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The chicken cecal microbiome 
alters bile acids and riboflavin 
metabolism that correlate with 
intramuscular fat content
Xiaoxia Long †, Fuping Zhang †, Liqi Wang  and Zhong Wang *
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Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, China

Intramuscular fat (IMF) is a key indicator of chicken meat quality and emerging 
studies have indicated that the gut microbiome plays a key role in animal fat 
deposition. However, the potential metabolic mechanism of gut microbiota affecting 
chicken IMF is still unclear. Fifty-one broiler chickens were collected to identify 
key cecal bacteria and serum metabolites related to chicken IMF and to explore 
possible metabolic mechanisms. The results showed that the IMF range of breast 
muscle of Guizhou local chicken was 1.65 to 4.59%. The complexity and stability 
of ecological network of cecal microbiota in low-IMF chickens were higher than 
those in high-IMF chickens. Cecal bacteria positively related to IMF were Alistipes, 
Synergistes and Subdoligranulum, and negatively related to IMF were Eubacterium_
brachy_group, unclassified_f_Lachnospiraceae, unclassified_f_Coriobacteriaceae, 
GCA-900066575, Faecalicoccus, and so on. Bile acids, phosphatidylethanolamine 
(Pe) 32:1 and other metabolites were enriched in sera of high-IMF chickens versus 
low-IMF chickens while riboflavin was enriched in sera of low-IMF chickens. 
Correlation analysis indicated that specific bacteria including Alistipes promote 
deposition of IMF in chickens via bile acids while the Eubacterium_brachy group, 
and Coriobacteriaceae promoted formation of riboflavin, glufosinate, C10-dats 
(tentative), and cilastatin and were not conducive to the IMF deposition.
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Introduction

Significant improvements in broiler chicken weights, growth and feed conversion have 
relied on genetic selection of these particular phenotypes but these gains have resulted in a 
decrease in meat quality (Tian et al., 2021). Hence, improving meat quality has become an 
urgent problem for breeders. Intramuscular fat (IMF) is a key trait that defines meat quality 
and refers to fat deposition between muscle fibers or within muscle cells (Fang et al., 2017). 
IMF content affects the sensory qualities of meat including flavor, tenderness and juiciness 
(Hirai et al., 2023; Li et al., 2022). In addition, the genetic basis of IMF has low heritability 
(0.11–0.18) (Chabault et al., 2012; Chen et al., 2008; Jiang et al., 2017) indicating environmental 
factors play significant roles in IMF.

Numerous studies have confirmed that the gut microbiota plays an important role in host 
fat deposition (Xie et al., 2022; Chen et al., 2022; Wen et al., 2023) as well as modulation of 
muscle function and cognition (Jing et al., 2021; Lei et al., 2022). Microbiota composition of the 
chicken duodenum and cecum could explain 24 and 21% of the variation in abdominal fat mass, 
respectively after correcting for host genetic effects (Wen et al., 2019). Some gut bacteria linked 
to abdominal fat deposition have been identified and include Olsenella, Slackia, and 
Methanobrevibacter that promote while Bacteriodes salanitronis, Bacteriodes fragilis, and 
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Parabacteriodes distasonis that inhibit fat deposition in chickens (Wen 
et al., 2023, 2019; Xiang et al., 2021; Zhang et al., 2022). There have also 
been attempts to modulate the fat deposition process through targeted 
intervention of gut microbiota in chickens. For example, feeding the 
probiotic mixtures of Clostridium butyricum (Yang et  al., 2010), 
Lactobacillus farciminis and Lactobacillus rhamnosus (Eglite et al., 2023) 
to chickens could increase polyunsaturated fatty acid content in muscle. 
A new study of fecal microbiota transplantation related to the 
promotion of abdominal fat deposition indicated roles for 
Lachnoclostridium and Christensenellaceae_R-7_ group (Lei et al., 2022). 
These studies have proven the close relationship between gut microbiota 
and fat deposition and indicated a great potential for improving IMF in 
broilers by regulating gut microbiota. However, researchers found that 
the composition and formation mechanisms of intramuscular fat and 
abdominal fat differ (Zerehdaran et al., 2004) and there are few studies 
on the impact of gut microbiota on IMF of chickens. Only a study have 
been linked the cecal microbiota ecosystems to high IMF deposition in 
broilers, and found that the lower abundance of cecal vadinBE97 was 
related to higher IMF levels in muscle tissues (Wen et al., 2023).

Although previous studies have initially revealed the gut microbiota 
ecosystem, enterotypes and bacteria that are linked to IMF (Wen et al., 
2023), there is little data on the metabolites and signaling molecules 
regulated by IMF in chickens. Studies in humans or other animals have 
identified that metabolites produced by gut microbiota including fatty 
acids (Lahiri et al., 2019), bile acids (Mancin et al., 2023) and branched-
chain amino acids (Jang et  al., 2016) were important intermediate 
substances in regulating host fat deposition (Krause et al., 2020; Wen 
et al., 2023). The gut microbiota utilized these metabolites as substrates 
or signals to activate receptors and affect metabolic processes related to 
muscle fat. Myristic acid, heptadecanoic acid and trans-monounsaturated 
fatty acids have been linked to IMF content in lambs (Realini et al., 2021). 
Diet supplements containing galacto- and xylo-oligosaccharides can 
regulate the composition of cecal microbiota, affect metabolism processes 
and thereby regulate IMF in chickens (Yang et al., 2022). However, the 
metabolites related to IMF have been incompletely described.

