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Abstract 

Background  Lipids play a critical role in defense against sepsis. We sought to investigate gene expression and lipid-
omic patterns of lipid dysregulation in sepsis.

Methods  Data from four adult sepsis studies were analyzed and findings were investigated in two external datasets. 
Previously characterized lipid dysregulation subphenotypes of hypolipoprotein (HYPO; low lipoproteins, increased 
mortality) and normolipoprotein (NORMO; higher lipoproteins, lower mortality) were studied. Leukocytes collected 
within 24 h of sepsis underwent RNA sequencing (RNAseq) and shotgun plasma lipidomics was performed.

Results  Of 288 included patients, 43% were HYPO and 57% were NORMO. HYPO patients exhibited higher median 
SOFA scores (9 vs 5, p = < 0.001), vasopressor use (67% vs 34%, p = < 0.001), and 28-day mortality (30% vs 16%, 
p = 0.004). Leukocyte RNAseq identified seven upregulated lipid metabolism genes in HYPO (PCSK9, DHCR7, LDLR, 
ALOX5, PLTP, FDFT1, and MSMO1) vs. NORMO patients. Lipidomics revealed lower cholesterol esters (CE, adjusted p = 
< 0.001), lysophosphatidylcholines (LPC, adjusted p = 0.001), and sphingomyelins (SM, adjusted p = < 0.001) in HYPO 
patients. In HYPO patients, DHCR7 expression strongly correlated with reductions in CE, LPC, and SM (p < 0.01), 
while PCSK9, MSMO1, DHCR7, PLTP, and LDLR upregulation were correlated with low LPC (p < 0.05). DHCR7, ALOX5, 
and LDLR correlated with reductions in SM (p < 0.05). Mortality and phenotype comparisons in two external datasets 
(N = 824 combined patients) corroborated six of the seven upregulated lipid genes (PCSK9, DHCR7, ALOX5, PLTP, LDLR, 
and MSMO1).

Conclusion  We identified a genetic lipid dysregulation signature characterized by seven lipid metabolism genes. Five 
genes in HYPO sepsis patients most strongly correlated with low CE, LPC, and SMs that mediate cholesterol storage 
and innate immunity.
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Introduction
Sepsis is a potentially deadly condition stemming from a 
dysregulated systemic response to infection [1]. Lipopro-
tein cholesterols are highly biologically active in sepsis 
[2]. The dysregulated host response to sepsis also leads to 
dysregulation in lipid metabolism, with implications on 
host defense, inflammation, and pro-oxidant lipids [2–5]. 
Lipoprotein cholesterols are generally thought to be pro-
tective in sepsis with pleiotropic effects, immune defense 
properties, and the ability to transport toxins out of cir-
culation [6]. However, in sepsis their levels fall dramati-
cally, with the degree of drop in cholesterol levels being 
predictive of organ failure and ICU mortality [7–9].

Lipidomic and genetic studies have recently shed light 
on lipid metabolic dysregulation in sepsis [10–16]. Chou-
chane et  al. observed a significant reduction in plasma 
lipid levels among community-acquired pneumonia 
(CAP) patients with sepsis [10]. Specifically, cholesterol 
esters and lysophospholipids were reduced in CAP sepsis 
patients, while triacylglycerols were elevated. We recently 
described the lipidomic profiles of our sepsis patients by 
clinical outcomes of chronic critical illness (CCI), early 
death, or rapid recovery [17]. In CCI/early death sepsis 
patients, we observed reductions in fatty acid (FA) 12:0 
but elevations in FA 17:0 and 20:1 compared to rapid 
recovery. We also identified elevations in pro-inflam-
matory lipids including 15-hydroxyeicosatetraenoic 
(HETE), 12-HETE, and 11-HETE (oxidation products 
of arachidonic acid) and the pro-resolving lipid media-
tor, 14(S)-hydroxy docosahexaenoic acid (14S-HDHA) 
in CCI or early death sepsis patients compared to rapid 
recovery. The importance of specific lipid and cholesterol 
metabolism genes including PCSK9, ALOX5, CETP, and 
DHCR7 in sepsis have been observed [11–16]. In most 
cases, upregulation of these genes was associated with 
increased mortality.

To better understand lipid dysregulation in sepsis and 
its contribution to heterogeneity, we previously described 
two sepsis subphenotypes based on lipoproteins and 
clinical profiles [18]. Hypolipoprotein (HYPO) patients 
were found to have lower cholesterol and lipoprotein lev-
els (high density lipoprotein cholesterol, ApoA-I, PON1), 
increased endothelial cell dysfunction, and increased 
mortality and organ failure compared to normolipopro-
tein (NORMO) subphenotype sepsis patients. To better 
understand lipid metabolic dysregulation in sepsis, we 
sought to study gene expression and lipidomic patterns 
of these clinical subphenotypes to potentially identify 
pathways and targets for precision medicine. Our pri-
mary objective was to compare the transcriptomic and 
lipidomic profiles of HYPO vs. NORMO sepsis patients 
to gain a better understanding of lipid metabolic dysregu-
lation in sepsis.

