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Abstract 

Preeclampsia is one of the leading causes of maternal morbidity, with consequences during and after pregnancy. 
Because of its diverse clinical presentation, preeclampsia is an adverse pregnancy outcome that is uniquely chal-
lenging to predict and manage. In this paper, we developed racial bias-free machine learning models that predict 
the onset of preeclampsia with severe features or eclampsia at discrete time points in a nulliparous pregnant study 
cohort. To focus on those most at risk, we selected probands with severe PE (sPE). Those with mild preeclampsia, 
superimposed preeclampsia, and new onset hypertension were excluded.

The prospective study cohort to which we applied machine learning is the Nulliparous Pregnancy Outcomes Study: 
Monitoring Mothers-to-be (nuMoM2b) study, which contains information from eight clinical sites across the US. 
Maternal serum samples were collected for 1,857 individuals between the first and second trimesters. These patients 
with serum samples collected are selected as the final cohort.

Our prediction models achieved an AUROC of 0.72 (95% CI, 0.69–0.76), 0.75 (95% CI, 0.71–0.79), and 0.77 (95% CI, 
0.74–0.80), respectively, for the three visits. Our initial models were biased toward non-Hispanic black participants 
with a high predictive equality ratio of 1.31. We corrected this bias and reduced this ratio to 1.14. This lowers the rate 
of false positives in our predictive model for the non-Hispanic black participants. The exact cause of the bias is still 
under investigation, but previous studies have recognized PLGF as a potential bias-inducing factor. However, since our 
model includes various factors that exhibit a positive correlation with PLGF, such as blood pressure measurements 
and BMI, we have employed an algorithmic approach to disentangle this bias from the model.

The top features of our built model stress the importance of using several tests, particularly for biomarkers (BMI 
and blood pressure measurements) and ultrasound measurements. Placental analytes (PLGF and Endoglin) were 
strong predictors for screening for the early onset of preeclampsia with severe features in the first two trimesters.
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Introduction
Preeclampsia (PE) is one of the leading causes of mater-
nal morbidity, with consequences during and after preg-
nancy [1]. Ensuring optimal patient outcomes requires 
robust prediction models for PE risk, emphasizing early 
detection. However, PE poses significant diagnostic and 
prognostic difficulties given its variable presentations in 
terms of clinical indications, speed of development, and 
timing, as well as its unknown causes. PE might evolve 
slowly and remain mild or quickly present severe compli-
cations leading to what is known as PE with severe fea-
tures (sPE) [1]. Moreover, there are two sub-categories: 
early onset PE requiring delivery before 34 weeks and late 
onset after that. While the early onset of PE is associated 
with a higher incidence of adverse pregnancy outcomes, 
understanding the relationship between the early and late 
onset of PE has proven challenging [2, 3]. Some research-
ers treat them as distinct, but work by Poon et  al. [2] 
treats the condition as a spectrum, best represented by 
a survival time model. Beyond this, the presence of sei-
zures that cannot be attributed to any other underlying 
condition in a patient diagnosed with PE would be cat-
egorized as Eclampsia (E) [1].

Though a complete understanding of PE still needs to 
be discovered, rich literature exists on risk factors for 
and indicators of PE. Biochemical and biophysical mark-
ers can have an added benefit for screening for PE when 
combined with clinical characteristics taken from medi-
cal history, demographics, clinical measurements, etc. [2, 
4–7]. Research [2, 8–10] has suggested placental growth 
factor (PlGF), soluble Flt-1 (sFlt-1), pregnancy-associated 
plasma protein A (PAPP-A), and ultrasound measure-
ments as clinical factors that are significant in signaling 
an increase in the risk of PE.

Applying this significant volume of knowledge to pre-
diction is pertinent. This study aims to build bias-free 
machine learning classifiers at various discrete points 
in pregnancy that combine well-known risk factors for 
and indicators of sPE and E, which can help screen for 
cases early in pregnancy in a nulliparous study cohort. 
While many other studies have focused on predicting 
preeclampsia in a general population, our study focuses 
solely on nulliparous patients, making the prediction 
tasks much more difficult since no prior obstetrical his-
tory information is available. Additionally, our study dis-
tinguishes itself by using machine learning specifically to 
build prediction models for severe manifestations.