With the application of metabolomics technology, researchers can 
detect thousands of metabolites simultaneously making it possible to 
trace metabolic mechanisms of complex traits (Wu et al., 2018). Hence, 
we  propose a hypothesis that specific gut bacteria will regulate fat 
metabolism processes via metabolites in chickens and thereby affect 
IMF formation. To verify this, we collected the samples from Guizhou 
local chickens and measured their breast muscle IMF content. 
We integrated microbial 16S rRNA gene sequencing and non-targeted 
metabolomics technology to identify key bacteria and serum metabolites 
related to IMF, and to explore the metabolic mechanisms used by cecal 
microbiota that affect IMF formation. The results offer new insights into 
the formation of IMF and provide a research basis for development of 
probiotics/prebiotics to increase IMF deposition in chickens.

Materials and methods

Animals and sample collection

The chickens used in this study were raised at the research farm 
of Guizhou University from June 2022 to October 2022. A total of 51 
Guizhou yellow chickens (25 males and 26 females) were collected. 
All chickens had the same batches, feeds, chicken houses and feeding 
methods. Specifically, chickens were raised with three-stair iron cages 

in a same house. The stocking density were: 16 chickens from 0 to 
4 weeks (male and female mixed); 8 from 4 to 10 weeks (4 males and 
4 female mixed); one in a cage from 10 to 18 weeks. The chicken 
house had no temperature control system and used roller shutters to 
regulate ventilation and temperature. The daily lighting time was 
16 h. The temperature of the chicken house during the experiment 
was 15–35°C. In accordance with the health and epidemic prevention 
requirements of chicken farms, the chicken house was cleaned and 
disinfected every week. The feed was obtained commercially and 
chickens were fed twice a day in the morning and afternoon and had 
free access to feed and water. The nutritional composition is shown 
in Supplementary Table S1. All chickens were vaccinated according 
to routine immunization procedures to Marek’s disease, Newcastle 
disease, infectious bronchitis, bursal virus and avian influenza. The 
chickens were weighed every 2 weeks. No antibiotic or probiotics 
were added to the feed within 1 month prior to sample collection.

At the age of 18 weeks, blood was collected from the chicken 
wing vein and allowed to stand for 1–2 h to separate the serum. The 
chickens were then euthanized by CO2 anesthesia and asphyxiation 
(Haetinger et al., 2021). Then ipsilateral distal cecum of each chicken 
was cut open with scissors that had been disinfected with alcohol. 
About 2 g of cecum contents were squeezed out and were collect into 
an Eppendorf tube and placed in liquid nitrogen. The whole breast 
muscle was excised from the right of each chicken and surface fat was 
removed and discarded. Then all the collected serum, cecum contents 
samples, and breast muscle samples were stored at −80°C refrigerator. 
Cecal content samples and serum samples were sent to Majorbio Bio 
Pharm Technology (Shanghai, China) and Shanghai Applied Protein 
Technology (Shanghai, China) on dry ice for microbial 16S rRNA 
gene sequencing and non-targeted metabolome detection, 
respectively. The experimental flow chart is shown in Figure 1.

IMF measurements

The IMF content of breast muscle was measured using Soxhlet 
extraction method as reported previously (Chang and Lei, 2010). 
Specifically, 20 g of breast muscle was minced with a meat grinder, 
dehydrated and dried. The dried samples were ground into powder, 
transferred to a cartridge filter and extracted with a Soxhlet extraction 
device using anhydrous ether at 30–60°C for 65 min. The liquid 
extract was concentrated under reduced pressure and the residue was 
dried in a forced air oven at 80°C for 8 h until constant mass. Three 
replicates were set for each sample and the average value was 
considered as final value of IMF content. IMF content = (total weight 
of meat and filter paper after drying − total weight of meat and filter 
paper after extraction)/weight of fresh meat × 100%.

Eight male and eight female chickens that possessed the highest 
IMF content were selected to construct a high-IMF group (HIG, 
n = 16) and eight male and eight female chickens with the lowest IMF 
content were selected to construct low-IMF group (LIG, n = 16, 
Supplementary Table S2).

Cecal microbiota DNA extraction, V3–V4 
region sequencing of 16S rRNA gene and 
data processing

Total DNA from cecal samples was extracted using the Magnetic Soil 
and Stool DNA Kit (Tiangen, Beijing, China) according to the 
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manufacturer’s protocol. DNA concentrations and quality were 
determined by a Nanodrop-1000 (Thermo Fisher, Waltham, MA, 
United States) and 0.8% agarose gel electrophoresis. The V3–V4 region 
of 16S rRNA gene were amplified using the fusion primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTAC 
HVGGG TWTCTAAT-3′) under the annealing temperature of 55°C 
with 27 cycles. The PCR amplicons were purified with agarose gel by an 
AxyPrep DNA Gel Extraction Kit (Axygen, Union city, CA, 
United States).

Amplicon libraries were sequenced on an Illumina MiSeq 
platform (Illumina, San Diego, CA, United States) with a paired-end 
strategy. Quality control of the raw data was performed to filter the 
barcode, primer, low-quality and high nucleotide ambiguities 
sequences with custom scripts. FLASH (v.1.2.11) was used to 
assemble the paired-end clean reads into tags (Magoc and Salzberg, 
2011). High-quality tags were clustered into Amplicon Sequence 
Variants (ASVs) using DADA2 (Callahan et  al., 2016). RDP 
classifier program (v2.2) (Wang et al., 2007) was applied to assign 
ASVs based on 16S rRNA gene sequences. The representative 
sequence of each ASV was screened for further annotation by Silva 
database (Release 132, http://www.arb-silva.de) (Quast et al., 2013). 
The α-diversity of microbiota via the Chao1, Shannon and 
phylogenetic diversity (PD) indices was analyzed using QIIME2 
(Bolyen et al., 2019). Principal coordinate analysis (PCoA) based on 
Bray-Curtis distance was used to evaluate the β-diversity of gut 
microbial community.