Methods
Study design and patient recruitment and enrollment 
procedures
We analyzed samples and data from three observa-
tional studies and one clinical trial of a lipid emulsion, 
plus additional samples from our research data and tis-
sue bank [17–21]. For the clinical trial, only pre-drug 
patient samples and data were utilized for this analysis 
and thus the clinical trial drug did not have any effects 
on cholesterol levels, organ function, or mortality. All 
sepsis study patients were treated in the emergency 
department (ED) at UF Health Jacksonville between 
November 2016 and July 2022. The “Supplemental Flow 
Diagram” displays relevant studies and analyses per-
formed on each study for reference. Ethical approval 
for all human studies was obtained from the Univer-
sity of Florida Institutional Review Board (IRB-01, 
valid until 01/06/2026), and the studies were registered 
on clinicaltrials.gov (NCT02934997; NCT04576819; 
NCT03405870). Adherence to the STROBE guidelines 
for observational studies was maintained through-
out the analysis [22]. Trained research coordinators or 
providers identified emergency department patients 
who met Sepsis-3 criteria within 24  h of diagnosis. 
Patient recruitment occurred 7  days per week. Exclu-
sion criteria were: (a) significant traumatic brain 
injury (evidence of neurologic injury on CT scan and 
a GCS < 8), (b) refractory shock (likely death within 
12 h), (c) alternative or confounding diagnosis causing 
shock, (d) uncontrollable source of sepsis, (e) patients 
deemed futile care, (f ) severe CHF (NY Heart Associa-
tion Class IV), (g) Child–Pugh Class B or C liver dis-
ease, (h) known HIV with CD4 count < 200 cells/mm3, 
(i) absolute neutrophil count < 500 cells/mm3, (j) organ 
transplant recipient on immunosuppressive agents, (k) 
known pregnancy, (l) inability to obtain informed con-
sent, and (m) diagnosed disorders of lipid metabolism.

Data collection and adjudication
Clinical and laboratory data were collected by trained 
research coordinators and entered into a Research 
Electronic Data Capture (REDCap) database [23]. Col-
lected data included demographics, sources of infection, 
comorbidities, vital signs, sequential organ failure assess-
ment (SOFA) scores, antibiotic timing, fluid volumes, 
vasopressor and mechanical ventilation use, hospital 
and ICU lengths of stay, and 28 and 90-day mortality. 
Clinical diagnoses, outcomes, infection sources, culture 
results, and hospital dispositions underwent group adju-
dication by at least two clinician-investigators. Mortality 
for patients lost to follow-up was determined using the 
Social Security Death Index.
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Blood sampling, RNA sequencing, and RT‑qPCR analysis
Blood samples were collected at enrollment and within 
24  h of sepsis recognition and before any drug admin-
istration for one clinical trial. Clinical laboratory tests 
included lipid levels (total cholesterol, high density lipo-
protein (HDL), low density lipoprotein (LDL), triglyc-
erides) and SOFA score parameters. RNA sequencing 
(RNAseq) was performed using the Illumina NextSeq 
550 system, while RT-qPCR analysis utilized Bio-Rad iQ 
SYBR Green Supermix.

Shotgun lipidomics/lipid panel
The process of lipid extraction for shotgun lipidomic 
analysis has been detailed elsewhere [17]. 25 μl of plasma 
was extracted using a modified Bligh and Dyer method, 
with initial and final ratios of 0.9:2:1 and 1.9:2:1.9 
(water:methanol:chloroform). Samples were spiked with 
70 lipid standards across 17 subclasses before extraction. 
Pooled organic layers from two extractions were dried in 
a Thermo SpeedVac, resuspended in 300 μl of 1:1 metha-
nol/dichloromethane with 10  mM Ammonium Acetate, 
and transferred to robovials for analysis. Samples were 
analyzed on the Sciex 5500™ with DMS device, target-
ing 1450 lipid species across 17 subclasses. Data acqui-
sition and analysis were performed in Analyst 1.7.1 and 
Shotgun Lipidomics Assistant. The 1450 lipid species 
were acquired over two 75 μl infusions, with each MRM 
acquired 20 times. Raw signals were quantified against 
standards and normalized to plasma volume.

The LC–MS/MS method covers 39 bioactive lipids and 
pathway markers from cyclooxygenase and lipoxygenase 
products. Each analyte was paired with one of 19 deu-
terated internal standards or a structurally similar one 
co-eluting within 0.5 min. Details of the methods are pro-
vided in the “Supplemental Tables and Methods” section.

Unsupervised clustering analysis for patient classification
We analyzed data from each prospective study using 
15 features identified previously [18]. As in our origi-
nal study, we scaled the data, capped outliers to ± 3 
standard deviations, and computed linkage matrices 
using Spearman’s correlation and Ward’s Method [18, 
24, 25]. From the linkage matrices, which were com-
puted using unsupervised hierarchical agglomerative 
clustering, we reconfirmed that the first two clusters 
were well segregated and extracted the patient popu-
lations as we did in our previous study [18]. Descrip-
tive statistics for each cluster were overall consistent 
with subphenotype differences observed previously, 
and showed that one cluster had lower cholesterol lev-
els (HDL-C, LDL-C, and total cholesterol) and higher 
total SOFA, and was overall consistent with the HYPO 

subphenotype ("Hypolipoprotein cluster"), while the 
other cluster was consistent with the NORMO sub-
phenotype ("Normolipoprotein cluster"). Statistical 
comparisons between subphenotypes for continuous 
variables were calculated using Wilcoxon Rank-Sum 
tests and comparisons for categorical variables were 
calculated using Chi-Squared tests.