Materials and methods
Study population
The prospective cohort we considered is the Nulliparous 
Pregnancy Outcomes Study: Monitoring Mothers-to-be 
(nuMoM2b) [11], which contains information from eight 

clinical sites across the US between October 2010 and 
May 2014. Participants gave written informed consent, 
and institutional review board approval was obtained at 
all sites. Maternal race was self-reported by participants. 
Option for self-reported race include: Non-Hispanic 
White, Non-Hispanic Black, Hispanic, America Indian, 
Asian, Native Hawaiian, Other and Multiracial. The study 
contains a wide array of information collected for nul-
liparous participants across four visits, 60 − 136 (V1), 
160 − 216 (V2), 220 − 296 (V3) weeks gestation and the 
delivery visit (V4). The predictive model for preeclampsia 
is constructed to encompass V1 through V3 but excludes 
V4, as forecasting is deemed less relevant post-delivery.

At V1 and V2, maternal serum was collected, enabling 
a limited follow-up nuMoM2b sub-study to understand 
the relationship between placental analytes and a set of 
adverse pregnancy outcomes (APOs). The sub-study 
defines all patients with one or more of the following 
adverse pregnancy outcomes (APOs) as cases: 1) deliv-
ery prior to 37  weeks’ gestation (PTB); 2) pregnancy 
complicated by preeclampsia or eclampsia (PE); 3) birth 
weight for gestational age < 5th percentile (SGA); or, 4) 
delivery of a stillborn baby (SB). Controls were defined 
as women with full term live births not noted as compli-
cated by PE or SGA (including missing status for PE and/
or SGA). After selecting the cases, a random selection of 
control patients was conducted to obtain a total of 4,500 
serum samples, as allowed by the study budget. In 2016, 
the maternal sample serum was sent to 2 laboratories. 
The first lab used 0.5 mL aliquot of the serum to meas-
ure four analytes: ADAM-12, endoglin, sFLT-1, VEGF 
while the second used 0.5  mL aliquots to measure five 
analytes: AFP, fbHCG, Inhibin A, PAPP-A, PLGF. The 
aliquots were collected at V1 and V2 of the pregnancy 
and store at − 70C within two hours following collec-
tion. They were measured using lanthanide-based Time 
Resolved Fluorometry (TRF) and were run using the 
AutoDELFIA system. The multiple of median (MoM) val-
ues of the placental analytes were calculated and used as 
an input to our model. MoM values are calculated based 
on the visit that was collected either V1 or V2 This is to 
ensure no leakages in the model prediction. In the pre-
diction model, every patient is represented as a sample, 
and various measurements of placental analytes from the 
same patient are considered distinct features. Figure  1 
describes in detail the number and categories of features 
selected, and Fig. 2 contains a flowchart of the final study 
cohort selection process.

For the specific features included in our prediction 
model, please refer to supplement Tables 1–5. Informa-
tion from the prior visits is also incorporated into the 
V2 and V3 prediction models. Therefore, the prediction 
model for V2 was trained on information from V1 and 
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V2. The prediction model for V3 was trained on data 
collected from V1, V2, and V3. For V1, 57 features were 
used to train the model, 103 for V2, and 138 for V3.

To focus on those most at risk, we selected probands 
with severe PE (sPE). Those with mild preeclampsia, 
superimposed preeclampsia, and new onset hyperten-
sion were excluded. There are no cases of fetal demise 
at < 20 weeks in the final study cohort. We preserved 36 
instances of stillbirth, all of which belonged to the no 
pregnancy-related hypertension (NPH) category. Same 
cohort is used for each prediction model (V1-V3). In this 
study cohort, there are 329 sPE cases out of which 5 cases 

are eclampsia, 71 cases are early-onset sPE and 253 cases 
are late-onset. All cases of preeclampsia occur after V3, 
so all predictions are prognostics. Since, multiple meas-
urement are taken for the placental analytes,

Study outcome
The labeling of sPE (severe preeclampsia) was accord-
ing to the labeling in the nuMoM2b study. Supplement 
Fig. 1 contains a flowchart indicating the study diagnostic 
criteria for the primary outcome of this study sPE. sPE is 
defined as a diagnosis of preeclampsia plus at least one 
of the criteria in the list: Thrombocytopenia, Pulmonary 

Fig. 1  Data process timeline, This figure shows the gestational weeks at each visit. For each visit, the number of features at that visit is listed 
and the category of new feature included is also shown
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edema, Severe hypertension, Proteinuria ≥ 5,000  mg/ 
24  h, Oliguria (urine output < 500  mL/ 24  h), Severe 
headache, Epigastric pain and Fetal growth restriction. 
The nuMoM2b dataset also contained labels in accord-
ance with the ACOG criteria published in 2013. Initial 
testing of the proposed pipeline with this ACOG labeling 
indicated results very similar to that achieved with the 
nuMoM2b criteria.

