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Abstract 

Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional 
groups to substrates, influencing their biological activity, mechanisms of action, and functional 
performance. PTMs and their interactions are essential to many critical signal transduction processes, 
including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, 
advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, 
transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on 
immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future 
research. 
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Introduction 
Pancreatic cancer predominantly comprises 

pancreatic ductal adenocarcinoma (PDAC), a 
malignancy associated with poor prognosis [1]. In 
2022, approximately 510,566 new cancer cases were 
reported globally, resulting in 467,005 deaths, which 
makes it the sixth most common cause of 
cancer-related deaths globally [2]. The 5-year survival 
rate for patients with stage I or II PDAC after surgery 
is 24.6% [3]. Despite the advancements in treatments, 
including chemotherapy, neoadjuvant, and targeted 
therapies, significant challenges persist [4]. 

Immunotherapy is a new and effective treatment 
option [5]. It primarily includes immune checkpoint 
inhibitors (ICIs), adoptive cell therapy (ACT), and 
monoclonal antibody therapy [6]. ACT is a highly 
personalized treatment that targets cancer through 
the transplantation of autologous or allogeneic 
tumor-specific T cells [7]. Significant advancements 
have been made in adoptive cell therapies, including 
Chimeric Antigen Receptor T-Cell Immunotherapy 
(CAR-T) and T-cell receptor-engineered T cell 
(TCR-T) cell therapies [8, 9]. Monoclonal antibody is a 

type of targeted therapy characterized by significant 
specificity, extended serum half-life, strong binding 
affinity, and ability to activate immune effector 
functions [10].  

Despite significant advancements in 
immunotherapy, the near-universal resistance of 
PDAC to immunotherapy is a significant exception in 
human cancers. Effective responses are observed in 
less than 1% of patients with microsatellite 
instability-high (MSI-H) tumors. The tumor 
microenvironment (TME) of PDAC is frequently 
described as "cold," marked by the limited presence of 
effector T cells and a significant influx of myeloid cells 
[11, 12]. Furthermore, features including a low 
mutational burden and an immunosuppressive TME 
hinder T cell activation, migration, and functionality, 
thereby exacerbating the challenges to adaptive 
immunity in PDAC [13, 14]. The most promising 
strategy for PDAC treatment entails comprehensive 
study and optimization of immunotherapy, shifting 
focus from solely targeting malignant cell 
proliferation and invasion to investigating the 
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complex interactions between tumors and TME. 
Post-translational modifications (PTMs) 

influence the complexity and diversity of the 
proteome by covalently binding functional groups to 
substrate proteins. The method involves adding 
various functional groups into the side chains of 
amino acids, including acetyl, phosphate, sugar, and 
methyl groups. The polypeptide chain undergoes 
multiple PTMs within different cellular 
compartments, including the nucleus, cytosol, 
endoplasmic reticulum, and Golgi apparatus [15]. 
During physiologic and pathologic conditions, it can 
enhance the functional diversity of proteins by 
modulating protein folding, activity, stability, 
localization, signal transduction, and binding [16, 17]. 
Consequently, these modifications are essential in 
various physiological activities, including signal 
transduction, gene expression, and cell cycle 
regulation [18, 19]. With the enhanced accessibility of 
genomic sequencing data and the rapid development 
of detection methods, over 600 types of PTMs have 
been discovered to date [20]. The most common 
include protein phosphorylation, acetylation, 
SUMOylation, glycosylation, and palmitoylation (Fig. 
1). 

PTMs are essential in immune activity in the 
body, significantly influencing immune cell 
activation, signal regulation, immune response, and 
tumor metabolic reprogramming. They regulate TME 
by affecting immune cell differentiation and function 

[21-25]. PTMs can directly or indirectly affect the 
efficacy of immunotherapy by regulating immune 
checkpoints or altering the TME [26]. PTMs can 
regulate the immunogenic characteristics of cancer 
cells, affecting their recognition and susceptibility to 
immune system attacks [24]. 

Because protein PTMs regulate cancer 
development and progression, examining these 
alterations in the context of immune responses may 
offer a comprehensive understanding of the 
mechanisms regulating interactions between cancer 
cells and immune cells. Herein, we systematically 
examine and present the recent advancements 
regarding the role of PTMs in the immunotherapy of 
PDAC. 