Data analysis
Transcriptomic and lipidomic data analysis was con-
ducted using R version 4.3.0 (R Core Team 2023, Vienna, 
Austria). Sequencing reads were aligned to the hg38 
genome (GRCh38.p11) using STAR (v.2.7.9a) and fea-
tureCounts (v.2.0.3) [26, 27]. Subsequently, we performed 
differential expression analysis using DESeq2 with a 
negative binomial generalized linear model, adjusting 
for batch effects [28]. Differentially expressed genes were 
identified based on adjusted p-values obtained through 
false discovery rate (FDR) correction using the Benja-
mini–Hochberg method, with a significance threshold set 
at less than 0.05 [29]. We focused on a set of 47 a priori 
lipid metabolism genes [16]. To explore the importance 
of significant lipid genes, we employed a Random Forest 
with the default settings to predict HYPO vs. NORMO 
based on these genes [30].

To further investigate transcriptomic findings, we 
obtained publicly available microarray data from a study 
by Scicluna et  al. from Refine.Bio [31] and an RNAseq 
study by Baghela et al. from the Sequence Read Archive. 
[32, 33] Transcripts were quantified using Salmon [34] 
and tximport [35]. We performed differential expres-
sion analysis using limma [36] for microarray data and 
DESeq2 [28] for RNAseq data. To correct for multiple 
testing, we applied the Benjamini–Hochberg method to 
control the FDR across all genes. Correlation analysis was 
conducted using the Pearson correlation coefficient.

Lipidomics and lipid panel data were analyzed using 
two-sample t-tests with FDR correction via the Ben-
jamini–Hochberg method [27]. For shotgun lipidom-
ics, we analyzed 355 lipids after filtering out those with 
missing values. For the lipid panel, we retained 7 lipids 
with at least 85% completeness, using the R package mice 
for multiple imputations on missing data [29]. This pro-
cess created 5 imputed datasets with 10 iterations each. 
Adjusted p-values were aggregated using the Cauchy 
combination rule [30]. For survival analysis, we com-
pared HYPO and NORMO subphenotypes using a log-
rank test.

Results
Data from 288 prospectively enrolled sepsis patients were 
analyzed. The median age was 63 years (IQR 56–72.9) and 
53% of participants were male. Among enrolled patients, 
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51% were Black and 46% were White. The most common 
comorbidities were diabetes mellitus, chronic obstructive 
pulmonary disease, and end-stage renal disease. Median 
total cholesterol, HDL-C, and LDL-C levels for the whole 
cohort were 91.6 (IQR 74–122), 26 (IQR 15–38), and 40.4 
(IQR 26.0–61.0) mg/dL, respectively. The median SOFA 
score for the overall cohort was 7 (IQR 4–10), and nearly 
half of all patients were mechanically ventilated, while 
over one-third required vasopressors. Twenty-eight-day 
mortality was 22%. Demographics, cholesterol levels, 
and clinical features are presented in Table 1. Sources of 
infection are presented in Supplemental Table 1.

HYPO patients were clinically discernible from 
NORMO patients in several ways. A Seaborn cluster-
map provides a visual representation of the 15 defining 
features of HYPO and NORMO subphenotypes (Sup-
plemental Fig.  1). The 15 features included triage tem-
perature, triage systolic blood pressure, total cholesterol, 
LDL-C, HDL-C, paraoxonase-1 (PON1) activity, apoli-
poprotein (ApoA-I) levels, coagulation SOFA, intercellu-
lar adhesion molecule-1 (ICAM-1) level, hepatic SOFA, 
renal SOFA, total SOFA, cardio SOFA, neuro SOFA, 
and respiratory SOFA. HYPO patients exhibited lower 
total cholesterol (78, IQR 64–97.3 vs. 107, IQR 87–133.8, 
p < 0.001), HDL-C (18, IQR 10–30.9 vs. 32, IQR 20–42.5, 

Table 1  Clinical features and cholesterol levels

Comparison of clinical features including demographics, cholesterol levels, disease severity, and outcomes by HYPO vs. NORMO phenotypes. Rapid recovery was 
defined as clinical improvement and hospital discharge within 14 days, early death as in-hospital death within 14 days, and chronic critical illness (CCI) as intensive 
care unit stay of at least 14 days with organ dysfunction. HYPO = Hypolipoprotein; NORMO = Normolipoprotein; COPD = Chronic Obstructive Pulmonary Disease; 
ESRD = End Stage Renal Disease; HIV = Human Immunodeficiency Virus; IQR = Interquartile Range; HDL = High Density Lipoprotein; LDL = low density lipoprotein; 
SOFA = Sequential Organ Failure Assessment; ICU LOS = Intensive Care Unit Length of Stay

Total cohort (n = 288) HYPO cohort (n = 125) NORMO cohort (n = 163) p

Age (median [IQR]) 63.0
[56.0, 72.9]

64.0
[56.4, 73.0]

63.0
[55.3, 71.0]

0.534

Sex (n, %)

 Male 154 (53%) 62 (50%) 92 (56%) 0.249

 Female

Race (n, %)

 Black 148 (51%) 62 (50%) 86 (53%) 0.862

 White 133 (46%) 60 (48%) 73 (45%)

 Other 7 (2%) 3 (2%) 4 (2%)

Comorbidities

 COPD (n, %) 54 (19%) 23 (18%) 31 (19%) 0.894

 Diabetes (n, %) 113 (39%) 49 (39%) 64 (39%) 0.991

 ESRD (n, %) (42 missing) 29 (10%) 13 (10%) 16 (10%) 0.804

 Cancer (n, %) 22 (8%) 6 (5%) 16 (10%) 0.112

 HIV (n, %) 9 (3%) 3 (2%) 6 (4%) 0.536

 Statin use (n, %) 110 (38%) 45 (36%) 65 (40%) 0.571

Cholesterol levels

 Total Cholesterol (median [IQR]) (2 missing) 91.6 [74.0, 122.0] 78.0 [64.0, 97.3] 107.0 [87.0, 133.8]  < 0.001