PEPrML pipeline
Our PreEclampsia Predictor with Machine Learning 
(PEPrML) pipeline produces machine learning-capable 
models that are explainable and trustworthy. Classifiers 
to predict sPE + E versus NPH and early sPE versus late 
sPE + E were modeled for every visit. Categorical fea-
tures were one-hot encoded. The mean imputation was 
used for continuous features with missingness. We used a 
cross-validation strategy, a popular approach in machine 
learning. It consists in splitting the training set into folds, 
usually 5 folds, learning from 4 folds and validating on 
the fifth. The process is repeated five times and the aver-
age validation error is used to select the best parameters 
(gridsearch of the possible setting of the parameters, 
which is method-dependent parameters). Those are 
used to build the final model that is then applied to the 
out of sample, that is the test set. After each trial the 
dataset is shuffled and split in to train and test set. The 

same process is repeated 100 times resulting in 100 dif-
ferent train and test splits. The results of the test sets 
were reported. We balanced the ratio of control versus 
cases by undersampling in the training and test sets, as 
this introduces less overfitting, leads to a faster training 
time, and avoids an over-inflated Area Under the ROC 
curve (AUC). One argument against undersampling is 
the possibility of removing important examples from the 
majority class, to mitigate this risk, we conducted one 
hundred trials to mitigate this issue with different under-
sampling of the negative majority class, ensuring that 
important examples were retained [12]. Undersample 
data contain 50% positive labels and 50% negative labels. 
0.5 was selected as the test positivity cut-off for calculat-
ing sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV). This process is 
described in detail in Fig. 3.

We experimented with logistic regression (LR), sup-
port vector machines (SVM), random forest (RF), and 
eXtreme Gradient Boosting (XGBoost) [13]. The model 
build process is repeated each visit from V1 to V3 with 
the same cohort. LR, SVM, and RF are trained using 
implementation from Scikit-learn, while XGBoost was 
trained using implementation from Distributed (Deep) 
Machine Learning Community [13, 14]. Gridsearch is 
implemented using Scikit-learn and undersample is 
implemented using Imbalance-Learn [15]. For RF and 

Fig. 2  Final study cohort selection process. Out of the participants from the placental analytes sub-study, we excluded participants with conditions 
such as new onset hypertension, mild preeclampsia, and missing label for preeclampsia to focus on the participants that are most at risk
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XGBoost, we extracted the interpretable feature impor-
tance rankings, identifying the top factors to generate 
partial dependence plots (PDPs) [16]. Two ensemble 
methods (RF and XGBoost) were chosen as classifiers 
specifically because they are more robust to noise and 
overfitting, exhibiting a double descent risk curve [17]. In 
the supplement material, we provide a detailed analysis 
of this phenomenon. We use Partial Dependence Plots 
(PDPs) to display the marginal effect that features of 
interest have on the predicted outcome of a given model, 
allowing us to advance our understanding of the out-
come. For the RF model, we calculated the Equal Oppor-
tunity Ratio (EOR) [18], Predictive Parity Ratio (PPR) 
[19], Predictive Equality Ratio (PER) [18], Accuracy 
Equality Ratio (AER) [20], and Statistical Parity Ratio 
(SPR) [20]. We mitigated the race-based biases using Cet-
eris Paribus Cutoff Plots.

Comparison to other preeclampsia models
It is not possible to directly compare our machine learn-
ing model to other works, as most of them do not focus 
on a nulliparous cohort with severe cases. Therefore, 
when comparing our model to other cohorts, we need 
to adapt their models to our study cohort. Both Poon 
et  al. and Akolerkar et  al. employed Bayes’ theorem to 
construct their models, a methodology we implemented 
using the Scikit-survival package [21]. All models were 
assessed at V1. Poon et al. utilized features derived from 
maternal risk factors, MAP, PlGF, uterine artery pulsa-
tility index, and PAPP-A. In contrast, Akolerkar et  al. 

incorporated all the features used by Poon et  al., along 
with additional placental analyte features.

