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Abstract 

Objective  This study aims to evaluate the effectiveness of deep learning features derived from multi-sequence 
magnetic resonance imaging (MRI) in determining the O6-methylguanine-DNA methyltransferase (MGMT) promoter 
methylation status among glioblastoma patients.

Methods  Clinical, pathological, and MRI data of 356 glioblastoma patients (251 methylated, 105 unmethylated) were 
retrospectively examined from the public dataset The Cancer Imaging Archive. Each patient underwent preoperative 
multi-sequence brain MRI scans, which included T1-weighted imaging (T1WI) and contrast-enhanced T1-weighted 
imaging (CE-T1WI). Regions of interest (ROIs) were delineated to identify the necrotic tumor core (NCR), enhancing 
tumor (ET), and peritumoral edema (PED). The ET and NCR regions were categorized as intratumoral ROIs, whereas 
the PED region was categorized as peritumoral ROIs. Predictive models were developed using the Transformer algo-
rithm based on intratumoral, peritumoral, and combined MRI features. The area under the receiver operating charac-
teristic curve (AUC) was employed to assess predictive performance.

Results  The ROI-based models of intratumoral and peritumoral regions, utilizing deep learning algorithms on multi-
sequence MRI, were capable of predicting MGMT promoter methylation status in glioblastoma patients. The com-
bined model of intratumoral and peritumoral regions exhibited superior diagnostic performance relative to individual 
models, achieving an AUC of 0.923 (95% confidence interval [CI]: 0.890 – 0.948) in stratified cross-validation, with sen-
sitivity and specificity of 86.45% and 87.62%, respectively.

Conclusion  The deep learning model based on MRI data can effectively distinguish between glioblastoma patients 
with and without MGMT promoter methylation.
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Key Points 

1. The MRI peritumoral features have a beneficial effect on the diagnosis of MGMT promoter methylation status 
in glioblastoma.

2. The combination of intratumoral and peritumoral T1WI and CE-T1WI MRI features has the optimal diagnostic accu-
racy for evaluating the methylation status of MGMT promoter in glioblastoma.

3. The developed Transformer deep learning model improved diagnostic efficacy of MGMT promoter methylation 
status.

Keywords  Glioblastoma, O6-methylguanine-DNA methyltransferase, Magnetic resonance imaging, Deep learning

Introduction
Glioblastoma ranks among the most invasive brain 
tumors, characterized by a high degree of malignancy [1, 
2]. Despite progress in medical treatments such as sur-
gery, radiotherapy, and chemotherapy, the prognosis for 
glioblastoma patients remains dismal [3]. Temozolomide 
(TMZ), a standard component of glioblastoma treat-
ment regimens, shows therapeutic efficacy closely linked 
to the methylation status of O6-methylguanine-DNA 
methyltransferase (MGMT) [4, 5]. MGMT, a DNA repair 
enzyme, experiences inhibited DNA repair activity when 
its promoter is methylated, rendering tumor cells more 
susceptible to the cytotoxic effects of TMZ [6]. There-
fore, MGMT promoter methylation level serves as a cru-
cial indicator of the effectiveness of alkylating agents in 
controlling glioblastoma cells [7]. The primary method 
for determining MGMT promoter methylation status 
currently involves surgical sampling, followed by detec-
tion via methylation-specific polymerase chain reac-
tion (PCR), pyrosequencing (both detecting the MGMT 
promoter region directly), or immunohistochemistry 
(identifying MGMT protein expression) [4]. However, 
these methods are time-consuming and pose potential 
risks of neurological damage during biopsy. Given the 
highly heterogeneous nature of glioblastoma, pathologi-
cal tissue obtained via biopsy may not fully represent the 
tumor’s biological characteristics. Magnetic resonance 
imaging (MRI) effectively illustrates the invasive extent 
and mass effect of glioblastoma, making it the preferred 
imaging modality for its examination [8–10]. Research 
has indicated that imaging features of the tumor micro-
environment provide additional valuable insights into 
the tumor’s biological characteristics [11, 12]. Hence, this 
study aims to investigate the efficacy of assessing MGMT 
promoter methylation status through intratumoral and 
peritumoral imaging features derived from multipara-
metric MRI.