 HDL-C (median [IQR]), mg/dL 26.0 [15.0, 38.0] 18.0 [10.0, 30.9] 32.0 [20.0, 42.5]  < 0.001

 LDL-C (median [IQR]) (7 missing), mg/dL 40.4 [26.0, 61.0] 29.0 [19.5, 42.0] 48.5 [34.1, 71.0]  < 0.001

 Triglycerides (median [IQR]) (2 missing), mg/dL 114.0 [79.3, 153.0] 122.5 [84.3, 161.5] 108.5 [75.4, 145.8] 0.100

Severity, outcomes and clinical management

 SOFA Score (median [IQR]) 7.0 [4.0, 10.0] 9.0 [7.0, 11.0] 5.0 [4.0, 7.5]  < 0.001

 Vasopressor Use (n, %) 140 (49%) 84 (67%) 56 (34%)  < 0.001

 Mechanical Ventilation (n, %) 104 (36%) 51 (41%) 53 (33%) 0.147

 ICU LOS (median [IQR]) (3 missing) 4.0 [1.0, 7.0] 4.0 [2.0, 8.3] 3.0 [0.0, 6.0] 0.001

 28-Day Mortality (n, %) (1 missing) 64 (22%) 38 (30%) 26 (16%) 0.004

Outcome (n, %)

 Chronic Critical Illness 51 (18%) 25 (20%) 26 (16%) 0.019

 Early Death 35 (12%) 22 (18%) 13 (8%)

 Rapid Recovery 202 (70%) 78 (62%) 124 (76%)
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p < 0.001), and LDL-C (29, IQR 19.5–42 vs. 48.5, IQR 
34.1–71, p < 0.001) levels (mg/dL, Table  1) compared to 
NORMO. HYPO patients also had higher median SOFA 
scores (9, IQR 7–11 vs 5, IQR 4–7.5, p < 0.001), increased 
vasopressor use (67% vs 34%, p < 0.001), longer ICU 
lengths of stay (4 vs 3 days, p = 0.001), and higher 28-day 
mortality (30% vs 16%, p = 0.004) (Table 1) compared to 
NORMO. There was no significant differences in statin 
use vs. non-use in HYPO vs. NORMO patients, and there 
were no associated differences in SOFA score or mortal-
ity (Supplemental Table 2).

RNAseq was conducted on samples from 184 patients. 
Of these, 87 (47%) were classified as HYPO and 97 (53%) 
were NORMO. Seven lipid metabolism genes were 
upregulated in HYPO (Table  2) compared to NORMO 
patients. These genes were Proprotein Convertase Sub-
tilisin/Kexin Type 9 (PCSK9), 7-Dehydrocholesterol 
Reductase (DHCR7), Low-Density Lipoprotein Receptor 
(LDLR), Arachidonate 5-Lipoxygenase (ALOX5), Plasma 

Phospholipid Transfer Protein (PLTP), Farnesyl-Diphos-
phate Farnesyltransferase 1 (FDFT1), and Methylsterol 
Monooxygenase 1 (MSMO1). The volcano plot (Fig.  1A) 
illustrates upregulated genes, with lipid genes annotated, 
in HYPO vs. NORMO patients. Figure 1B demonstrates 
the relative up vs. downregulation of each gene contrib-
uting to the HYPO vs. NORMO subphenotypes. Fig-
ure 1C displays a Seaborn clustermap of gene expression 
by subphenotype. Of the 47 a priori lipid-related genes of 
interest (Supplemental Table 3), 37 were cataloged in the 
KEGG database. The primary pathways associated with 
these significant genes include steroid biosynthesis, cho-
lesterol metabolism, and arachidonic acid metabolism as 
detailed in the Supplemental Data File. Three additional 
KEGG pathways—ovarian steroidogenesis, serotonergic 
synapse, and efferocytosis—were also enriched in our 
analysis when using significance criterion for significant 
genes to an adjusted p = 0.2. Supplemental Fig. 2 displays 
boxplots of the upregulated genes in HYPO vs. NORMO 

Fig. 1  RNA-seq analysis comparing HYPO vs. NORMO. A Volcano plot displaying results from the differential expression analysis of 26,878 genes 
between HYPO and NORMO. Each dot represents a gene, with colors indicating significance, using a Benjamini-Hochberg-adjusted P value cutoff 
of less than 0.05 (dashed line). The x-axis denotes the log2 fold change for HYPO vs. NORMO, and the y-axis shows the Benjamini-Hochberg-adjusted 
-log10 P value. B Bar plot showing the log2 fold change of 40 lipid genes for HYPO vs. NORMO. Seven non-expressed lipid genes have been 
excluded from the analysis. Colors represent the significance of these genes, determined by the Benjamini-Hochberg-adjusted P value, 
adjusted for 26,878 comparisons. C Heatmap showing the expression of 40 lipid genes. Seven non-expressed lipid genes have been excluded 
from the analysis. The color scale corresponds to z-scored, log2-transformed gene expression values for each sample. Significance was determined 
by the Benjamini-Hochberg-adjusted P value, with a cutoff of 0.05, adjusted for 26,878 comparisons
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patients as well as the mean contribution of each gene to 
the HYPO subphenotype via the Gini coefficient (GC).