Fairness metrics
To determine the fairness of our model, we identified and 
calculated a set of metric ratios as discussed below to 
determine the subgroup(s) for which the threshold of the 
four fifths rule was violated [22]. We then plotted a ceteris 
paribus cutoff plot for the subgroup affected/impacted by 
the bias and adjusted the classification threshold accord-
ingly. Fairness metrics create a framework for measuring 
discrimination based on characteristic attributes such as 
race, gender, and ethnicity. To better understand fairness 
metrics, we assume a source distribution (Y, X, A), where 
Y is the target label, X is the set of available features and 
A ∈ {0, 1} is the characteristic attribute. For the sake of 
simplicity, we define A as a binary attribute, but A can 
have many labels, such as race. A predictor of Y is defined 
as Ŷ = f (X ,A) . For a model to be deemed fair, it should 
be the case that the learned predictor does not discrimi-
nate with respect to A [18]. In a practical setting, ratios of 
fairness metrics are calculated for protected groups and 
the privileged group. A model is considered unfair when 
such a ratio crosses a threshold specified by the four fifths 
rule. supplement Table 7 summarizes the fairness metrics 
and their respective mapping to the evaluation metrics 
used in our analysis.

In our work, we selected the Predictive Equality Ratio 
(PER) as the primary fairness metrics. PER requires Y  to 
have equal false positive rate across the two subgroups 
A = 1 and A = 0:

Fig. 3  The training process of PEPrML pipeline. Samples were balanced for train and test sets. fivefold grid search cross-validation was used 
to select the hyperparameters for each trial. We repeated 100 trials and recorded the results
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The fairness evaluation is conducted using the Python 
package Dalex: Responsible Machine Learning in Python 
[23]. Fairness metric ratios were calculated over multiple 
trials and averaged. In our analysis, the focus is on the 
characteristic attribute of race. For further evaluation, we 
will denote A ∈ {Asian,Black ,Hispanic,OtherWhite} as 
the race attribute. We denote the Non-Hispanic White 
participants ( A = White ) as the privileged group, while 
all other races are considered as protected groups.

For i ∈ A \ {White} , given FPRi is the false positive rate 
of race i and FPRWhite is the fa;se positive rate of privi-
leged subgroup, the predictive equality ratio of race i 
( PERi ) is calculated by:

Ceteris Paribus Cutoff Plot
We wanted to measure of how biased our model is 
toward a certain race, but also a measure that summa-
rizes the bias across different races. This can be done 
through calculating the parity loss. Parity loss of PER can 
be calculated by:

To mitigate the bias identified through parity loss, a 
post-processing step using the ceteris paribus cutoff plot-
ting was used. This is a model-agnostic algorithm, which 
works for models with different structures, such as neu-
ral networks, random forests, boosting models, and lin-
ear models [23]. Similar to the process of constructing 
a ROC curve, ceteris paribus cutoff plotting works by 
directly altering the classification threshold, but instead 
of visualizing the impact on TPR and FPR, the parity 
loss is used, and alteration of the classification threshold 
is only performed on a specific subgroup. Typically, we 
select the threshold by identifying the value that mini-
mizes the parity loss.

Software packages
We developed our pipeline in Python 3. Instructions 
about how to run the experiments are provided in the 
Github repository. We also conducted bias mitigation 
experiments using the Dalex package [23]. Dataset bal-
ancing was done using the imbalanced-learn package. 
The model used to generate our results was trained using 
the XGBoost package.

Pr{Ŷ = 1|A = 0,Y = 0} = Pr{Ŷ = 1|A = 1,Y = 0}

PERi =
FPRi

FPRWhite

Parityloss of PER =
∑

i∈A\{White}

∣∣∣∣log
FPRi

FPRWhjte

∣∣∣∣ =
∑

i∈A\{White}

∣∣logPERi

∣∣

The underlying code for this study is available in 
PRAISE-Lab repository and can be accessed via this link: 
https://​github.​com/​PRAISE-​Lab-​Repos​itory/​PEPrML.​git

We added synthetic data with similar structure (fea-
tures and visits) to mimic nuMoM2b. While the synthetic 
data features are indeed fictitious, the feature values are 
sampled from their respective distributions in nuMoM2b 
according to the labels assigned to the synthetic data. 
Models can be built for the synthetic data by following 
the instructions from GitHub.

Result
Study population characteristics
1,857 participants were selected as the final study cohort. 
Among these, 5 developed E and 324 developed sPE, of 
which 71 (~ 22%) were early onset (< 34 weeks), and 253 
(~ 78%) were late onset. The remaining 1,528 patients 
were NPH (Fig. 2). Participants had a median age of 27 
and IQR of 9; 3.3% were Asian, 17.6% were Hispanic, 
57.5% non-Hispanic white, 15.9% non-Hispanic black, 
and 5.7% were of other races or multiracial.

