewed as another link in the chain when
extracting useful information from big data54 but one that has
not been used extensively within many recent food studies with
spectroscopy.33 Selecting features and data fusion are
compatible and can be described as “midlevel fusion” where
elements of data sets are isolated before concatenation.55

Although cumbersome, midlevel fusion has been used
successfully, and surprisingly, would appear more prominent
than high-level fusion approaches for foodstuffs,55 although
chemometric methods such as ensemble bagged trees (or
random forests) are common classifiers in food studies and are
tantamount to high-level fusion classification, albeit not
designated as such.
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A limitation in our study is the variation in salmon species
used in both experimental phases; however, the nature of the
UK−US collaboration meant exact salmon species usage was
not possible. Second, and similarly, more data are preferable
for more robust models. In practice, models may need to be
updated regularly, but this may not be possible. There are a
range of strategies to deal with model training from small data
sets, for instance, shrinkage priors in the context of Bayesian
penalisation.56 Third, indication of the exact time post-mortem
would be useful but would require a commercial partner. This
is possible in a further study. Estimation of the relative age of
both Fillet 1 (Phase 1) and Fillet 2 (Phase 2) would have been
beneficial, but the specialized nature of the nucleotide
extraction assay limits this procedure, at present, to the UK
laboratory. Despite the limitations of the current studies, we
believe the current protocols can be adjusted to work for
different species, meaning that accurate classifications of
specimen freshness states can be determined for a wide
range of seafood products. The current study provides
evidence for the value of fusing data sets, selecting features
from spectra, and multimodal spectroscopy, in salmon
freshness classification, but this framework can be extended
to other salmon and seafood species with adjustments, e.g.,
selecting different spectral features and different number of
principal components for different fish types. These methods
can also be used in fish species determination.57

In an initial exploratory set of experiments, salmon fillet was
interrogated with optical means: fluorescence spectroscopy
and absorbance spectroscopy over the visible and NIR range,
and benchmarked against industry-standard potentiometry and
the gold-standard laboratory procedure, nucleotide extraction
assays, over a 11 day period. Variations in spectroscopic data as
a function of measurement day were noted, with NIR
absorbance demonstrating marked gradient change. Visible
absorbance displayed more subtle spectral alterations and
fluorescence, erratic peak profiles. Fluorescence data, however,
showed promise for classification of fresh and spoilt salmon
fillet when variables selected were limited in order to capture a
redshift associated with sample decay. In the second set of
experiments using identical hand-held optical devices, more
data were acquired and ML methods employed with dual-
mode data fusion to discern optimum classification algorithms
and modalities. Single-mode analyses routinely returned
classification accuracies ±1 day in the 70−90% across CV
and test data; contrariwise, all fused methods returned
accuracies >96%, demonstrating the potential predictive
power of amalgamated data sets. A further study will be
needed to ensure properly rugged models are developed. Our
investigation paves the way for the development of portable
devices for fish freshness measurement that balance speed and
accuracy via the use of data analysis strategies whether by
single or multimode spectroscopy.
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