Shotgun lipidomics analysis was performed on 271 
patients, with 116 (43%) classified as HYPO and 155 
(57%) classified as NORMO. HYPO patients showed 
significantly lower levels of specific classes of lipids 
including cholesterol esters (CE, adjusted p < 0.001), 
sphingomyelins (SM, adjusted p < 0.001), and lysophos-
phatidylcholines (LPC, adjusted p < 0.001) (Supplemental 
Table 4). Individual lipids that were significantly different 
between classes are displayed in Supplemental Table  5, 
most of which had lower levels in HYPO vs. NORMO 
patients. Figure  2A shows the Seaborn clustermap of 
lipid classes by HYPO vs. NORMO subphenotype. Fig-
ure  2B shows the differences in lipid classes between 
HYPO and NORMO subphenotypes, while Fig. 2C dem-
onstrates the log2 fold change in individual lipid moieties 
between HYPO vs. NORMO patients. Our signaling lipid 
panel was conducted on 257 patients, with 111 (43%) 
classified as HYPO and 146 (57%) classified as NORMO. 
However, the results were not statistically significant 
between the two cohorts for any signaling lipids (Supple-
mental Table 6).

To better understand the association between upregu-
lated genes by subphenotype, and specific lipids in the 
shotgun lipidomics experiment, we visually presented 
these data using a correlation matrix (Fig.  3). Here we 
can see that the influence of gene expression differences 
between HYPO and NORMO subphenotypes on indi-
vidual lipid levels becomes apparent. Specifically, DHCR7 
and LDLR upregulation in the HYPO cohort was strongly 
correlated with reduced levels of CE 14:0, 16:0, 16:1, 
CE 18:0, CE 18:1, CE 18:2, and CE 20:3, compared to 
the NORMO cohort. Upregulation of PCSK9, MSMO1, 
DHCR7, PLTP, and LDLR in HYPO patients was also 

more strongly correlated with upregulation of LPC’s 18:0, 
18:1, and 18:2 compared to NORMO patients overall. 
DHCR7 upregulation in HYPO was also most strongly 
correlated with low SM levels, specifically d18:1/22:1 and 
d18:1/24:0. Interestingly, PCSK9 expression in NORMO 
patients was more strongly associated with low SM levels 
than in HYPO patients and was also significantly associ-
ated with low LPCs.

We compared the long-term survival of HYPO vs. 
NORMO patients. Using the log-rank test with 95% 
confidence intervals and comparing survival of patients 
out to 1 year, 6-month survival was 63.7% (95% CI 54.5–
74.5) for HYPO patients, and 78.6% (95% CI 71–87) for 
NORMO patients (p = 0.0085). At one year, survival was 
56.2% (95% CI 46.1–68.6) for HYPO patients and 73% 
(95% CI 64.4–82.7) for NORMO patients (p = 0.0067, 
Supplemental Fig. 3).

External dataset comparisons
Differential expression analysis was conducted on two 
external datasets [32, 33]. The study by Scicluna et  al. 
included sepsis patients who were admitted to two ICUs 
in the Netherlands, and described four phenotypes based 
on gene expression patterns, designated MARS 1, 2, 3, 
and 4. Patients with MARS 1 or 2 phenotypes had the 
highest burden of organ failure, shock, and the highest 
mortality compared to patients with MARS 3 or 4 pheno-
types. We performed differential expression analysis on 
479 MARS sepsis patients focused on our 47 a priori lipid 
metabolism genes. Comparing 28-day non-survivors to 
survivors, non-survivors had upregulation of two lipid 
metabolism genes TM7SF2 and APOA1 at the adjusted 
p < 0.05 level, and five genes FDFT1, LDLR, MSMO1, 
EBP, and LOX at adjusted p < 0.2. Three of these genes, 
FDFT1, LDLR, and MSMO1, were the same as those 

Table 2  Differentially expressed lipid metabolism genes

Differentially expressed lipid metabolism genes in HYPO vs. NORMO patients. Seven out of the 47 a priori selected genes were differentially upregulated in HYPO 
compared to NORMO patients

PCSK9 Proprotein Convertase Subtilisin/Kexin Type 9; DHCR7 7-Dehydrocholesterol Reductase; LDLR Low-Density Lipoprotein Receptor; ALOX5 Arachidonate 
5-Lipoxygenase; PLTP Phospholipid Transfer Protein; FDFT1 Farnesyl-Diphosphate Farnesyltransferase 1; MSMO1 Methylsterol Monooxygenase 1

^ Fold change was calculated using mean of HYPO (n = 87)/mean of NORMO (n = 97)