Significant characteristics (P < 0.001) among the sPE + E 
participants versus NPH include a higher mean value for 
body mass index (BMI) (27 kg/m2 vs. 24 kg/m2), systolic 
blood pressure (SBP) (112 mmHg vs. 108 mmHg) at V1, 

diastolic blood pressure (70 mmHg vs. 66 mmHg) at V1, 
a lower mean value for PlGF (0.92 vs. 1.00) and PAPP-
A (0.86 vs. 1.00) at V1. Other significant placental ana-
lytes include Endoglin at V2, Inhibin A at V2, VEGF at 
V1, PLGF at V2, and the sFLT1-to-PLGF ratio at V2. Sys-
tolic and diastolic blood pressure are significant for all 
visits. Weight, neck circumference, and waist circumfer-
ence information are collected only for V1 and are also 
significant. Significant ultrasound information includes 
Early Diastolic Notch, Resistance Index, Pulsatility Index, 
and Systolic/Diastolic Ratio for both right and left uter-
ine arteries for V2 and V3. Significant medical conditions 
include diabetes for V1 and V2, hypertension (not includ-
ing chronic hypertension) for all three visits, and chronic 
hypertension for V1.

Some significant characteristics (P < 0.001) among the 
early sPE participants versus late sPE + E include a lower 
mean value for PlGF (0.73 vs. 0.98). Other important 
placental analytes include Inhibin A for V2, PLGF for 
V2, and the sFLT1-to-PLGF ratio for V2. Income is also 
significant. Significant ultrasound information includes 
Early Diastolic Notch, Resistance Index, Pulsatility Index, 

https://github.com/PRAISE-Lab-Repository/PEPrML.git


Page 7 of 14Lin et al. BMC Pregnancy and Childbirth          (2024) 24:853 	

and Systolic/Diastolic Ratio for both right and left uterine 
arteries for V2 and V3. The measure from the ultrasound 
of baby’s abdominal circumference is also significant for 
V3. Diastolic blood pressure is significant for V3. The 
only significant medical condition is kidney disease for 
V2. For a detailed summary of statistics of all features, 
please refer to supplement Tables 1—5.

Model performance
A summary of performance results for sPE + E versus 
NPH can be found in Fig.  4. Results in Fig.  4a indicate 

that predictive capabilities increase as additional infor-
mation is added at V2 and V3. RF models achieved an 
AUC of 0.72 (95% CI, 0.69–0.76) at V1, 0.75 (95% CI, 
0.71–0.79) at V2, and 0.77 (95% CI, 0.74–0.80) at V3. 
Welch’s t-test was conducted for each pair of classifiers. 
RF model performance is significantly different (< 0.001) 
for all visits compared to LR and SVM, while only sig-
nificantly different to XGboost at V1. Detailed measures 
for RF and other comparison methods can be found in 
Table  1. Further performance breakdown is offered in 
supplement Table  6 and supplement Table  7, which 

Fig. 4  sPE + E vs NPH and early sPE vs late sPE + E model performance. a Average AUC for 100 trials per visit for 4 classifiers. b RF classifier has best 
performance across visits for both comparisons. The ROC curve demonstrated the tradeoff between the true positive rate versus false positive rate. 
This summarizes the results for 100 trials
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summarize results for predicting early and late onset, 
versus NPH, respectively.

The model’s predictive power for early onset preec-
lampsia is higher than for late onset, as demonstrated by 
the two tables. Across the board, all metrics have higher 
values, but the variance is also higher for these values, 
most likely due to the smaller set of cases with early onset 
sPE. We modeled classifiers to directly predict early sPE 
vs. late sPE + E to understand better what enabled this 
performance. A summary of performance results for 
early sPE vs. late sPE + E can be found in Fig.  4. Again, 
performance increased with gestational age, and RF 
models performed the best, obtaining an AUC of 0.64 
(95% CI, 0.53 – 0.75) at V1, 0.76 (95% CI, 0.68 – 0.82) at 
V2, and 0.83 (95% CI, 0.75 – 0.91) at V3. Detailed perfor-
mance measures for RF and other comparison methods 
can be found in supplement Table 8.