Non-targeted metabolomics detection for 
serum samples

Extraction of serum samples
After samples thawed slowly at 4°C, 100 μL serum were added 

300 μL pre-cooled methanol/acetonitrile/water solution (2:2:1, v/v), 
vortexed and ultrasonicated at low temperature for 30 min and then stand 
10 min at −20°C. Samples were then centrifuged at 14,000 × g for 20 min 
at 4°C and the supernatant was dried under vacuum. The samples were 
then dissolved with 100 μL acetonitrile/water solution (1:1, v/v) 
for analysis.

Analytical conditions for LC-MS
The UHPLC-Q-Exactive Orbitrap MS mass spectrometry was used 

to perform non-targeted metabolomics detection on serum samples 
(Cai et al., 2015; Dunn et al., 2011; Wang et al., 2016). The ultra-high 
performance liquid chromatography system (UHPLC) (Thermo Fisher 
Scientific, Pittsburg, PA, United States) was equipped with a LC BEH 
Amide column (2.1 mm × 100 mm, 1.7 μm). The mass spectrometer 
detector was Tandem Orbitrap MS Q Exactive HFX (Thermo Fisher 
Scientific, Pittsburg, PA, United States).

Chromatographic conditions
Sample components were separated using an Agilent 1290 

Infinity HILIC column. The column temperature was set at 25°C, 
the flow rate was 0.5 mL/min and the injection volume was 

FIGURE 1

Experimental flow chart. A total of 51 Guizhou yellow chickens were collected. The intramuscular fat (IMF) content of breast muscle of all chickens was 
measured. Cecal contents and serum samples were collected for microbial 16S rRNA gene sequencing and non-targeted metabolome detection, 
respectively. High- and low-IMF chicken groups were established in the experimental cohorts. The differences in the cecal microbiota and 
metabolome between two groups were compared and the correlation analysis of differential microbes and differential metabolites was conducted.
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2 μL. Mobile phase A: water /25 mM ammonium acetate/25 mM 
ammonia water, mobile phase B: acetonitrile. The gradient elution 
program was as follows: 0–0.5 min, 95% B; 0.5–7.0 min, B 
changed linearly from 95 to 65%; 7.0–8.0 min, B changed linearly 
from 65 to 40%; 8.0–9.0 min, B was maintained at 40%; 
9.0–9.1 min, B changed from 40 to 95%; 9.1–12.0 min, 
B was maintained at 95%. During the analysis process, the samples 
were placed in the autosampler at 4°C. In order to avoid 
the  influence caused by the fluctuation of the instrument 
detection signal, samples were analyzed continuously in random 
order. QC samples were inserted into the queue to monitor and 
evaluate the stability of the system and the reliability of 
experimental data.

Mass spectrometry conditions
An AB Triple TOF 6600 mass spectrometer was used to collect 

primary and secondary spectra of samples. After samples were 
separated by UHPLC, mass spectrometry analysis was performed 
with a Triple TOF 6600 mass spectrometer (AB SCIEX), and 
electrospray ionization (ESI) positive ion and negative ion modes 
were used for detection. The ESI source parameters were as follows: 
atomization gas auxiliary heating gas 1 (Gas1): 60, auxiliary heating 
gas 2 (Gas2): 60, curtain gas (CUR): 30 psi, ion source temperature: 
600°C, spray voltage (ISVF) ± 5,500 V (positive and negative 
modes); primary mass-to-charge ratio (m/z) detection range: 
60–1,000 Da, scanning accumulation time: 0.20 s/spectra; secondary 
ion m/z ratio detection range: 25–1,000 Da, scan accumulation time 
was 0.05 s/spectra. The secondary mass spectrum was obtained 
using data-dependent acquisition mode (IDA) using peak screening. 
Declustering voltage (DP): ±60 V (positive and negative modes), 
collision energy: 35 ± 15 eV, IDA parameters were as follows: 
dynamic exclusion isotope ion range: 4 Da, each scan collected 10 
fragment spectra.

Metabolome data preprocessing
ProteoWizard MSConvert was applied to convert raw MS data 

to MzXML files and then imported into XCMS software 
(Tautenhahn et al., 2012). Parameters for peak selection were: 
centWave m/z = 10 ppm, peak width = c (10, 60), prefilter = c (10, 
100). For peak grouping: bw = 5, mzwid = 0.025, minfrac = 0.5. 
Isotope and adduct annotation were conducted by CAMERA 
(Collection of Metabolite Profile Annotation Algorithms). 
Variables with no less than 50% non-zero readings in at least one 
group were kept in the extracted ion features. Metabolite 
compounds were identified though comparing MS/MS spectra 
and accurate m/z values (<10 ppm) with an internal database 
supplied with the instrument.