In recent years, artificial intelligence (AI) has emerged 
as a novel non-invasive approach for tumor research 
[13, 14]. By establishing associations between imaging 
data and clinical data, AI has enhanced the precision of 

tumor diagnosis and treatment, demonstrating exten-
sive potential in guiding clinical decision-making [15]. 
The Transformer algorithm, a deep learning model rel-
evant to brain tumor diagnosis and treatment, has gar-
nered significant attention from researchers [16]. The 
Transformer model employs attention mechanisms to 
accelerate training speed, enabling effective processing 
and analysis. Studies have indicated that Transformers 
are pivotal in brain tumor MRI analysis, with substantial 
implications for pathological grading based on MRI and 
tumor tissue sections, prediction of brain tumor molecu-
lar expression, and forecasting brain tumor radiotherapy 
outcomes [17–19]. Consequently, this study intends to 
utilize the Transformer algorithm to extract intratumoral 
and peritumoral imaging features from MRI and develop 
a predictive model for assessing MGMT promoter meth-
ylation status in glioblastoma patients, aiming to offer 
crucial informational guidance for related clinical diag-
nosis and treatment.

Materials and methods
Patient information
This retrospective study was conducted in accordance 
with the principles of the Declaration of Helsinki, utiliz-
ing case data from The Cancer Imaging Archive (TCIA) 
[20, 21]. The inclusion criteria included: (1) comprehen-
sive imaging, pathological, and clinical data; (2) patholog-
ical confirmation of glioblastoma (WHO CNS 2021) with 
a definitive diagnosis of MGMT promoter methylation 
status (in house method developed by UCSF clinical labs, 
https://​genom​ics.​ucsf.​edu/​conte​nt/​mgmt-​promo​ter-​
methy​lation-​assay); (3) surgical intervention within one 
week following MRI examination; and (4) absence of any 
prior surgical, radiotherapy, or chemotherapy treatments 
before the MRI examination. The exclusion criterion was 
defined as poor visualization of lesions in MRI images, 
impeding data analysis. Consequently, 356 patients were 
incorporated into the study, with relevant clinical infor-
mation, such as patient gender and age, documented 
(Fig. 1).

https://genomics.ucsf.edu/content/mgmt-promoter-methylation-assay
https://genomics.ucsf.edu/content/mgmt-promoter-methylation-assay
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Inspection methods
All preoperative MRI was performed on the same 
model of 3.0  T scanner (Discovery 750, GE Healthcare, 
Waukesha, Wisconsin, USA) and a dedicated 8-channel 
head coil (Invivo, Gainesville, Florida, USA). The imag-
ing protocol included T1-weighted imaging (T1WI) and 
contrast-enhanced T1-weighted imaging (CE-T1WI). All 
tumors were tested for MGMT methylation status using 
a methylation sensitive quantitative PCR assay.

Image segmentation
The T1WI and CE-T1WI sequences were imported into 
ITK-SNAP software (Version 3.60, http://​www.​itk-​snap.​
org). Initially, all lesions were segmented automati-
cally utilizing a segmentation algorithm focusing on the 
region of interest (ROI) of the entire primary lesion. 
Subsequently, these segmentation outcomes were manu-
ally refined by a radiologist with five years of experience, 
alongside an associate chief radiologist with 12  years of 

experience. Figure  2 illustrates the lesion segmentation 
process. The segmented areas encompassed the necrotic 
tumor core (NCR), enhancing tumor (ET), and peritu-
moral edema (PED). In this investigation, the segmented 
ET and NCR regions were categorized as intratumoral 
ROI, whereas the PED region was classified as peritu-
moral ROI.