Interpreting sPE + E vs NPH model
The feature importance lists for V1, V2, and V3, where 
the prediction task is prognosis, are given in supplement 
Fig.  2, Fig.  5a, and supplement Fig.  3, respectively, ena-
bling a better understanding of the key features that con-
tribute to the RF and XGBoost decision processes. For 
V1, the top 5 features are BMI, mean arterial pressure 
(MAP), SBP, waist circumference, and endoglin. For V2, 
the top five features are BMI, PlGF (V2), MAP (V2, V1), 
and SBP (V2, V1). For V3, the top five features are MAP 
(V3, V1), SBP (V2), BMI, and PLGF(V2).

The PDP for BMI shown in Fig.  5c indicates a risk 
increase in sPE + E at around 22.41 kg/m2 and at the 
peaks at 35 kg/m2 . We see a substantial increase in the 
risk of sPE + E with a systolic reading of 110  mmHg or 
higher, and by Visit 2, this number drops to 102 mmHg 

(supplement Fig.  4.a). The diastolic reading did not 
exhibit such a pronounced increase in the risk of sPE + E, 
but we did observe a slight increase above 78  mmHg. 
Looking at the MAP at Visit 1, supplement Fig.  4.b, we 
see an increase in risk at 82.67 mmHg. There is a sharp 
increase in the predicted risk for sPE + E observed in the 
PDP for PlGF at Visit 1 for MoM measurements less than 
1.5.

Racial fairness in sPE + E vs NPH model
Our model for predicting sPE + E vs. NPH is biased 
mainly against non-Hispanic Black participants. Using 
the White race as the reference race, we identified that 
the predictive equality ratio for non-Hispanic Black par-
ticipants (1.31) is high, according to the four-fifths rule.

To address this problem, we created a ceteris paribus 
Cutoff plot of the parity loss for the non-Hispanic Black 
sub-population to determine the optimal confidence 
threshold for prediction. Adjusting the threshold from 
0.5 to 0.54 accordingly mitigated the over-prediction of 
PE occurrence by our model for non-Hispanic Black par-
ticipants, reducing the predictive equality ratio for non-
Hispanic Black participants from 1.31 to 1.14 (Fig. 6).

Discussion
The results presented here demonstrate that it is possible 
to learn RF models with superior, well-rounded perfor-
mance for early prediction of preeclampsia at multiple 
time points throughout pregnancy, with minimal pre-
processing of data, feature engineering, or feature selec-
tion. Exhibiting a relatively balanced score for PPV and 
Sensitivity, RF increases performance by all metrics at 
each new visit as more information becomes available. 
The feature importance plots confirm existing knowledge 

Table 1  Detailed summary of sPE + E vs NPH model performance per visit for four classifiers

For V1, 57 features were used to train the model, 103 for V2, and 138 for V3. Detail of features used can be seen in supplement Table 1–5

Model Visits AUC​ Sensitivity (TP/ 
TP + FN)

Specificity (TN/ 
FP + TN)

PPV (TP/ TP + FP) NPV (TN/FN + TN)

LR V1 0.68 ± 0.05 0.59 ± 0.06 0.67 ± 0.06 0.64 ± 0.05 0.62 ± 0.04

V2 0.70 ± 0.04 0.63 ± 0.05 0.67 ± 0.05 0.65 ± 0.04 0.64 ± 0.03

V3 0.73 ± 0.04 0.65 ± 0.07 0.69 ± 0.05 0.68 ± 0.04 0.67 ± 0.05

SVM V1 0.69 ± 0.05 0.57 ± 0.06 0.70 ± 0.06 0.66 ± 0.05 0.62 ± 0.04

V2 0.73 ± 0.04 0.59 ± 0.06 0.74 ± 0.05 0.70 ± 0.05 0.65 ± 0.04

V3 0.75 ± 0.04 0.60 ± 0.06 0.77 ± 0.05 0.72 ± 0.05 0.66 ± 0.03

RF V1 0.72 ± 0.04 0.64 ± 0.06 0.68 ± 0.06 0.67 ± 0.04 0.65 ± 0.04

V2 0.74 ± 0.04 0.65 ± 0.06 0.70 ± 0.05 0.68 ± 0.04 0.67 ± 0.04

V3 0.77 ± 0.04 0.69 ± 0.06 0.71 ± 0.06 0.70 ± 0.05 0.69 ± 0.05

XGBoost V1 0.69 ± 0.04 0.62 ± 0.05 0.66 ± 0.06 0.65 ± 0.04 0.63 ± 0.04

V2 0.74 ± 0.05 0.66 ± 0.07 0.69 ± 0.06 0.68 ± 0.05 0.67 ± 0.05

V3 0.76 ± 0.04 0.67 ± 0.07 0.71 ± 0.05 0.70 ± 0.04 0.69 ± 0.04
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about known predictive features such as blood pressure, 
uterine artery blood flow, and placental analytes and 
identify features not commonly referenced in the predic-
tion literature, such as Endoglin, Cholesterol, and Inhibin 
A. Inclusion of the placental analytes are a great contri-
bution to the prediction of preeclampsia, especially in the 
early phases of pregnancy. An analysis of model perfor-
mance without the placental analytes and just traditional 
risk factors shows a decrease in performance of up to 7% 
for the V1 model (supplement Table  12). Review of RF 