Cytokines detection

INF-γ, IL-1β, IL-5, IL-6, IL-17, and IL-22 were measured using 
commercial ELISA kits (Ziker Biological Technology, Shenzhen, 
China) according to the manufacturer’s protocols. The detection limits 
were 5 pg/mL (IFN-γ), 40 pg/mL (IL-1β), 5 pg/mL (IL-5), 2 pg/mL 
(IL-6), 3 pg/mL (IL-17), and 2 pg/mL (IL-22).

Statistical analysis

Construction of cecal microbiota co-occurrence 
network

The SparCC algorithm (Friedman and Alm, 2012) was used to 
construct a microbial co-occurrence network. The correlation between 
ASVs was calculated based on relative abundance using the PCIT 
algorithm (Reverter and Chan, 2008). The correlation coefficients 
between two ASVs (nodes) were calculated with an absolute sparse 
correlation coefficient and paired taxa with a correlation coefficient 
>0.45 were retained to construct the co-occurrence network. Cytoscape 
(3.7.1) (Lopes et al., 2010) was employed to visualize the co-occurrence 
network and calculate the network topological characteristics including 
clustering coefficient, density and scale-free properties. The stability of 
the co-occurrence network was represented by the proportion of 
negative correlations (competitiveness) to the total number of 
correlations (Coyte et al., 2015; Hernandez et al., 2021). The complexity 
of a co-occurrence network was represented by the average number of 
lines connected to each point (Bader and Hogue, 2003).

Statistical analysis of metabolome data
The metabolite data of peak area was normalized using Log10 

conversions. The processed data was analyzed using the online 
platform MetaAnalyst 6.0.1 Differential metabolites were identified 
using the orthogonal partial least squares-discriminant analysis 
(OPLS-DA). The reliability of the model was assessed using 7-fold 
cross-validation and response permutation tests. Variable projection 
(VIP) values were calculated for each variable in the model to indicate 
its contribution to the classification. Metabolic pathway analysis 
(MetPA) was used to evaluate the interactions between metabolites 
and to reveal the importance of metabolic pathways. If the impact 
value exceeds 0.10, the metabolic pathway was important.

Other statistical analyses
Differential cecal microbiota at the plylum and ASV levels were 

identified using LEfSe (Linear discriminant analysis with effect size 
estimation)2 (Segata et  al., 2011) with LDA >2.0 and p < 0.05. 
Spearman correlation analysis was used to identify relationships 
between cecal microbiota and serum metabolites. And the correlation 
among IMF, body weight, and cytokine content were explored by 
spearman correlation analysis as well. p < 0.05 indicates a significant 
correlation, while the absolute value of correlation coefficient was used 
to represents the magnitude of the correlation. |r| < 0.2 indicates no 
correlation, 0.21 < |r| < 0.40 indicates a weak correlation, 
0.41 < |r| < 0.60 indicates a moderate correlation, and |r| > 0.61 
indicates a strong correlation. Wilcoxon test was used to compare the 
α-diversity of cecal microbiota between the HIG and LIG groups. 
Visualization of results and other statistical analyses were performed 
using R (R Core Team, 2022).

1 https://www.metaboanalyst.ca

2 http://huttenhower.sph.harvard.edu/galaxy
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Results

The IMF content of breast muscles

The IMF content of breast muscles of the experimental chickens 
ranged from 1.65 to 4.59% (Figure 2A and Supplementary Table S3). 

Gender have significant effects on IMF (p = 0.024, Wilcoxon test, 
Figure 2B). We performed Spearman correlation analysis on IMF 
content and body weights across the time-span of the experiments 
(Figure 2C), and it was found that there was no significant correlation 
between body weights and IMF content of chicken. High-IMF group 
(HIG, n = 16) and low-IMF group (LIG, n = 16) were constructed 

FIGURE 2

Relationships between IMF content in chicken breast muscle and gender, body weight and serum cytokines. (A) Distribution of IMF content of male 
and female chickens (25 males and 26 female). y-axis represents frequency of IMF level; x-axis represents IMF %. (B) Comparison of IMF content in 
breast muscle of male and female chickens. (C) Correlations of IMF content of breast muscle, body weight and serum cytokine levels. *p < 0.05, 
**p < 0.01, and ***p < 0.001.
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based on IMF content of chickens. Student’s t test was used to compare 
the body weight of chickens at different ages. No significant difference 
in body weight was found between HIG and HIG at 0, 2, 4, 6, 8, 10, 
12, 14, 16, and 18 weeks of age (Table 1). In addition, since previous 
studies have linked fat deposition in pigs and humans to serum 
cytokine levels (Chen et al., 2021; Wedell-Neergaard et al., 2019), 
we  measured INF-γ, IL-1β, IL-5, IL-6, IL-17, and IL-22  in serum 
samples, and no significant correlations were found between cytokine 
levels and IMF content (Figure 2C).

Differences of cecal microbiota between 
high/low-IMF chickens

A total of 15 bacterial phyla were annotated in the cecal microbiota 
of these chickens. The relative abundance of Bacteroidetes (45.90%), 
Firmicutes (47.16%), and Actinobacteriota (4.01%) was >1% 
(Figure 3). By comparing the diversity and composition of the cecal 
microbiota of HIG and LIG chickens, it was found that there was no 
significant difference in the diversity (Figures  4A,B,D) and the 
composition at the phylum level (Figure  4C) of cecal microbiota 
between the two groups.