Phosphorylation 
Phosphorylation is a classic and reversible PTM 

prevalent in eukaryotes. In mammals, approximately 
30% of proteins undergo phosphorylation, a process 
dynamically regulated by protein kinases and 
phosphatases [27]. This alteration is essential for 
numerous cellular activities, including cell division, 
membrane transport, gene expression regulation, and 
protein interactions [28]. Numerous phosphorylation 
events have been identified in PDAC (Table 1). 
Furthermore, phosphorylation is essential in tumor 
immunotherapy. 

 

 
Figure 1. PTMs in immunotherapy of pancreatic cancer. Many proteins and PTMs (such as phosphorylation, acetylation, ubiquitination, etc.) are implicated in tumorigenesis. 
PTMs can influence the efficacy of immunotherapy. The figure is generated with BioRender (https://biorender.com). 
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Table 1. Identifying phosphorylation targets associated with 
PDAC 

Target Function in cancer Reference 
FAM83A Promote the transcriptional activity of β-catenin [141] 
PDE4D Control the degradation of Camp. [142] 
Girdin Control the cytoskeleton and vascular remodeling [143] 
ASPP2 Regulating cell apoptosis. [144] 
WAVE3  Promote epithelial mesenchymal transition and regulate 

metastasis. 
[145] 

IER3 Activate ERK1/2 to support the development of PanIN after 
pancreatitis. 

[146] 

MUC4 The transmembrane ligand of ERBB2 maintains its stability 
on the plasma membrane and enhances activation. 

[147] 

Stattic Inhibition of STAT3 activation and nuclear translocation. [148] 
CAP1 Regulating actin cytoskeleton and cell migration. [149] 
CTDSPL2 Regulating mitosis and promoting cell movement. [150] 
IQGAP1 articipate in cytoskeleton remodeling, cell migration and 

intercellular signal transduction. 
[151] 

 
A primary challenge in tumor immunotherapy 

research is investigating the immune evasion 
mechanisms associated with immune checkpoints. 
According to their targets, immune checkpoint 
inhibitors include Programmed Cell Death Protein 1 
(PD-1) inhibitors, Programmed Death-Ligand 1 
(PD-L1) inhibitors, and Cytotoxic T-lymphocyte 
associated protein 4 (CTLA-4) inhibitors. The 
interaction between PD-L1 and PD-1 exerts a negative 
regulatory effect, facilitating peripheral immune 
tolerance [29]. The regulatory role of the PDCD1 gene 
is well-established [30]; however, PTMs are significant 
factors affecting PD-1 and PD-L1 interaction. Zhang et 
al. [31] reported that the limited efficacy of 
immunotherapy in PDAC is primarily due to PD-L1 
dephosphorylation by Never in Mitosis A-related 
kinase 2 (NEK2). NEK2 enhances PD-L1 stability by 
inhibiting its proteasomal degradation through 
phosphorylation at T194/T210 residues and further 
stabilizes PD-L1 through glycosylation at N192, N200, 
and N219 sites [31, 32].  

Gemcitabine (GEM), the most commonly used 
chemotherapeutic agent for PDAC, induces Signal 
Transducer and Activator of Transcription 1 (STAT1) 
phosphorylation after treatment and elicits various 
PD-L1-inducing cytokines, including IFN-γ, IL-6, and 
TNF-α [33]. A previous study reported that statins 
combined with GEM inhibit STAT1 phosphorylation, 
significantly reducing PD-L1 expression and 
enhancing CD8+ T cell infiltration [34]. Moreover, 
statins reduce YAP/TAZ expression through AKT 
phosphorylation, further inhibiting PD-L1 expression 
[35]. In TME, neutrophil extracellular traps induce T 
cell exhaustion and dysfunction via PD-L1, a 
mechanism closely linked to the chemotactic effect of 
CXC motif chemokine receptor 2 (CXCR2) on 
neutrophils [36-38], a mechanism closely linked to the 
chemotactic effect of CXCR2 on neutrophils, inhibits 
the recruitment and function of CXCR2 in neutrophils 