Development of Transformer deep learning model
Image data preprocessing
Initially, image data are preprocessed to achieve a stand-
ardized format for the model. T1WI and CE-T1WI 
sequences are co-registered using FSL software (Version 
5.0, https://​fsl.​fmrib.​ox.​ac.​uk) and uniformly resampled 
to an isotropic resolution of 1 mm3. Utilizing the SPM 
tool (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/), skull-stripping 
and random axial mirroring are executed according to a 
standard head MRI data template. Subsequently, image 
normalization is performed, involving cropping to a 

Fig. 1  Flow diagram of the patient selection process

http://www.itk-snap.org
http://www.itk-snap.org
https://fsl.fmrib.ox.ac.uk
https://www.fil.ion.ucl.ac.uk/spm/
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uniform size and rescaling image intensity to a range of 
0 – 1 [22].

Saliency‑aware enhancement of ROI
Image data and ROI are input into the model simulta-
neously. Since the tumor often occupies a small area in 
a brain MRI, a saliency-aware method is introduced to 
emphasize the tumor ROI to allow the model to focus 
on the intratumoral ROIs or peritumoral ROIs. Based on 
tumor masks, the intensity values of pixels in the non-
tumor regions are scaled down by a certain factor (for 
example, 1/3 of their original values in our tests). Con-
sequently, the significant tumor regions are highlighted.

Data partitioning
Exploiting the characteristics of the Transformer, 
input glioblastoma images are segmented into multiple 
patches, each constituting a fixed-size square region.

Embedding layer
Each patch undergoes transformation into a fixed-dimen-
sional vector through linear transformation, a process 
referred to as patch embedding, to facilitate subsequent 
model computations.

Positional encoding
To retain the positional information of patches within 
the image, positional encoding is incorporated into each 
patch, aiding the model’s comprehension of spatial rela-
tionships within the image.

Transformer encoder
An encoder, structured with a series of Transformers, is 
employed to process the embedded vectors. The input 
data are subjected to interaction and transformation 
through multi-head self-attention (MSA) mechanisms 
and multilayer perceptron (MLP) structures.

Decoder
Post-encoding, the data are relayed to the decoder via 
skip connections, progressively generating deep learning 
features.

Feature fusion
The extracted deep learning image features are inte-
grated with clinical features, and the predictive out-
comes for glioblastoma MGMT promoter methylation 
status are generated through fully connected layers.

Training and optimization
Model training and optimization are continuously exe-
cuted throughout the process via backpropagation and 
optimization functions, enhancing its efficacy in predict-
ing glioblastoma MGMT promoter methylation status.

The schematic diagram of the Transformer model are 
shown in Fig. 3. The optimization details for the Trans-
former model in this study are as follows:

In step (c) mentioned above, whereas conventional 
natural language processing employs a Transformer 
for one-dimensional input encoded sequences, this 
research considers glioblastoma imaging data as three-
dimensional input voxels characterized by dimensions 
x ∈ RH×W×D×C (where H , W  , and D represent the reso-
lution, and C represents the number of input channels). 
These voxels are partitioned into flattened, uniform, non-
overlapping patches. Each patch has a resolution of P , 
resulting in a sequence length of N = (H ×W × D)/P3.

In steps (d) and (e) mentioned above, all patches are 
projected into a K-dimensional embedding space via a 
linear layer, maintaining consistency across the Trans-
former layers. To retain the spatial feature information of 
each extracted patch, a one-dimensional learnable posi-
tional embedding Epos ∈ RN×K  is incorporated into the 
projected patch embedding E ∈ R(P3·C)×K  using the fol-
lowing method:

Fig. 2  Segmentation illustration of tumor T1WI and CE-T1WI sequence imaging. Patient a is a 66-year-old male with unmethylated MGMT status, 
and patient b is a 68-year-old female with methylated MGMT status. The red region represents the NCR, the yellow region represents the ET, 
and the green region represents the PED
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In step (f ) mentioned above, the transformer blocks, 
encompassing MSA and MLP sublayers, are stacked 
using the following formula:

where Norm() represents the normalization layer, while 
MLP consists of two linear layers with GELU activation 
functions. i represents the identifier of the intermedi-
ate patch, and L represents the number of Transformer 
layers.