In order to explore the differences of structural characteristics of 
cecal microbiota networks between the two groups, we screened out 
those ASVs with relative abundance >0.05% to construct a 
co-occurrence network. After quality control, 242 and 245 ASVs were 
obtained from cecal microbiota of HIG and LIG, respectively. The 
results showed that the stability index of cecal microbiota network of 

LIG was 49.16% and HIG was 48.56%, and the complexity indices for 
LIG and HIG were 9.54 and 7.87, respectively, indicating a more stable 
and complex microbiota network in the cecum of the LIG than in HIG 
(Table 2).

We further discriminated the differential ASVs between HIG and 
LIG using LEfSe (Supplementary Table S4). Under the thresholds of 
LDA >2.0 and p < 0.05, nine ASVs were identified with their relative 
abundance that significantly differed between the two groups. Six 
ASVs were enriched in LIG, including the Clostridia class members 
ASV183 (unclassified_f_Lachnospiraceae), ASV127 (GCA-900066575), 
ASV1132 (norank_f_norank_o_Clostridia_UCG-014), and ASV163 
(Eubacterium_brachy_group). ASV143 (Faecalicoccus) in the Bacilli 
class and ASV236 (unclassified_f_Coriobacteriaceae) in the 
Coriobacteriia class were also represented. ASV73 (Alistipes), ASV119 
(Synergistes) and ASV29 (Subdoligranulum) were enriched in HIG 
chickens (Figure 4E).

Serum metabolites related to IMF content 
in chickens

Non-targeted metabolomics detection was performed on serum 
samples and 7,086 and 4,910 metabolite features were obtained, 
including 494 and 272 metabolites annotated in positive and negative 
modes, respectively (Supplementary Table S5). An OPLS-DA model 
was used to identify the differential metabolites, and the results 
showed that samples from HIG and LIG could be well separated in 
both positive (Figure 5A) and negative modes (Figure 5B).

TABLE 1 Comparison of the weights of chickens at different weeks between HIG and LIG.

Weeks HIG LIG p-value Weeks HIG LIG p-value

0 36.04 ± 7.17 35.16 ± 6.66 0.72 10 1153 ± 179.29 1141.25 ± 125.50 0.83

2 155.93 ± 27.49 156.83 ± 20.87 0.92 12 1407.81 ± 183.58 1422.31 ± 368.07 0.89

4 330.94 ± 54.54 351.06 ± 64.77 0.34 14 1684.81 ± 536.38 1532.25 ± 199.17 0.29

6 562.63 ± 108.89 644.06 ± 144.01 0.08 16 1921.44 ± 294.29 1829.75 ± 233.31 0.33

8 893.16 ± 146.09 910.94 ± 107.39 0.69 18 2036.69 ± 311.98 1922.88 ± 273.42 0.28

HIG, chickens with high intramuscular fat content (n = 16); LIG, chickens with low intramuscular fat content (n = 16).

FIGURE 3

The profiles of microbial compositions of cecum at the phylum level. The samples were ordered following the abundance of Bacteroidetes.
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In positive mode, there were 25 differential metabolites (VIP >2, 
p < 0.05) between the two groups, in which, 11 metabolites were 
enriched in HIG and 14 metabolites were enriched in LIG. The most 
abundant metabolites enriched in HIG were bile acids, 
including  taurodeoxycholic acid, taurochenodeoxycholic acid, 

taourusodeoxycholic acid and taurohyodeoxycholic acid. In addition, 
Arg-Gly-Asp, benzyl alcohol, benzamide, β-d-glucopyranosiduronic 
acid, 5-[3-[(2,2,3,3-tetramethylcyclopropyl) carbonyl]-1h-indol-1-yl] 
pentyl, and other some metabolites were also enriched in 
HIG. Riboflavin (vitamin B2) as well as some metabolites of amino 

FIGURE 4

The difference of diversity and composition of cecal microbiota between HIG and LIG chickens. Comparison of the α-diversity of cecal microbiota 
between HIG (n = 16) and LIG (n = 16) with (A) Chao1 index, and (B) Shannon index. (C) Average relative abundance of cecal microbiota at the phylum 
level in HIC and LIG chickens; (D) PCoA based on Bray–Curtis distance showing the cecal microbiota composition between the two groups. (E) Nine 
ASVs showing significantly different relative abundance between HIG and LIG. PCoA, Principal coordinate analysis; HIG, chickens with high 
intramuscular fat content; LIG, chickens with low intramuscular fat content.
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TABLE 2 Comparison of structural characteristics of cecal microbiota 
co-occurrence network between HIG and LIG chickens.

Group HIG LIG

Nodes 242 245

Edges 1,905 2,339

Negative edges 925 1,150

Complexity 7.87 9.54

Stability (%) 48.56% 49.16%

The paired taxa with absolute sparse correlation coefficient >0.45 were selected for the 
network construction. Complexity: the average number of edges connected to each node. 
Stability: the proportion of negative correlations to the total number of correlations. HIG, 
chickens with high intramuscular fat content; LIG, chickens with low intramuscular fat 
content.

acids (1-methylhistidine, NG,NG-dimethyl-l-arginine and 3-amino-
2,3-dihydrobenzoic acid) were enriched in the LIG (Figure 5C and 
Table 3).