by inducing STAT1 dephosphorylation at Tyr701 in 
these cells. In animal models, Nifurtimox significantly 
enhances PDAC sensitivity to GEM and PD-1 
blockade therapy [39, 40]. Zhang et al. [41] reported 
that Polo-like Kinase 1 (Plk1) induces retinoblastoma 
protein (RB) phosphorylation at S758, leading to 
dysregulated NF-κB translocation and increased 
PD-L1 expression. Inhibition of Plk1 enhances 
sensitivity to immune checkpoint blockade. NSG3, a 
vesicular transport protein, is a potential diagnostic 
and prognostic marker that inhibits PDAC cell 
proliferation and invasion and suppresses Erk1/2 
phosphorylation, thereby inhibiting PD-L1 expression 
and improving immunotherapy outcomes [42, 43]. 

T cells are essential in protecting the body from 
pathogens. Enhancing T-cell infiltration can 
significantly improve the efficacy of existing cancer 
immunotherapies, including ICB therapy [44, 45]. 
T-cell activity is regulated by the phosphorylation of 
specific proteins or enzymes within the tumor. In 
patients with PDAC, the inhibition of IRAK4 
phosphorylation in tumor cells downregulates 
Hyaluronan synthase 2 (HAS2) through an 
NF-κB-dependent mechanism. This reduction in 
HAS2 levels mitigates T-cell exhaustion and enhances 
responsiveness to checkpoint immunotherapies, 
including anti-CTLA-4 and anti-PD-1 [46, 47]. The T 
cell receptor (TCR) is activated by phosphorylation at 
Tyr-323 (pY323), which binds to p38-activated MAPK 
as an alternative pathway for p38 activation. 
TCR-mediated activation of CD4+ tumor-infiltrating 
lymphocytes (TILs) leads to alternative p38 activation 
and pro-inflammatory cytokine production [48]. 
Targeting this alternative p38 pathway in T cells 
demonstrates promising preventive and therapeutic 
effects in PDAC models by disrupting downstream 
pro-inflammatory pathways [49]. Interleukin-35 
(IL-35), a cytokine of the IL-12 family primarily 
produced by CD4+ T cells and B cells, induces STAT3 
phosphorylation. This process inhibits CD8+ T-cell 
infiltration and activation and promotes tumor 
growth [50, 51]. Targeting IL-35 to enhance T-cell 
infiltration and transform the TME of PDAC from 
"cold" to "hot" is an effective strategy to improve the 
efficacy of immunotherapy. Chemotherapy should 
address immune suppression within tumors to 
achieve adequate therapeutic outcomes. PX-478, for 
example, can inhibit HIF-1α expression, increase 
eIF2α phosphorylation levels, enhance GEM 
immunogenicity, and strengthen cytotoxic T-cell 
responses against PDAC cells [52]. 

The immune response in PDAC is partially 
regulated by immunosuppressive myeloid cells, 
rendering these cells a promising target for 
immunotherapy [53]. Macrophages are among the 
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most abundant immune cell types in the TME and 
facilitate tumor progression by creating an 
immunosuppressive TME from the early stages [54, 
55]. Re-polarizing tumor-associated macrophages 
(TAMs) toward an M1-like phenotype has been 
proposed as a potential therapeutic option for cancer 
[56]. Dual-specificity tyrosine-regulated kinase 1B 
(DYRK1B), a kinase that regulates tyrosine 
phosphorylation, is present in 90% of pancreatic 
cancer cases and is negatively correlated with 
macrophages in tumor tissues [57, 58]. Inhibiting 
DYRK1B in TAMs accelerates their polarization 
toward an M1 phenotype, thereby reducing cancer 
cell surface marker CD24 expression [59]. This, 
subsequently, enhances immune cell identification 
and eradication of cancer cells [58]. STAT3 is essential 
in solid tumor progression [60, 61]. Phosphorylated 
STAT3, as a direct target of miR-506, reprograms 
M2-polarized macrophages into an M1 phenotype, 
thereby reversing the immunosuppressive 
microenvironment in PDAC. 

Natural killer (NK) cells are innate lymphocytes, 
and their activation is regulated by the interactions 
between NK receptors and target cells [62, 63]. This 
makes NK cell-based therapies a significant focus of 
innovation in immunotherapy. Two NK cell subsets 
can be identified in human peripheral blood: (1) the 
CD56bright subset, which secretes immunoregulatory 
cytokines, and (2) the CD56dim subset, comprising 
approximately 90% of the total number of NK cells, 
which exerts cytotoxicity through the cell surface Fc 
receptor CD16 [64].  