Significance codes: *p < 0.0001, **p < 0.00001, ***p < 0.000001

Lipid gene Total cohort mean (n = 184) Log2 fold change^ (Standard 
error)

p-value Adjusted p-value

PCSK9 68.231 2.217 (0.396)  < 0.001***  < 0.001*

DHCR7 253.077 1.023 (0.192)  < 0.001***  < 0.001*

LDLR 676.876 0.848 (0.174)  < 0.001**  < 0.001

ALOX5 23,052.467 0.382 (0.089)  < 0.001* 0.001

PLTP 35.984 0.529 (0.137)  < 0.001 0.003

FDFT1 966.266 0.186 (0.049)  < 0.001 0.004

MSMO1 166.634 0.448 (0.122)  < 0.001 0.005
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identified in the HYPO subphenotype. When comparing 
the more severe MARS 1 and 2 patients to MARS 3 and 4 
patients, MARS 1 and 2 patients had upregulation of six 
of the seven genes as our HYPO subphenotype including 
ALOX5, FDFT1, LDLR, MSMO1, DHCR7, and PCSK9 at 
adjusted p < 0.05. We subsequently applied the random 
forest models to predict HYPO and NORMO groups 
within the MARS data. The more critically ill MARS 1 
or 2 group contained more HYPO (52%, 159/308) than 
NORMO patients, while the less critically ill MARS 3 
or 4 group contained fewer HYPO (20%, 34/171) than 
NORMO patients (p < 0.001). However, the proportion 
of predicted HYPO among 28-day non-survivors (46%, 
53/114) vs. survivors (38%, 140/365) was not significantly 
different (p = 0.15).

The second study, by Baghela et al., included 345 sep-
sis patients. We compared patients by in-hospital mor-
tality and found that five of our seven genes, PCSK9, 

DHCR7, ALOX5, PLTP, and MSMO1 were upregulated 
(adjusted p < 0.2). ALOX15 was the most downregu-
lated lipid metabolism gene in non-survivors in this 
cohort, as it was in HYPO patients. These comparisons 
are displayed in Fig.  4. Finally, we performed a correla-
tion analysis and found that gene expression patterns of 
HYPO vs. NORMO correlated with MARS 1/2 vs. MARS 
3/4 expression patterns (r = 0.335 and p = 0.043), and in-
hospital mortality in the study by Baghela et al. (r = 0.737, 
p < 0.001). Similarly, when comparing by 28-day mortal-
ity of patients in our study, these were still correlated 
with MARS 1/2 vs. 3/4 expression patterns (r = 0.523, 
p = 0.001), and in-hospital mortality in the study by 
Baghela et al. (r = 0.552, p < 0.001). Finally, we applied the 
random forest models to predict the HYPO vs. NORMO 
patients within the study and examined the difference 
in the predicted proportion of HYPO patients by in-
hospital mortality. We found that the difference was not 

Fig. 2  Lipidomics analysis comparing HYPO vs. NORMO. A Heatmap showing the abundance of 13 lipid classes analyzed via shotgun lipidomics. 
The color scale corresponds to z-scored concentration values for each sample. Significance was determined by the Benjamini-Hochberg-adjusted 
P value, with a cutoff of 0.05, adjusted for 13 lipid class comparisons. B Ridgeline plot comparing lipid species between HYPO and NORMO. Each 
dot represents an individual lipid species within its corresponding lipid class (y-axis). The color of the dot indicates whether the lipid is significantly 
altered, with a cutoff of 0.05 for the Benjamini-Hochberg-adjusted P value, adjusted for all 355 lipid species comparisons. The x-axis represents 
the log2 fold change for HYPO vs. NORMO. Four lipid classes (PA, LacCER, PG, and PS) are hidden due to having fewer than 3 individual lipid species 
within the class. C Volcano plot displaying the differential abundance of 355 lipids between HYPO and NORMO. Each dot represents a lipid species, 
with colors indicating significance using a Benjamini-Hochberg-adjusted P value cutoff of less than 0.05. The x-axis denotes the log2 fold change 
for HYPO vs. NORMO, and the y-axis shows the Benjamini-Hochberg-adjusted -log10 P value
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Fig. 3  Correlation analysis between individual lipids and HYPO vs. NORMO subphenotypes by expression of the 7 significant genes. The correlation 
matrix displays significant correlations between genes in overall analysis (all patients, N = 168), HYPO patients only (N = 79), and NORMO patients 
only (N = 89), for patients with RNAseq data. Significant correlations are indicated as follows: ***p < 0.001, **p < 0.01, *p < 0.05). Differences 
in the correlations between specific upregulated genes and individual cholesterol esters (CE), lysophosphatidylcholines (LPC), phosphatidylcholines 
(PC), and sphingomyelins (SM) are observable between HYPO and NORMO patients, with the most significant differences correlated 
with upregulation of PCSK9, MSMO1, DHCR7, PLTP, and LDLR in HYPO patients

(See figure on next page.)
Fig. 4  Comparison of gene expression patterns in external datasets. A Bar plot showing the log2 fold changes of lipid genes for 28-day 
non-survivors vs. survivors, MARS 1/2 vs. MARS 3/4 (Scicluna et al.), and in-hospital non-survivors vs. survivors (Baghela et al.). Non-expressed 
lipid genes have been excluded from the corresponding analysis. Colors represent the significance of these genes, determined 
by the Benjamini-Hochberg-adjusted P value. B Bar plot showing the log2 fold changes of 40 lipid genes for 28-day non-survivors vs. survivors 
in our study. Seven non-expressed lipid genes have been excluded from the analysis. Colors represent the significance of these genes, determined 
by the Benjamini-Hochberg-adjusted P value. C Correlation between log2 fold changes from validation sets compared to HYPO vs. NORMO in our 
study. The x-axis denotes the log2 fold change for HYPO vs. NORMO in our study, and the y-axis shows the log2 fold changes for MARS 1/2 vs. MARS 
3/4 (Scicluna et al.) and in-hospital non-survivors vs. survivors (Baghela et al.), separately. D Correlation between log2 fold changes from validation 
sets compared to 28-day non-survivors vs. survivors in our study. The x-axis denotes the log2 fold change for 28-day non-survivors vs. survivors 
in our study, and the y-axis shows the log2 fold changes for MARS 1/2 vs. MARS 3/4 (Scicluna et al.) and in-hospital non-survivors vs. survivors 
(Baghela et al.), separately
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significant (p = 0.55), with 35% (18/52) of non-survivors 
classified as HYPO and 29% (86/293) of survivors classi-
fied as HYPO, though the overall number of non-survi-
vors was lower than the Scicluna et al. study.