In negative mode, the levels of 14 metabolites displayed significant 
differences between the two groups. In which, seven metabolites were 
enriched in HIG, including N-(2-furoyl)glycine, 2-isopropylmalic 
acid, gallic acid, dTMP, (1-acetyloxy-3-hydroxy-6,8a-dimethyl-7-oxo-
3-propan-2-yl-2,3a,4,8-tetrahydro-1h-azulen-4-yl) 
4-hydroxybenzoate, and Pe 32:1. Significantly, taurolithocholic acid 
sulfate (a type of bile acids) was also enriched in HIG (Figure 5D and 
Table 3). The relationships between these five IMF-related bile acids 
were explored and were found that they were closely positively 
correlated with each other (Figure  5E). Seven metabolites were 
enriched in LIG, including chelidonic acid, methyl salicylate, 
12s-hydroxy-5z,8e,10e-heptadecatrienoic acid, C10-dats (tentative), 
20-HETE, (z)-9,12,13-trihydroxyoctadec-15-enoic acid, and cilastatin.

We next performed metabolic pathway analysis (MetPA) on the 
differential metabolites to explore the possible metabolic pathways 
associated with IMF of chickens. The results showed that these 
differential metabolites were mainly enriched in Riboflavin 
metabolism, Histidine metabolism, Pyrimidine metabolism, and 
Primary bile acid biosynthesis (Figure 5F), indicating that changes in 
these metabolic functional pathways may affect the deposition of 
intramuscular fat in chickens.

Correlation of differential cecal microbiota 
and differential serum metabolites

A Spearman correlation analysis was conducted to establish the 
relationship between cecal microbiota and the metabolites (Figure 6 
and Supplementary Table S6). As mentioned above, bile acids are 
important metabolites enriched in the serum of HIG chickens. The 
Alistipes (ASV73) enriched in the HIG were significantly positively 
correlated with the bile acids of taurolithocholic acid sulfate 
(M482T77, r = 0.409, p = 0.003) and taurochenodeoxycholic acid 
(M1000T151, r = 0.408, p = 0.003), while the GCA-900066575 
(ASV127) enriched in the LIG were significantly negatively correlated 
with taurochenodeoxycholic acid (M1000T151, r = −0.335, p = 0.016). 
This suggests that Alistipes may promote bile acids synthesis and thus 
regulate fat deposition in muscle, while GCA-900066575 may degrade 
bile acids and reduce IMF in chickens. Unclassified_f_
Coriobacteriaceae (ASV236, r = 0.387, p = 0.049) and 

Eubacterium_brachy_group (ASV163, r = 0.565, p < 0.001) enriched 
in LIG were significantly positively correlated with riboflavin 
(M377T155), glufosinate (M363T154), C10-dats (tentative) 
(M295T154), and cilastatin (M339T154). It indicates that these two 
bacteria may promote the synthesis of riboflavin and other 
metabolites, which is not conducive to fat deposition in 
chicken muscle.

Discussion

Intramuscular fat content is a key factor affecting the tenderness 
and flavor of chicken (Hocquette et al., 2010). Gut microbiota have 
been found to affect the deposition of intramuscular fat by regulating 
the expression of genes and proteins related to fat synthesis and 
decomposition through the production of short-chain fatty acids, bile 
acids and other metabolites (Nicolucci et  al., 2017; Parseus et  al., 
2017). To investigate the role of gut microbiota in intramuscular fat 
formation in chickens, we integrated the data of cecal microbiota and 
metabolome to explore the relationships among cecal microbiota, 
serum metabolites and IMF in chickens. The results showed that bile 
acids may be key metabolites that promote fat deposition in chicken 
muscle, and specific cecal bacteria could affect the IMF content of 
breast muscle via regulating the circulating levels of bile acids, 
riboflavin and other metabolites.

An important goal of this study was to identify key cecal 
bacteria associated with IMF of chicken. Previous reports had 
reported that the gut bacteria such as Olsenella, Slackia (Xiang et al., 
2021), Methanobrevibacter (Wen et al., 2019), Lachnoclostridium, 
Christensenellaceae_R-7_group (Lei et al., 2022) were beneficial to 
abdominal fat deposition in chickens. However, various studies had 
failed to reach a consistent conclusion. Methanobrevibacter was the 
only commonality between two studies (Wen et  al., 2019;Xiang 
et al., 2021) and was believed that can promote accumulation of 
abdominal fat by enhancing energy capture (Xiang et al., 2021). As 
mentioned above, the composition and formation mechanisms of 
intramuscular fat and abdominal fat differ (Zerehdaran et al., 2004). 
A recent study showed that low-abundance of vadinBE97 was 
related to higher IMF of chicken muscle (Wen et al., 2023). In our 
study, Synergistes, Subdoligranulum, and Alistipes were enriched in 
HIG, while unclassified_f_Lachnospiraceae, GCA-900066575, 
norank_f_norank_o_Clostridia_UCG-014, Eubacterium_
brachy_group, Faecalicoccus, and unclassified_f_Coriobacteriaceae 
were enriched in LIG. This inconsistency might be caused by the 
redundancy of gut microbiota functions. In the gut microbiome, 
functional redundancy is a ubiquitous phenomenon and microbial 
ecosystem functions could be  independent of species content 
(Louca et  al., 2018). Functional redundancy was the basis for 
stability and resilience (resistance to perturbation) of microbial 
ecosystems (Tian et  al., 2020). This might indicate that 
taxonomically different bacteria in the ceca of different breed 
chickens performed similar metabolic functions and roles in IMF 
deposition. Among the cecal microbiota enriched in the HIG 
chickens, Alistipes and Synergistes belong to Bacteroidetes at the 
phylum level, which are involved in intestinal carbohydrate 
fermentation, utilization of nitrogenous substances and 
biotransformation of bile acids (Tamana et  al., 2021). 
Subdolicapsulum is a butyrate-producing bacterium (Holmstrom 

https://doi.org/10.3389/fmicb.2024.1494139
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Long et al. 10.3389/fmicb.2024.1494139