The NF-κB signaling pathway regulates the 
differentiation of NK cell subsets and their immune 
responses. Phosphorylation of iκB protein in PDAC 
cells facilitates nuclear translocation of NF-κB. The 
activation of NF-κB subsequently promotes CXCL8 
and the transcription factor P65 transcription, 
facilitating the migration of radiation-induced 
CD56dim NK cells from tumor cells and inhibiting 
tumor growth. This indicates that combining NK cell 
adoptive therapy with radiotherapy can effectively 
induce tumor cell apoptosis [65]. A previous study 
has reported that polysaccharides enhance the 
antitumor effects of GEM through the activation of 
NK cells [66]. In PDAC, polysaccharides secreted by 
SEP bind to the TLR4 receptor on NK cells, 
upregulating ERK, JNK, p38, and NF-κB 
phosphorylation levels. TLR4/MAPKs/NF-κB 
signaling pathway activation increases NKG2D 
expression in NK cells, thereby synergistically 
enhancing the anti-pancreatic tumor effects of GEM 
[67]. In addition, NK cells can be combined with 
therapeutic antibodies for cancer treatment [68]. 
Enhancing NK cell FcR effector functions through 

Interleukin-21 (IL-21) is a promising strategy to 
improve the efficacy of cetuximab. Following IL-21 
interaction with NK cell surface receptors, the STAT1 
phosphorylation level increases. When NK cells are 
stimulated by cetuximab-coated tumor cells, the ERK 
phosphorylation level increases, leading to 
intracellular activation of NK cells, reduced tumor 
burden, and improved therapeutic outcomes [69]. 

Glycosylation 
Glycosylation is essential for stabilizing 

membrane protein expression and preserving normal 
physiological function [70]. Eight glycosylation 
pathways have been identified, with N-glycosylation 
and O-glycosylation significantly associated with 
disease progression. PDAC tumors demonstrate 
distinct alterations in glycosylation (Table 2), 
including an increased abundance of the sialic acid 
Lewis A antigen CA19-9 [71]. Besides, PDACs have 
elevated levels of fucosylated and branched and 
truncated O-glycans [72-74], which are associated 
with tumor progression and poor prognosis (Table 2). 
Additionally, abnormal glycosylation contributes to 
tumor immune evasion [75]. Consequently, 
glycosylation is a potential target for anticancer 
therapy [76]. 

 

Table 2. Glycosylation targets associated with PDAC 

Target Function in cancer Reference 
ST3Gal1 Attaching sialic acid to T-antigen, producing sialyl T-antigen [152] 
MUC1 Activating the EGFR-PI3K/Akt signaling pathway and help 

cancer cells fight anoikis 
[153] 

CA199 Pancreatic cancer tumor biomarkers [154] 
MDH1 Involved in the interconversion of pyruvate and malic acid in 

mitochondria 
[155] 

CD44 Promoting the expression of NANOG in pancreatic cancer 
cells and facilitate the alteration of CSC feature 

[156] 

MGAT5 N-glycan branching through adding β1,6-linked 
N-acetylglucosamine (β1,6-GlcNAc) to an α1,6-linked 
mannose 

[86] 

TNFR1 Increased α-2,6-sialylation of TNFR1 inhibits internalization 
and stabilizes signaling through AKT and NF-κB, conferring 
resistance to gemcitabine and TNF-induced apoptosis 

[157] 

 
Sialylation is a pervasive and complex form of 

glycosylation that has become a target for cancer 
therapy because of its immunosuppressive properties 
[77]. In PDAC, the elevated ST3Gal1 and ST3Gal14 
expression results in increased α2,3-sialylation on 
tumor cells, facilitating the differentiation of 
monocytes into immunosuppressive TAMs by 
binding to myeloid cell receptors Siglec-7 and -9 [75]. 
Furthermore, excessive tumor sialylation inhibits NK 
cell activity and disrupts Teff/Treg balance, 
facilitating immune escape [78]. Salivation inhibition 
enhances the immune response through various 
mechanisms, including facilitating dendritic cell 
maturation, increasing the number and activation 
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status of effector immune cells, particularly CD8+ T 
cells, and enhancing cytotoxic T cell activities [79]. 