An MSA sublayer comprises n parallel self-attention 
(SA) mechanisms. SA is a parameterized function that 
learns the mapping relationships between the query 
(q) matrix, corresponding key (k) matrix, and value (v) 
matrix of sequence z ∈ RN×K  . The SA weight matrix A is 
computed by evaluating the similarity between key-value 
pairs in z using the following formula:

where Kh = K
n  represents a scaling factor that maintains 

a constant parameter count when selecting different 
k-values. The calculated attention weight matrix is used 
to compute the SA output by weighting the values in the 
sequence as follows:

(1)z0 = [x1vE; x
2
vE; ...; x

N
v E]+Epos

(2)z′i = MSA(Norm(zi−1))+ zi−1, i = 1...L

(3)zi = MLP(Norm(z′i))+ z′i, i = 1...L

(4)A = softmax(
qkT
√
Kh

)

(5)SA(z) = Av

where v represents the values of the input sequence. Fur-
thermore, the output of MSA is defined as:

Wmsa ∈ Rn.kh×k represents the multi-head trainable 
parameter weights.

In step (g) mentioned above, the multi-resolution 
features of the encoder are integrated with the decoder 
to extract a sequence representation zi(i ∈ {3,6, 9,12}) 
with dimensions H×W×D

P3 × K  . This representation is 
then transformed into a tensor of size HP × W

P × D
P × K  

through a Transformer. At each resolution level, the 
reconstructed tensor is projected from the embedding 
space to the input space through consecutive 3× 3× 3 
convolutional layers and normalization layers.

Within this bottleneck structure encoder, the trans-
formed feature maps undergo deconvolution, effec-
tively doubling their resolution. The upsampled feature 
maps are then concatenated with those produced by 
the Transformer. These combined features are subse-
quently input into consecutive 3× 3× 3 convolutional 
layers, followed by a deconvolution layer for further 
upsampling. This sequence is iteratively repeated 
for subsequent layers until the original resolution is 
achieved. Ultimately, the output is fed into a 1× 1× 1 
convolutional layer with a softmax activation function, 
generating the glioblastoma MGMT promoter methyla-
tion status results.

In step (h) mentioned above, due to the imbalanced 
dataset in this classification problem, where the ratio 
of MGMT promoter methylated to unmethylated 
samples is approximately 2.5:1, a dynamic focal loss 
function was implemented. A modulating factor was 

(6)MSA(z) = [SA1(z); SA2(z); ...; SAn(z)]Wmsa

Fig. 3  Schematic diagram illustrating the details of the Transformer model used in this study
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introduced to diminish the weight of easily classified 
samples, thus enabling the model to prioritize difficult-
to-classify samples during training. Throughout model 
training, the loss contributions from different classes 
were independently rebalanced based on the imbalance 
degree between positive and negative samples within 
each class. The loss was dynamically adjusted accord-
ing to the training status of various classes to address 
the sample imbalance issue, thereby enhancing model 
performance and achieving accurate prediction results.

The likelihood of a sample being predicted as methyl-
ated by the model is represented as pt , while αt and γ j 
represent pivotal hyperparameters balancing positive and 
negative samples.

Schematic diagram of the research process is shown in 
Fig. 4. The performance of each classifier was ultimately 
assessed by computing the average values of the AUC, 
sensitivity, specificity, and standard error derived from 
validation.