fairness metrics indicated a correctable bias against non-
Hispanic Black participants.

Our study confirmed that blood pressure and placen-
tal analytes were significant in predicting PE across study 
visits [24–26]. The results of our statistical tests deviate 
from other works [2, 10, 27] in that risk factors such as 
maternal age, race, sleep apnea, and family history of PE 
were not significant. Socio-economic status did not con-
tribute to the prediction of preeclampsia in our study 
cohort, as suggested by other studies such as Arechvo 

Fig. 5  Interpreting machine learning model for sPE + E vs NPH and early sPE vs late sPE + E. a V2 model features importance for sPE + E vs NPH 
model, b V2 model feature importance for early sPE vs late sPE + E, c—d PDP for BMI and PlGF based on model build for sPE + E vs NPH. V2 model 
includes both features from V1 and V2
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et  al. [24]. Thus, care must be taken in comparing the 
model performance presented here for the nuMoM2b 
dataset with other studies, given that the nuMoM2b 
dataset characterizes demographically diverse nullipa-
rous mothers with unknown risk for PE at the time of 
first prediction while the target label is strictly focused on 
sPE + E criteria.

Our selected predictors in the first trimester of preg-
nancy are like those used by previously published com-
peting risk models from Akolekar et al., Poon et al., and 
O’Gorman et  al. [28–30], but our study contains more 
features and focuses solely on a nulliparous study cohort. 
To compare our results to these two prior studies, we 
reconstructed their experiment using our nulliparous 
cohort and features from V1. We found that our model 

yielded better outcomes across the board. In Table 2, our 
model performance, on average, has a 3–4% higher AUC 
for V1 and reaches to 12% for V3. While Poon et al. [29] 
report a 91% AUC for preterm PE and 78% AUC for pre-
dicting term PE just by utilizing features such as maternal 
risk factors, MAP, PlGF, uterine artery pulsatility index, 
and PAPP-A, we did not observe this high AUC in our 
prediction model. This might be attributed to the fact 
that our prediction task focuses on PE with severe fea-
tures for nulliparous women only, which makes the pre-
diction tasks much more difficult.

Ensemble methods, specifically RF and XGBoost [31], 
are the top performers in our study. Other studies have 
shown ensemble methods to have a strong predictive 
power for preeclampsia [32–34]. This may be due to the 

Fig. 6  Fairness check for sPE + E vs NPH mode. The threshold set based on the four-fifth rule is 0.8 and 1.25. A Ceribus Paribus plot was used to adjust 
the prediction threshold for the Black population

Table 2  Our model versus other models

All models were evaluated at V1. Poon et al. utilized features derived from maternal risk factors, MAP, PlGF, uterine artery pulsatility index, and PAPP-A. On the other 
hand, Akolerkar et al. incorporated all the features used by Poon et al. as well as additional placental analytes features

AUC​ Sensitivity (TP/ 
TP + FN)

Specificity (TN/ 
FP + TN)

PPV (TP/ TP + FP) NPV (TN/FN + TN)

Poon et al 0.68 ± 0.04 0.62 ± 0.05 0.67 ± 0.07 0.65 ± 0.05 0.64 ± 0.04

Akolerkar et al 0.69 ± 0.05 0.63 ± 0.07 0.67 ± 0.06 0.66 ± 0.04 0.65 ± 0.04

PEPrML V1 (Our Model) 0.72 ± 0.04 0.64 ± 0.06 0.68 ± 0.06 0.67 ± 0.04 0.65 ± 0.04

PEPrML V2 (Our Model) 0.74 ± 0.04 0.65 ± 0.06 0.70 ± 0.05 0.68 ± 0.04 0.67 ± 0.04