Mucin is an essential defense barrier in the body 
that is frequently overexpressed and abnormally 
glycosylated in PDAC, acting as a source of 
tumor-associated antigens and potential therapeutic 
targets. Mucin 4 (MUC4) is a compelling TAA. Wei et 
al. [80] first reported that transducing dendritic cells 
with pan-DR helper T cell epitopes or the universal T 
epitope (PADRE) with HLA-A1 and HLA-A2-specific 
MUC4 epitopes led to the upregulation of dendritic 
cell activation markers including HLA-DR, CD80, and 
CD86, thereby inducing an effective MUC4-specific 
cytotoxic T cell response. Furthermore, glycopeptide 
immunization using glycosylated MUC4 tandem 
repeat peptides has demonstrated effective 
antigen-specific immune responses in PDAC mouse 
models [81]. Mucin 1 (MUC1) is a protein composed 
of repetitive 20-amino-acid sequences and undergoes 
extensive O-glycosylation. In PDAC, MUC1 
glycosylation is irregularly distributed, which 
enhances the recognition of the immune system and 
processing of the protein structure, consequently 
eliciting an immune response against MUC1 [81]. A 
phase I/II clinical trial demonstrated that dendritic 
cell vaccines infused with MUC1 significantly 
enhanced CD8 and CD4 T cell activities, effectively 
improving immunosuppression in patients 
undergoing pancreatic surgery [82]. 

Engineered T cells expressing chimeric antigen 
receptors (CARs) signify a promising research focus 
in immunotherapy [83]. However, CAR T therapy 
encounters challenges, including inefficient delivery 
and penetration to tumor sites, and its efficacy 
depends on the density and accessibility of tumor cell 
antigens [84]. Abnormal glycosylation in tumor cells 
manifests as an extracellular glycan layer on the cell 
surface. This glycoprotein shell can participate in 
basic biological processes and disrupt immune 
responses by masking immune cell epitopes. 
Glycosyltransferase 5 (MGAT5) is an essential gene 
that regulates N-glycan chains [85]. MGAT5-derived 
N-glycans provide strong protection against 
pancreatic cancer [86]. In PDAC, defects in 
N-glycosylation due to MGAT5 knockout induce 
robust immune synapses between tumor cells and 
44v6 CAR T cells. This interaction is characterized by 
increased F-actin accumulation, enhanced granule 
convergence, and a reduced distance from the 
microtubule organizing center to F-actin. In PDAC 
with N-glycosylation defects, activated 44v6 T cells 
exhibit enhanced signaling of the calcium-dependent 
phosphatase nuclear factor and NF-κB, thereby 
enhancing CAR T cell efficacy in the immune 
response against PDAC [87]. On the other hand, 

tumor polysaccharide coating can also be used as a 
marker for immunotherapy [88]. For instance, 5E5 
CAR T cells specifically target the Tn-MUC1 
glycopeptide epitope on PDAC cell surfaces, resulting 
in significant tumor accumulation and exhibiting 
significant anticancer efficacy in mouse models [89]. 

Acetylation 
Acetylation is a dynamic and reversible PTM in 

which acetyl groups are transferred to substrates by 
acetyltransferases. However, proteins undergo 
deacetylation through the action of deacetylases [90] 
(Table 3). This process, termed histone acetylation, 
was initially identified in histones [91]. In mammals, 
acetylation occurs on non-histone lysine residues, 
including those in high mobility group proteins, 
tubulin, and p53 [92]. Consequently, the enzymes 
involved are reclassified as lysine acetyltransferases 
[93]. Acetylation has been implicated in the 
pathogenic processes of pancreatic cancer 
development (Table 3). Recent studies highlight the 
importance of acetylation modifications in immune 
system function and tumor immunity [94]. 