Frontiers in Microbiology 09 frontiersin.org

FIGURE 5

Identifying serum metabolites and metabolic pathways that differ between HIG (n = 16) and LIG (n = 16) chickens. OPLS-DA analysis of serum 
metabolomics profiles showed a clear separation between HIG and LIG chickens both in (A) positive and (B) negative ion modes. Variable importance 

(Continued)
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et  al., 2004). Among the cecal microbiota enriched in the LIG 
chickens, GCA-900066575 belongs to the Lachnospiraceae family, 
which hydrolyzes starch and other sugars to produce butyrate and 
other short-chain fatty acids, and they have considerable ability to 
utilize dietary polysaccharides (Vacca et al., 2020). Eubacterium is 
an important butyrate-producing bacterium that plays an important 
role in regulating inflammation, modulating immune responses, 
maintaining intestinal barrier integrity, and cholesterol homeostasis 
(Mukherjee et al., 2020). Faecalicoccus acidiformans isolated from 
the chicken cecum, and reclassification of Streptococcus 
pleomorphus, its function has not been reported yet (Barnes et al., 
1977). The functions of these bacteria may directly or indirectly 
promote the deposition or decomposition of fat in chicken muscles, 
which was partially confirmed by the correlation analysis between 
bacteria and metabolites in this study. However, their mechanism 
of action remains to be further studied.

Gut microbiota of chickens can be  effectively intervened by 
changing feed ingredients, adding probiotics, or performing fecal 
microbiota transplantation, thereby improving the meat quality of 
chickens. For example, adding probiotics to chicken feed can 
significantly improve its meat color (Zheng et al., 2014) and flavor 
characteristics (Wang et al., 2017). What’s more, fecal microbiota 
transplantation allows transfer of the propensity for adipogenesis and 
the properties of muscle from donors to recipients (Lei et al., 2022). 
However, there are few reports on dietary intervention studies 
targeting intramuscular fat content in chickens. Some studies on 
other agricultural animals have found that dietary intervention can 
regulate the IMF content of the host by changing the gut microbiota. 
For example, it has been found that tylosin treated piglets shows 
changed composition of gut microbiota, up-regulation of gene 
expression related to fatty acid uptake and de novo synthesis in the 
longissimus dorsi muscle, and down-regulated gene expression 
related to triglyceride hydrolysis, which in turn increases the content 
of intramuscular fat in the longissimus dorsi muscle (Yan et al., 2020). 
Prevotella is considered to be closely related to the intramuscular fat 
content of pigs. Chen et al. (2021) administered Prevotella obtained 
from pig feces samples into mice and found that it significantly 
increased the IMF content of pigs. Transplantation of gut microbiota 
from Laiwu pigs, a Chinese pig breed with high intramuscular fat 
content, to Duroc × Landrace × Yorkshire pigs increases the 
expression of genes and proteins related to lipid synthesis in the 
muscles of recipient pigs, in turn significantly increases their IMF 
content (Xie et al., 2022).

In the differential metabolites, bile acids, Pe 32:1 and other 
metabolites were enriched in the serum of high-IMF chickens 
while riboflavin, some amino acids and other metabolites were 
enriched in the serum of low-IMF chickens. Pe 32:1 is a 
phospholipid of IMF components (Smith et al., 1998) and suggests 

that high levels of circulating Pe 32:1 was an important factor 
affecting IMF in chickens. Riboflavin is essential for mammalian 
growth and its derivatives flavin mononucleotide (FMN) and 
flavin adenine dinucleotide (FAD) are key co-enzymes in cells 
(Rudzki et al., 2021). Chickens with low IMF might still be in a 
growing state and had higher demand for vitamins and this would 
account for higher levels of riboflavin. The results of correlation 
analysis showed that Eubacterium_brachy_group was positively 
correlated with riboflavin, and the interaction of these might 
promote growth and have a negative regulatory effect on 
IMF formation.

It is worth noting that five bile acids of taurodeoxycholic acid, 
taurochenodeoxycholic acid, taourusodeoxycholic acid and 
taurohyodeoxycholic acid and taurolithocholic acid sulfate were 
all enriched in the sera of high-IMF chickens and displayed 
significant correlations with each other. Therefore, we speculated 
that these bile acids form a metabolic pathway and synergistically 
promote deposition of IMF in chickens. The pathway enrichment 
analysis indicated that primary bile acid biosynthesis was an 
important differential pathway related to IMF and verified our 
speculation. Primary bile acids are synthesized from cholesterol 
and can be combined with taurine or glycine in the liver. They are 
normally stored in the gallbladder and released into the 
duodenum after eating to help emulsify fat (Ridlon and Hylemon, 
2012). Bile acids play roles as signaling molecules to regulate the 
digestion and absorption of cholesterol, triglycerides and 
fat-soluble vitamins (de Vos et al., 2022). The gut microbiota can 
convert primary bile acids (cholic and chenodeoxycholic acids) 
into secondary bile acids (deoxycholic acid and lithocholic acid) 
(Urdaneta and Casadesus, 2017) that then can activate nuclear 
receptors leading to upregulation of genes involved in adipocyte 
differentiation and adipogenesis and promote fat accumulation 
(Shinohara and Fujimori, 2020). Bacteria from the phyla 
Firmicutes, Actinobacteria, and Bacteroidetes can encode bile salt 
hydrolases (Jones et al., 2008). In our study, Alistipes (belong to 
Bacteroidetes) and GCA-900066575 (belong to Firmicutes) were 
both found to have important associations with bile acid 
metabolism. Alistipes was enriched in HIG and displayed a 
significant positive correlation with taurolithocholic acid sulfate 
and taurochenodeoxycholic acid. This implicated Alistipes in the 
conversion of these bile acids that would activate nuclear 
receptors to result in enhanced IMF deposition. Studies in dairy 
cows have confirmed that bile salt hydrolase gene carried by 
Alistipes can hydrolyze conjugated bile salts into free bile acids 
and drive the conversion of bile acids (Lin et al., 2023). The GCA-
900066575 enriched in the LIG were significantly negatively 
correlated with taurochenodeoxycholic acid, suggesting that 
GCA-900066575 may promote the degradation of bile acids, 