(7)DFL(pt) = −αt(1− pt)
γ j
log(pt)

Statistical analysis
To compare categorical data between groups, Chi-square 
tests were applied, whereas Mann–Whitney U tests or 
independent samples t-tests were utilized for continu-
ous data comparisons. The performance of the predictive 
models was assessed by evaluating AUC, sensitivity, spec-
ificity, and standard error. All statistical analyses were 
performed using R software (Version 4.3.3). A P < 0.05 
was deemed statistically significant. Institutional Review 
Board approval was obtained.

Results
Statistical analysis of clinical features
In this study, 251 patients with MGMT promoter methyl-
ation and 105 patients without MGMT methylation were 
included. A significant difference in gender distribution 
between the two groups was found (Table 1). Therefore, 
gender was included as a clinical indicator in the model.

Model construction
Clinical information was integrated with intratu-
moral and peritumoral data from T1WI and CE-T1WI 

Fig. 4  Schematic diagram of the research process

Table 1  Statistical analysis of clinical features

Characteristic Methylation (n = 251) Unmethylation (n = 105) z/Chi-Square P value

Age (years) 59.26 ± 13.77 59.376 ± 13.72 −0.747 0.455

Gender 6.671 0.010

  Male 140 (55.78%) 74 (70.48%)

  Female 111 (44.22%) 31 (29.52%)
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sequences and input into the Transformer algorithm 
to sequentially construct nine models. These mod-
els comprised four single-sequence models (T1WIintra 
model, T1WIperi model, CE-T1WIintra model, and CE-
T1WIperi model), two single-sequence combined intra-
tumoral and peritumoral models (T1WIintra+peri model 
and CE-T1WIintra+peri model), two multi-sequence 
models (T1WIintra model + CE-T1WIintra model and 
T1WIperi + CE-T1WIperi model), and one multi-
sequence combined intratumoral and peritumoral model 
(T1WIintra+peri + CE-T1WIintra+peri model).

Predictive performance
Stratified cross-validation was utilized in this study for 
model training and validation. The generalization abil-
ity of each model was evaluated through five-fold data 
partitioning, training, and testing, ensuring that the 
ratio of MGMT promoter methylated to unmethylated 
samples in each training and test set closely mirrored 
that of the entire dataset, thereby maintaining data rep-
resentativeness throughout the cross-validation process. 
The results (Table  2) indicated that both intratumoral 
and peritumoral models of T1WI and CE-T1WI were 
markedly correlated with MGMT promoter methylation 
status. When using single-sequence MRI, the CE-T1WI-
intra model exhibited the best performance in predicting 
MGMT promoter methylation status (AUC: 0.867, Sen-
sitivity: 83.67%, Specificity: 80.95%, SE: 0.0192). Regard-
less of intratumoral or peritumoral models, CE-T1WI 
outperformed T1WI in prediction results, and the AUC 
differences between T1WI and CE-T1WI models were 
not statistically significant (T1WIintra model vs. CE-
T1WIintra model: Z = 0.210, P = 0.8339; T1WIperi model 

vs. CE-T1WIperi model: Z = 0.0602, P = 0.9520). As shown 
in Table  2, combined models (T1WIintra+peri model and 
CE-T1WIintra+peri model) demonstrated enhanced diag-
nostic performance compared to individual intratumoral 
or peritumoral models, with no significant difference in 
AUC between T1WIintra+peri model and CE-T1WIintra+peri 
model (Z = 0.539, P = 0.5901).

In comparison to single-sequence MRI models, 
the multi-sequence combined MRI models showed 
enhanced diagnostic performance. The T1WIintra + CE-
T1WIintra model, T1WIperi + CE-T1WIperi model, 
and T1WIintra+peri + CE-T1WIintra+peri model all 
achieved AUC values above 0.90. Of these models, the 
T1WIintra+peri + CE-T1WIintra+peri model exhibited the 
highest predictive accuracy (AUC: 0.923, Sensitivity: 
86.45%, Specificity: 87.62%, SE: 0.0141). Furthermore, no 
significant difference in AUC was observed between the 
T1WIintra + CE-T1WIintra model and the T1WIperi + CE-
T1WIperi model (Z = 0.471, P = 0.6379). The significance 
level P for all nine models was less than 0.0001.