Fig. 4  (See legend on previous page.)
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Discussion
Our study findings reveal intriguing insights into the 
molecular pathways of lipid dysregulation in sepsis, and 
specifically to our HYPO and NORMO sepsis subphe-
notypes. Seven genes involved in cholesterol biosynthe-
sis, endotoxin clearance, steroid production, and lipid 
metabolism were upregulated in HYPO patients. Lipid-
omics analysis showed significantly lower levels of CEs, 
SMs, and LPCs. The dysregulated lipid and lipoprotein 
metabolic profile observed in HYPO patients suggests 
a sepsis subphenotype where cholesterol is being elimi-
nated from circulation to facilitate bacterial toxin clear-
ance, and/or is being utilized as substrate for steroid 
production, cell membranes, and other physiological 
needs to defend against sepsis. In two external datasets, 
compared by mortality and sepsis severity, we identi-
fied six of the same upregulated genes- PCSK9, DHCR7, 
ALOX5, PLTP, LDLR, and MSMO1.

This study is the first to conduct comprehensive analy-
ses integrating large-scale RNA sequencing (RNAseq) 
and lipidomics data into one study from a diverse sepsis 
cohort using a lipoprotein-based phenotyping approach. 
The advantage of our approach is the ability to under-
stand and interpret changes in the plasma lipidome in 
sepsis, in the context of genetic upregulation of specific 
genes. Here, we identified seven upregulated lipid metab-
olism genes in circulating leukocytes in HYPO sepsis 
patients, namely, PCSK9, DHCR7, LDLR, ALOX5, PLTP, 
FDFT1, and MSMO1. Three (PCSK9, LDLR, and PLTP) 
are involved in endotoxin clearance [37–[39]. DHCR7 
catalyzes a critical step in cholesterol biosynthesis [40]. 
FDFT1 is the first enzyme in cholesterol biosynthesis 
[41]. MSMO1 catalyzes a three-step mono-oxygenation 
step, which can be metabolized to cholesterol [42]. Lastly, 
ALOX5 generates 5-HETE, leading to leukotriene pro-
duction [43]. It is unknown whether targeting these genes 
could lead to personalized medicine or if genetic upregu-
lation merely indicates membership into a subphenotype 
of patients with more dysregulated lipid metabolism. Our 
correlation analysis also provided a deeper understand-
ing of the relationship between the upregulation of spe-
cific lipid metabolism genes and individual lipid levels. 
In HYPO patients, DHCR7 expression strongly corre-
lated with reductions in CE, LPC, and SM, while PCSK9, 
MSMO1, DHCR7, PLTP, and LDLR upregulation were 
correlated with low LPC. DHCR7, ALOX5, and LDLR 
correlated most strongly with reductions in SM. Inter-
estingly, PCSK9 in NORMO patients was also associated 
with low SMs and LPCs and ALOX5 was associated with 
elevated triglyceride TG57:10-FA22:6.

Targeting lipid metabolism genes as novel therapy 
for sepsis may have potential. Engoren et  al. unveiled 
an association between the PCKS9 variant and a nearly 

two fold increase in the likelihood of developing sep-
sis, as defined by both the Sepsis-2 and Sepsis-3 criteria 
[11]. Presently, clinical trials are underway of two PCKS9 
inhibitors, alirocumab (NCT03634293) and evolocumab 
(NCT03869073), aimed at evaluating their efficacy in 
reducing mortality due to sepsis. Reyes et  al. studied 
immune dysregulation in bacterial sepsis by cluster-
ing gene expression profiles [12]. They found a unique 
expanded CD14 + monocyte state in septic patients, 
which could distinguish them from controls using pub-
lic transcriptomic data. ALOX5, a marker gene highly 
expressed in this monocyte group, was also identified 
in our study, suggesting its potential for classifying sep-
sis patients from those with sterile inflammation. Fur-
thermore, Zhang et  al. identified ALOX5 as one of the 
15 mRNAs likely to demonstrate strong diagnostic util-
ity for pediatric sepsis [13]. The findings of these studies, 
combined with the results of this study, provide compel-
ling evidence of the association between upregulation 
of specific lipid genes in septic patients and a subgroup 
of patients with dysregulated lipid metabolism at risk of 
poor outcomes.