 

Table 3. Identifying acetylation targets associated with PDAC 

Target Function in cancer Reference 
P65 Deacetylation at the P65 K310 site inhibits NF-κB 

transcriptional activity and inhibits PD-L1 expression 
[97] 

SIRT5 SIRT5 loss enhanced glutamine and glutathione metabolism 
via acetylation-mediated activation of GOT1 

[158] 

HSPA5 Acetylation at K353 site of HSPA5 promoted ferroptosis of 
PDAC 

[159] 

BCAT2 BCAT2 acetylation suppresses BCAA catabolism and 
pancreatic tumor growth 

[160] 

PGC-1α PGC-1α acetylation causes metabolism to shift from a 
mitochondrial oxidative catabolic process to fatty acid 
synthesis 

[161] 

STAT3 STAT3 acetylation inhibits the STAT3/SIRT1 interaction and 
enhances the function of immunosuppressive cells in 
pancreatic cancer 

[162] 

 
Histone deacetylases (HDAC) can remove acetyl 

groups from acetylated proteins [95]. HDACs have 
garnered attention for their role in immune evasion, 
making them a promising target for therapeutic 
strategies [96]. Currently, there are five HDAC 
inhibitors approved for clinical use. These inhibitors 
can disrupt PD-L1 and PD-1 interaction. HDAC5 
inhibits immune responses and increases T regulatory 
cells, highlighting its significance in antitumor 
immunity. In PDAC, inhibition of HDAC5 suppresses 
NF-κB-mediated PD-L1 expression and improves the 
efficacy of anti-PD-1 therapy. Therefore, HDAC 
inhibitors can enhance the sensitivity of PDAC to 
immune checkpoint therapy [97]. The HDAC 
inhibitor LBH589 can enhance histone acetylation in 
the PD-L1 promoter region, thereby rapidly 
enhancing PD-L1 expression [98]. Moreover, HDAC3 
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inhibitors, including RGFP966, reduce PD-L1 mRNA 
and protein levels, thereby enhancing immune 
surveillance and reversing immune evasion [99]. 
Chin-King Looi et al. [100] found that HDAC 
inhibitors givinostat and dacinosta can reverse the 
sensitivity of Cytotoxic T lymphocytes (CTLs) 
resistant PDAC cells to CTLs. Furthermore, HDAC 
inhibitors can mitigate immune evasion by 
reprogramming tumor-associated myeloid-derived 
suppressor cells (MDSCs). Entinostat reprograms 
MDSCs in pancreatic tumor models, transforming 
immune-resistant tumors into those responsive to 
checkpoint therapies [101]. 

Ubiquitination 
Ubiquitination is the binding of ubiquitin to 

specific amino acids as monomers or polymers. 
Ubiquitin-activating enzymes facilitate this process 
and depend on the synchronized function of three 
essential proteins: the ubiquitin-activating enzyme 
(E1), the ubiquitin-conjugating enzyme (E2), and the 
ubiquitin ligase (E3) [102]. E3 ligases are essential for 
recognizing specific substrate proteins, thereby tightly 
regulating ubiquitination. Deubiquitinating enzymes 
(DUBs) reverse the process. Emerging evidence 
indicates that ubiquitination and deubiquitination 
play key roles in regulating the progression and 
prognosis of pancreatic cancer (Table 4). The dynamic 
equilibrium between ubiquitination and 
deubiquitination regulates protein expression levels, 
ensuring protein function stability, which ultimately 
affects substrate activity [103, 104]. 

 

Table 4. Identifying ubiquitination and deubiquitination targets 
associated with PDAC 

Target Function in cancer Reference 
USP8 USP8 interacts with PD-L1 to inhibit its ubiquitination 

proteasome degradation 
[111] 

USP10 USP10 inhibits YAP1 ubiquitination and degradation to 
promote Cyr61 expression, which induces immune escape 
and promotes growth and metastasis of PAAD 

[109] 

USP25 USP25 regulates HIF-1α transcriptional activity and regulates 
metabolic reprogramming, promoting PDAC cell growth 

[163] 

USP22 USP22 deubiquitinated PD-L1 and inhibited its proteasome 
degradation 

[164] 

cGAS The ubiquitination degradation of cGAS inhibited the 
activation of CGAS-STING signaling pathway and reduced 
the production of pro-inflammatory cytokines and type I 
interferon 

[165] 

β-catenin Ubiquitination degradation of β-catenin leads to cell cycle 
arrest at G1 and promotes apoptosis 