The ROC curves (Fig.  5) illustrate that models con-
structed using T1WI and CE-T1WI are effective in 
diagnosing MGMT promoter methylation status, with 
all nine models achieving AUC values exceeding 0.85. 
Based on the H–L test, the p-values for the T1WIintra 
model, T1WIperi model, CE-T1WIintra model, CE-T1WI-
peri model, T1WIintra+peri model, CE-T1WIintra+peri model, 
T1WIintra + CE-T1WIintra model, T1WIperi + CE-T1WI-
peri model, and T1WIintra+peri + CE-T1WIintra+peri model 
compared to actual observations were 0.115, 0.144, 0.0, 
0.0, 0.025, 0.0, 0.0, 0.018, and 0.0, respectively. The latter 
seven models displayed good agreement with the actual 
values. Decision curve analysis (DCA) and calibration 

Table 2  Prediction results of MGMT promoter methylation status using different models

MGMT O6-methylguanine-DNA methyltransferase, AUC​ area under the receiver operating characteristic curve, T1WI T1-weighted imaging, CE-T1WI contrast-enhanced 
T1-weighted imaging, intra intratumoral region, prei peritumoral region

AUC (95% confidence interval) Sensitivity (%) Specificity (%) Standard error

Single-sequence models

  T1WIintra model 0.861 (0.820—0.895) 82.47 76.19 0.0228

  T1WIprei model 0.850 (0.809—0.886) 76.49 78.10 0.0229

  CE-T1WIintra model 0.867 (0.828—0.901) 83.67 80.95 0.0192

  CE-T1WIprei model 0.852 (0.811—0.887) 79.28 81.90 0.0205

Two single-sequence combined intratumoral and peritumoral models

  T1WIintra+prei model 0.874 (0.631—0.865) 75.30 81.90 0.0206

  CE-T1WIintra+prei model 0.889 (0.851—0.920) 85.26 80.95 0.0177

Multi-sequence models

  T1WIintra + CE-T1WIintra model 0.914 (0.879—0.941) 83.67 83.81 0.0155

  T1WIprei + CE-T1WIprei model 0.901 (0.865—0.930) 86.06 84.76 0.0215

Multi-sequence combined intratumoral and peritumoral model

  T1WIintra+prei + CE-T1WIintra+prei model 0.923 (0.890—0.948) 86.45 87.62 0.0141
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curve show that the T1WIintra+peri + CE-T1WIintra+peri 
model was a reliable clinical treatment tool for predict-
ing MGMT promoter methylation status in glioblastoma 
patients (Figs. 6 and 7).

Moreover, we also compared our method perfor-
mance with the advanced artificial intelligence method. 
The 3D-dense-UNet model is used to conduct a com-
parison due to its applicability in the similar task [23]. 
We evaluated our proposed method with the 3D-dense-
UNet model on the same datasets and under the same 

experimental conditions to ensure fairness and accuracy. 
The AUC, sensitivity, and specificity of multi-sequence 
combined intratumoral and peritumoral model con-
structed by the 3D-dense-UNet are respectively 84.3%, 
85.26%, and 86.67%. In comparison, our model demon-
strates an improvement of 8%, 1.19%, and 0.95% in AUC, 
sensitivity, and specificity over 3D-dense-UNet model, 
respectively. The comparison results demonstrate that 
our method performed excellent ability in diagnosing 
MGMT promoter methylation status.