in projection (VIP >2) scores for the top serum metabolites in (C) positive and (D) negative modes contributing to variation in metabolic profiles of HIG 
and LIG chickens. The relative abundance of metabolites is indicated by a colored scale from blue to red representing the low and high, respectively. 
(E) The correlation of five bile acids which are related with IMF. (F) Pathway enrichment analysis of metabolites associated with IMF in chickens. OPLS-
DA, orthogonal partial least squares-discriminant analysis; HIG, chickens with high intramuscular fat content; LIG, chickens with low intramuscular fat 
content. The metabolites are shown in Table 3.

FIGURE 5 (Continued)
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TABLE 3 Differential serum metabolites between HIG and LIG chickens.

Ion mode ID Enriched group Metabolites

Positive mode M91T579 HIG Benzyl alcohol

M517T151 HIG Taurodeoxycholic acid

M1000T151 HIG Taurochenodeoxycholic acid

M122T287 HIG Benzamide

M464T151 HIG Tauroursodeoxycholic acid

M174T415 HIG Allidochlor

M486T151 HIG Beta-d-glucopyranosiduronic acid, 

5-[3-[(2,2,3,3-tetramethylcyclopropyl)carbonyl]-1h-indol-1-yl]

pentyl

M200T59 HIG 6-tert-butyl-3-methylsulfanyl-2h-1,2,4-triazin-5-one

M347T233 HIG Arg-Gly-Asp

M213T443 HIG Chromone-3-carboxylic acid

M538T151 HIG Taurohyodeoxycholic acid

M377T155 LIG Riboflavin

M170T405 LIG 1-methylhistidine

M203T29 LIG NG,NG-dimethyl-l-arginine

M363T154 LIG Glufosinate

M140T592 LIG 3-amino-2,3-dihydrobenzoic acid

M279T71 LIG Dibutyl phthalate

M164T23 LIG 1-deoxynojirimycin

M304T94 LIG Fenpropimorph

M234T125 LIG Tebutam

M335T31 LIG Docosatrienoic acid

M888T186 LIG 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(1′-myo-inositol)

M413T386 LIG Alpha-d-mannose pentaacetate

M482T190_2 LIG 1-hexadecyl-sn-glycero-3-phosphocholine

M500T27 LIG Oleyloxyethylphosphorylcholine

Negative mode M124T601 HIG N-(2-furoyl)glycine

M157T603 HIG 2-isopropylmalic acid

M169T36 HIG Gallic acid

M321T22_1 HIG Deoxythymidine 5′-phosphate (dTMP)

M429T49 HIG (1-acetyloxy-3-hydroxy-6,8a-dimethyl-7-oxo-3-propan-2-yl-

2,3a,4,8-tetrahydro-1h-azulen-4-yl) 4-hydroxybenzoate

M482T77 HIG Taurolithocholic acid sulfate

M688T146 HIG Pe 32:1

M139T29 LIG Chelidonic acid

M275T29 LIG Methyl salicylate

M279T65 LIG 12s-hydroxy-5z,8e,10e-heptadecatrienoic acid

M295T154 LIG C10-dats (tentative)

M319T45 LIG 20-HETE

M329T36 LIG (z)-9,12,13-trihydroxyoctadec-15-enoic acid

M339T154 LIG Cilastatin

HIG, chickens with high intramuscular fat content; LIG, chickens with low intramuscular fat content.
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FIGURE 6

The correlation analysis between differential bacteria and differential serum metabolites. Heatmaps showing the correlations between differential 
bacteria and differential serum metabolites in (A) positive mode and (B) negative mode. Positive correlations are displayed in brown and negative 
correlations in blue. *p < 0.05, **p < 0.01, and ***p < 0.001.

which is not conducive to the deposition of fat in muscles and 
leads to lower IMF content in LIG chickens. Liu et al. (2022) also 
found in human studies that GCA-900066575 is closely related to 
a variety of BAs, but its mechanism of action has not yet 
been clarified.

Conclusion

The IMF content of breast muscle of Guizhou local chickens 
ranged from 1.65 to 4.59%. The complexity and stability of cecal 
microbiota network of low-IMF chickens were higher than those of 
high-IMF chickens. Bile acids may be important serum metabolites 
affecting IMF in chickens. Specific bacteria including Alistipes might 
promote deposition of IMF in chickens via bile acids and other 
metabolites, while the Eubacterium_brachy group and 
Coriobacteriaceae promoted formation of riboflavin, Glufosinate, 
C10-dats (tentative), and Cilastatin and were not conducive to the 
IMF deposition.
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