[166] 

eEF1A1 eEF1A1 acts with FBXO32 to promote ubiquitination of 
eEF1A1 at K273, enhancing its activity and increasing protein 
synthesis in PDAC cells 

[167] 

 
The half-life of PD-L1 is regulated by 

ubiquitination and deubiquitination [105]. DUBs alter 
substrate conformation by cleaving ubiquitin 

moieties, facilitating tumor immune evasion. DUBs 
regulate PD-L1 deubiquitination through distinct 
mechanisms. For instance, Ubiquitin-specific 
peptidase 10 (USP10) is a deubiquitinating enzyme 
that exhibits oncogenic effects in multiple tumors 
[106, 107]. YAP1, a key effector of the Hippo pathway, 
is involved in tumorigenesis and immunosuppression 
[107]. USP10 deubiquitinates and stabilizes 
YAP1/Cyr61, thereby increasing PD-L1 and 
galectin-9 in the TME and increasing the M2 
macrophage proportion. This facilitates tumor 
invasion and immune evasion [108, 109]. In addition, 
Ubiquitin-specific peptidase 8 (USP8), another 
deubiquitinase, is associated with T-cell function 
[110]. USP8, a new PD-L1 deubiquitinase, interacts 
with PD-L1, thereby inhibiting its 
ubiquitination-dependent proteasomal degradation in 
pancreatic cancer. USP8 inhibitors combined with 
anti-PD-L1 therapy stimulate cytotoxic T cells and 
improve efficacy [111]. Ubiquitin-specific peptidase 
22 (USP22) is overexpressed in various malignant 
tumors [112-114]. On the one hand, it directly 
regulates the stability of PD-L1 through 
ubiquitination. On the other hand, USP22 
deubiquitinates COP9 signalosome subunit 5 (CSN5) 
and regulates PD-L1 protein levels through the 
USP22-CSN5-PD-L1 axis (Fig. 2) [114]. In the USP22 
knockdown model, a decrease in M2 macrophage 
infiltration was also observed, indicating its multiple 
roles in immune regulation [115]. 

The E3 ubiquitin ligase determines the specificity 
of the ubiquitination reaction by identifying the 
substrate within the ubiquitin-protease system [116]. 
A growing body of research highlights the critical role 
of E3 ligases in modulating tumor immune responses 
[137]. E3 ubiquitin ligases RNF43 and ZNRF3 function 
as tumor suppressors in stem cell homeostasis by 
down-regulating Wnt receptors [117]. Single-cell 
sequencing revealed that RNF43-deficient tumor 
progression was accompanied by complex 
Immunological change, demonstrating low myeloid 
and high lymphocyte TME. The absence of RNF43 
may result in the up-regulation of CTLA4 expression, 
potentially diminishing the efficacy of 
immunotherapy [118]. The linear ubiquitin chain 
assembly complex (LUBAC) can facilitate tumor 
progression in the TME [119]. NF31 inhibition, as a 
component of LUBAC, significantly enhances the 
sensitivity of tumor cells to NK- and T-cell-mediated 
killing. In vivo studies using tumor transplantation 
models have demonstrated that the impairment of 
RNF31 function results in diminished tumor growth 
and enhanced T-cell infiltration and efficacy [120].  
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Figure 2. The function of PD-L1 is regulated by post-translational modifications. This graphic was generated using Figdraw. 

 

Sumoylation 
Sumoylation is a dynamic and reversible PTM 

[121]. Initially discovered in yeast [122]. Five SUMO 
subtypes have been identified in humans [123]. The 
SUMOylation process involves an enzyme cascade 
comprising the SUMO E1 activating enzyme, E2 
conjugating enzyme, E3 ligase, and deSUMOylating 
enzyme. SUMO-1 modifies substrates as a monomer, 
whereas SUMO-2/3 can form poly-SUMO chains 
[124]. SUMOylation is essential for regulating cellular 
functions, including protein activity, subcellular 
localization, and transcriptional regulation [123]. 

Emerging evidence highlights the significant role 
of SUMOylation in pancreatic cancer. SUMOylation 
affects PDAC adaptation and survival by regulating 
essential processes, including cell proliferation and 
migration [125]. Alexander Biederstädt et al. [126] 
found an aggressive pancreatic cancer subtype that 
co-actives MYC and SUMO pathways, which affect 
prognosis. Increased MYC activity increased PDAC 
sensitivity to SUMO inhibitors. 