Fig. 5  ROC of different models. (a) prediction results of single-sequence models, (b) prediction results of multiple-sequence models

Fig. 6  DCA of the different models
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Discussion
Establishing relevant prediction models based on the 
MR image features of the primary tumor using radiom-
ics or machine learning methods have been recognized 
by numerous studies as an effective method for assessing 
the MGMT promotor methylation status in glioblastoma 
patients. For example, a study by Pease et al. showed that 
a radiomics model based on CE-T1WI and pre-contrast 
axial T2-weighted Fluid-Attenuated Inversion Recov-
ery (FLAIR) features for predicting MGMT status in 
glioblastoma, with AUC of 0.85 by leave-one-out-cross-
validation [24]. Doniselli et  al. constructed a radiomics 
prediction model using T1WI and 3D FLAIR features 
of 277 glioblastoma cases, and the results showed that 
this model can provide a valuable reference for clini-
cal decision-making [25]. Meanwhile, with the popular-
ity of artificial intelligence, predictive models based on 
deep learning features are increasingly used in clinical 
practice. Yogananda et  al. designed a 3D-dense-UNet 
deep learning network for the automatic diagnosis of 
MGMT promoter methylation status on the T2 weighted 
image dataset of 240 glioma patients [23]. Inspired by 
this, the present study was the first to use a deep learn-
ing approach to extract the T1WI and CE-T1WI features 
of intratumoral and peritumoral lesions in patients with 
glioblastoma and to develop the prediction model for 
assessing the MGMT promoter methylation status using 
Transformer algorithm. The results showed that these 
prediction models could effectively distinguish glio-
blastoma patients in the MGMT promoter methylated 
group from the unmethylated group, with AUCs of 0.861, 
0.850, 0.867, 0.852, 0.874, 0.889 in the T1WIintra model, 

T1WIprei model, CE-T1WIintra model, CE-T1WIprei 
model, T1WIintra+prei model, CE-T1WIintra+prei model 
respectively, indicating that MRI deep learning could be 
used for the assessment of MGMT promoter methyla-
tion status in glioblastoma patients. The findings suggest 
that models constructed using CE-T1WI outperform 
those based on T1WI in diagnostic accuracy. This obser-
vation is consistent with existing literature [26]. The pri-
mary reason is likely due to CE-T1WI’s ability to enhance 
lesion visualization via contrast agent injection, yielding 
clearer tumor boundaries and heightened sensitivity to 
features like intratumoral cystic necrosis and peripheral 
ring enhancement. These attributes are closely associ-
ated with MGMT promoter methylation status. Thus, 
CE-T1WI demonstrates greater sensitivity in diagnosing 
MGMT promoter methylation status compared to T1WI.

Due to the presence of glioblastoma tissue hetero-
geneity, it is often difficult for a single imaging method 
to provide a comprehensive and accurate assessment 
of tumorous lesions [27]. In the field of artificial intelli-
gence research, previous studies have also shown that a 
comprehensive model based on the images features of 
multiple sequence and clinical factors generally played a 
better role in the diagnosis and evaluation of tumors than 
a predictive model based on the images features of a par-
ticular imaging sequence [17, 18]. Therefore, this study 
further developed the T1WIintra + CE-T1WIintra model, 
T1WIprei + CE-T1WIprei model and T1WIintra+prei + CE-
T1WIintra+prei model by combining T1WI and CE-T1WI 
deep learning features, and clinical factors and compared 
it with the single sequence models. The results showed 
that the diagnostic efficacy of the T1WI + CE-T1WI joint 

Fig. 7  Calibration curve of T1WIintra+prei + CE-T1WIintra+prei model
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models were improved to different degrees compared 
with the six independent models in the dataset. This sug-
gests that the use of multiple sequence model consist-
ing of T1WI, CE-T1WI, and clinical factors to assess the 
MGMT promoter methylation status of glioblastoma can 
provide greater benefit to the patients involved.