Our findings across two external datasets with 824 
combined patients, demonstrate the importance of 
the seven identified lipid genes. Several of the genes 
expressed in our subphenotype were upregulated in 
both cohorts for the mortality comparison, though 
more strongly in the study by Baghela et  al. FDFT1, 
LDLR, and MSMO1 were in common for both mortal-
ity comparisons, indicating common upregulation of 
cholesterol biosynthesis and clearance pathways in criti-
cally ill sepsis patients with increased mortality. When 
comparing our 28-day mortality expression patterns to 
that of Scicluna et  al. and Baghela et  al., we found that 
DHCR7 and ALOX5 (adjusted p < 0.05), as well as LDLR, 
SQLE, MSMO1, PLTP, and FDFT1 were also upregu-
lated (adjusted p < 0.2). However, most striking was 
the uniform upregulation of five of our seven genes in 
the MARS 1 and 2 vs. 3 and 4 patients, which showed 
six of the same genes upregulated as seen in HYPO vs. 
NORMO patients at the adjusted p < 0.05 level (ALOX5, 
FDFT1, LDLR, MSMO1, DHCR7, PCSK9). This may indi-
cate common lipid dysregulation pathways between these 
subphenotypes and among sepsis patients with greater 
disease severity. The downregulation of ALOX15, both in 
our HYPO vs. NORMO comparison, and in the in-hos-
pital mortality comparison for the Baghela et  al. study, 
may indicate important downregulation of pro-resolving 
anti-inflammatory lipids and metabolites of eicosanoids, 
which may potentiate the dysregulated inflammation of 
sepsis. [44]

Our lipidomics analysis revealed findings consist-
ent with Chouchane et  al. [10] They observed reduced 
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cholesterol esters and lysophospholipids in sepsis 
patients and noted that cholesterol ester recovery at 
4 days was associated with reduced 30-day mortality. Our 
HYPO subphenotype similarly demonstrated reduced CE 
levels compared to NORMO in the first 24 h. Cholesterol 
esters are a storage form of free cholesterol in plasma 
[45]. Taken together with the upregulation of choles-
terol biosynthesis genes (DHCR7), and genes that speed 
the elimination of cholesterol from circulation (PCSK9, 
LDLR), reduced CE levels likely indicate cholesterol uti-
lization and elimination from circulation. Specifically, 
free cholesterol is likely being utilized as a substrate for 
steroid production and cell membrane production and 
to meet other physiologic needs, while also being elimi-
nated via hepatic SR-BI receptors bound to HDL and 
LDL for bacterial toxin clearance [45]. The reduced lev-
els of lysophosphatidylcholines (LPCs) and sphingomy-
elins (SMs) in HYPO sepsis may also indicate a decrease 
in innate immunity [46–48]. LPCs, a major component 
of oxidized LDL, are known to be reduced in sepsis non-
survivors [49]. They play a protective role against lethal 
sepsis by stimulating neutrophils to eliminate invad-
ing pathogens through an H2O2-dependent mechanism 
[46]. SMs are a major plasma and cell membrane com-
ponent [50]. Certain bacterial toxins trigger the conver-
sion of SMs to ceramides by sphingomyelinase, leading 
to localization of lysosomes and release of cathepsin B 
and D from lysosomes in the cytoplasm, leading to the 
formation of 1L-1β and TNF-α [48]. SMs conversion to 
ceramides also stimulates neutrophil extracellular trap 
(NET) formation, which can be augmented by drugs such 
as tamoxifen (FDA-approved breast cancer drug) [51].

Our study highlights critical lipid dysregulation path-
ways in sepsis with significant potential for precision 
medicine. In the HYPO sepsis subphenotype, seven 
upregulated genes involved in cholesterol biosynthesis, 
endotoxin clearance, and lipid metabolism were identi-
fied, along with decreased levels of cholesterol esters 
(CEs), sphingomyelins (SMs), and lysophosphatidylcho-
lines (LPCs). This dysregulation suggests that cholesterol 
is redirected for essential immune functions and bacterial 
toxin clearance. Comparison across two external datasets 
supports the clinical relevance of these genes, particu-
larly in relation to mortality risk.

By integrating lipid-related biomarkers into diagnostic 
tools, we can facilitate early detection and risk stratifica-
tion for high-risk patients. Identifying distinct sepsis sub-
phenotypes with varying morbidity and mortality levels 
enables stratified care tailored to specific lipid profiles. 
Moreover, ongoing advancements in health informatics 
make it feasible to integrate multiomic data into elec-
tronic health record (EHR) systems, allowing for the 
development of risk stratification algorithms that classify 

patients by subphenotype and guide personalized care. 
Targeting genes like PCSK9 and DHCR7 could optimize 
treatments and improve outcomes, paving the way for a 
precision approach to sepsis management.

This study’s limitations include its single-site nature, 
potentially limiting generalizability. However, the sizable 
and diverse cohort, balanced by age, sex, and race, and 
genetic validation in two independent cohorts strength-
ens the findings. The observational design limits causal 
inference, identifying only associations between genes 
or lipids and each subphenotype. While the study pro-
vides valuable insights into transcriptomic and lipidomic 
dysregulation in HYPO and NORMO sepsis patients, 
further research is needed to establish causal relation-
ships. An additional limitation is the absence of protein 
expression and enzymatic activity measurements for the 
differentially expressed lipid metabolism genes. While 
the study suggests that upregulation of these genes may 
lead to reduced levels of specific lipids, the activity of the 
expressed enzymes was not assessed. Measuring protein 
or enzymatic activity could be a next step toward estab-
lishing causality.

Conclusion
In this study, HYPO sepsis patients had upregulation 
of seven lipid metabolism genes for cholesterol biosyn-
thesis and clearance, and regulation of inflammation, of 
which six were identified in validation studies by mor-
tality and phenotype comparisons. Five genes in HYPO 
sepsis patients were most strongly correlated with low 
CE, LPC, and SMs that mediate cholesterol storage and 
innate immunity. HYPO patients were clinically discern-
ible by higher disease severity and lower one-year sur-
vival. Future studies will investigate the potential of these 
genes and lipids to serve as targets for sepsis precision 
medicine.
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