Previous studies have reported that mitotic 
SENP3 activation can lead to micronuclei formation in 
cancer cells and induce innate immunity through the 
cGAS-STING signaling pathway, thereby inducing 

host antitumor immunity [127, 128]. Analysis of 
pancreatic cancer samples from public databases 
revealed that SUMO1/2 expression is inversely 
associated with the infiltration of various 
tumor-infiltrating immune cells, including activated B 
cells, memory B cells, and effector memory CD8 T 
cells. This correlation encompasses most immune 
modulators, including chemokines, MHC molecules, 
immune promoters, and chemokine receptors [129]. 
Sumit Kumar et al. [129] have confirmed these 
findings. The SUMOylation inhibitor TAK-981 
exhibits dual potential in PDAC treatment. It inhibits 
cell mitosis by targeting the SUMO pathway and 
simultaneously activates interferon signaling, 
enhancing CD8 T cells and NK cell infiltration. 

Conclusion and Discussion 
PTMs are critical events in signal transduction 

and are essential for regulating protein conformation, 
function, movement, and interactions. Beyond the 
classical PTMs discussed above, emerging 
modifications, including β-hydroxybutyrylation and 
lysine crotonylation, have been linked to tumor 
immune response and metabolism [130, 131]. 
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Figure 3. PTMs Regulate the Function of T Cells in pancreatic cancer. The figure is generated with BioRender (https://biorender.com). 

 
Crotonylation is a modification that utilizes 

crotonyl-CoA as the donor [132]. In PDAC, 
crotonylation of metabolic enzymes significantly 
regulates tumor progression. For example, CBP/p300 
facilitates IDH1 crotonylation at Lys224 and Lys236, 
which impacts metabolic levels. Besides, CBP/p300, 
combined with HDAC1 and HDAC3, facilitates 
MTHFD1 decrotonylation at K354 and K553, 
promoting pancreatic cancer development [133]. 
Investigating the mechanisms and functions of 
crotonylation in metabolic enzymes during PDAC 
progression may reveal new therapeutic targets. 

Protein palmitoylation is a dynamic lipid 
modification facilitated by the ZDHHC protein family 
[134]. ZDHHC9 is significantly upregulated in 
pancreatic cancer than in normal tissues. Elevated 
levels of ZDHHC9 in tumor cells enhance the 
membrane distribution and expression level of PD-L1 
and enhance the immune escape ability of tumor cells 
by weakening CD8+ T cell cytotoxicity (Fig. 3) [135].  

Lysine 2-hydroxyisobutyrylation (Khib) is a new 
PTM found in histones that primarily regulates 
chromatin function [136]. KEGG analysis of Khib 
proteins reveals significant enrichment in 
glycolysis/gluconeogenesis pathways. Khib may 
significantly impact PDAC metabolism and facilitate 
tumor progression. The Khib protein inhibitor MG149 
significantly inhibits PDAC migration and invasion, 
indicating that inhibitors targeting Khib proteins 
could be potential therapeutic targets for cancer 

treatment [135]. 
PTMs frequently interact to regulate protein 

functions instead of occurring independently. 
Emerging evidence highlights the extensive 
interaction among various PTMs in disease 
progression and treatment. O-GlcNAcylation, a PTM 
of SIRT7, can inhibit its interaction with REGγ and 
enhance histone deacetylation, consequently 
facilitating pancreatic cancer progression by 
preserving SIRT7 stability [137]. Mdm2, an E3 
ubiquitin ligase, is the primary negative regulator of 
p53, facilitating its degradation through 
ubiquitination [138]. They possess overlapping 
acetylation sites, and acetylated p53 and Mdm2 repel 
each other, thus maintaining p53 stability and 
transcriptional activity [139, 140]. Understanding 
these PTM interactions can provide valuable insights 
into disease mechanisms and reveal new therapeutic 
targets. 

PTMs are essential in the regulation of protein 
function, stability, interactions, and subcellular 
localization. Understanding the role of PTMs in the 
immune microenvironment and immunotherapy of 
pancreatic cancer can improve our comprehension of 
the disease and aid in developing new therapeutic 
strategies. 
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