Significant clinical evidence [28] suggests that the het-
erogeneity of glioblastoma is not limited to the tumor 
margins but also involves the peritumoral region, where 
approximately 90% of patients with glioblastoma experi-
ence recurrence [29]. Malik et  al. identified significant 
differences in the peritumoral regions of glioblastoma 
and low-grade gliomas, indicating that imaging features 
from the peritumoral area can assist in differentiating 
these tumor types [12]. However, the existing MRI-based 
methods mainly focus on the overall tumors and ignore 
the value-added role of the peritumoral environment in 
the study of MGMT promoter methylation status pre-
dicting. Studies have verified that interactions between 
the intratumoral core and peritumoral areas affect tumor 
development and progression. Integrating features from 
both regions provides complementary biological infor-
mation, thereby enhancing model predictive capabilities 
[30]. The experimental results of this study show that 
models constructed with combined intratumoral and 
peritumoral data from T1WI and CE-T1WI sequences 
consistently outperform those based on either region 
alone. This is likely due to the significant heterogeneity in 
glioblastoma within the ET, NCR, and PED regions. The 
PED region offers additional insights into tumor growth, 
infiltration, and interactions with normal tissue, which 
are reflected in specific MRI imaging features, potentially 
indicating the MGMT promoter methylation status.

Several studies have employed support vector 
machines [24], random forests [25], and Unet [23] to 
diagnose MGMT promoter methylation status, achiev-
ing notable diagnostic performance. This study is the 
first to implement the Transformer algorithm in MGMT 
research, opening new avenues for molecular studies of 
glioblastoma. The Transformer algorithm has shown 
remarkable capabilities in glioma segmentation [31], 
diagnosis [32], and grading [33]. Compared to other 
methods, the advantage of the Transformer algorithm 
in medical image processing lies in its robust global 
context modeling ability, facilitating lesion localization 
across entire image sequences. Additionally, the Trans-
former algorithm supports efficient feature extraction 
and multi-modal information fusion, thereby enhanc-
ing model diagnostic performance. Furthermore, given 
the significant data imbalance for this classification 
problem, with the ratio of MGMT promoter methyl-
ated to unmethylated samples nearing 2.5:1, a dynami-
cally adjusted focal loss was specifically designed as the 

optimization objective function to counteract the impact 
of this imbalance on model training. As shown in Table 2, 
all nine models achieved sensitivity and specificity above 
75.30% in predicting MGMT promoter methylation 
status. Notably, the T1WIintra + CE-T1WIintra model, 
T1WIperi + CE-T1WIperi model, and T1WIintra+peri + CE-
T1WIintra+peri model demonstrated very close predic-
tive results in terms of sensitivity and specificity, all 
exceeding 83.67%, indicating that the proposed method 
in this study exhibits excellent accuracy, sensitivity, and 
specificity in predicting MGMT promoter methylation 
status. The calibration curve (Fig. 7) suggests good con-
sistency between predicted and observed values for the 
T1WIintra+peri + CE-T1WIintra+peri model.

Our study has several limitations. First, deep learning 
studies require large amounts of data and the relative 
number of subjects with MGMT promoter methylation 
is small in the TCIA database. Collaborating with other 
healthcare organizations and research teams will help 
construct a more representative dataset, enhancing the 
model’s ability to predict MGMT promoter methylation 
status for glioblastoma. Second, segmenting regions of 
tumor tissue with similar microenvironments will help 
analyze the heterogeneity of the lesions. Habitat analysis 
is a beneficial tool for further exploring and interpret-
ing lesions. Third, biomechanical and biological math-
ematical models are effective tools for simulating tumor 
growth and its interaction with heterogeneous tissues. 
We will attempt to combine imaging data with biome-
chanical testing (such as stiffness measurements) to more 
comprehensively describe the physical characteristics of 
the tumor. Also, other glioblastoma molecules with deep 
learning features will be studied in our future study.

Conclusion
In conclusion, deep learning features of glioblastoma, 
especially the combination of T1WI and CE-T1WI, could 
reflect tumor molecular pathology indicators of MGMT 
methylation status. Our model demonstrated high accu-
racy in diagnosing MGMT promoter methylation status 
approaching tissue-level performance. This non-invasive 
marker can facilitate more informed patient counseling 
and aid in the treatment decision-making process for a 
significant proportion of patients with glioblastoma.
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