PEPrML V3 (Our Model) 0.77 ± 0.04 0.69 ± 0.06 0.71 ± 0.06 0.70 ± 0.05 0.69 ± 0.05
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ensemble nature and the ability of the underlying model, 
decision trees, to capture some of the subtle distinctions 
between the varied and poorly understood subgroups 
of preeclampsia patients [35]. Our hypothesis on why 
RF models are better than XGBoost is that RF is more 
suited for datasets that are smaller and XGBoost shines 
on larger datasets, since boosting work by iteratively 
improving on the prediction from the prior build tree, 
while RF involves a majority voting. The PDP for BMI, a 
well-known risk factor for PE, shown in Fig. 5c indicates 
a risk increase in PE around 22.41 kg/m2 and at the peaks 
at 35 kg/m2 . One possible rationale is that the effect of 
magnesium circulation is reduced when the BMI is at 35 
kg/m2 , since a good magnesium circulation can signifi-
cantly reduce the risk of eclampsia or convulsions [36]. 
Furthermore, PDPs for various placental analytes indicate 
that a decreased level of PlGF during the first and second 
trimesters precede the onset of PE [2, 37, 38]. Agrawal 
et  al. [39] found that the predictive value was highest 
for PlGF levels between 80 and 120 pg/mL, which coin-
cides with the sharp increase in the predictive risk for PE 
observed in the PDP for PlGF at Visit 1 for measurements 
less than 100  pg/mL (1.5 MoM). MacDonald et  al. [40] 
suggested a sFlt-1:PlGF ratio > 33.4 which agrees with our 
PDP in supplement Fig.  5. Levine et  al. [41] found that 
endoglin levels at 25 through 28 weeks of gestation were 
significantly higher (8.5 ng/mL) in term PE patients. We 
observe this same cut-off value in the PDP in supplement 
Fig. 4.c, which shows a pronounced increase in the risk 
of PE at around 9  ng/mL at V1, albeit occurring much 
earlier, at 6–13 weeks of gestation. Analytes such as PlGF, 
unlike blood pressure, were consistently important across 
the sPE + E vs. NPH model and the early vs. late model 
(Fig.  5), indicating their predictive power, particularly 
their ability to rule out early onset [4, 31].

Implications
This study demonstrates the utility of early and multiple 
time points screening for PE. It shows that early blood 
pressure measurement can be a proxy for the risk of 
high blood pressure later in pregnancy. Also, informa-
tion about placental analytes, which can be gathered at a 
reasonable cost tradeoff between assessment and hospi-
talization [4], allows predictions that enormously surpass 
the accuracy of a model based only on ACOG guidelines 
[42]. Further validation is required for the proposed sepa-
rate models for multiple time points to ensure prediction 
consistency: a patient identified as high risk early in preg-
nancy should not be deemed low risk later without suf-
ficient explanation. Also, identifying women at increased 
risk in the first trimester allows for timely prophylaxis 
with low-dose aspirin, which is highly effective in pre-
venting preterm disease [43]. In order to evaluate the 

practicality of our model, we conducted experiments 
that involved testing our model on a general cohort that 
included previously excluded patients with mild preec-
lampsia and gestational hypertension. In comparison 
to the sPE vs NPH model, for RF the AUC decreased as 
follows: from 0.72 to 0.66 at V1, from 0.74 to 0.68 at V2, 
and from 0.77 to 0.70 at V3. This decrease can mainly be 
attributed to the inclusion of patients with mild preec-
lampsia, which is evident from the recall of the random 
forest (RF) model, but the recall still is on par with the 
sPE vs NPH model. However, it is noteworthy that the 
recall still remains comparable to that of the sPE vs NPH 
model for the sPE cases. Our random forest model for 
all PE cases achieved an AUC of 0.70 at V3, indicating a 
reasonably good level of prediction. Furthermore, when 
evaluating the recall metric, we observed that the model 
performed better in predicting severe cases of preec-
lampsia than predictions for mild preeclampsia. This 
finding highlights the model’s ability to effectively iden-
tify and differentiate severe cases, which is particularly 
important in clinical decision-making.

Fairness metrics and analysis of causes for biases 
should become standard practice in model validation. 
We hypothesize that the limited sample size may have 
caused the bias against the non-Hispanic Black partici-
pants, given cohort skew towards White participants and 
the potentially inappropriate higher representation of 
the non-Hispanic Black population among the sPE + E 
class than the NPH class (20.9% vs. 13.8%, respectively). 
However, after correcting for this imbalance, the bias 
still persisted. We then hypothesize that this bias might 
come from a difference in the distribution of values for 
the top placental analytes, as suggested in another study 
[44]. We did observe significant differences in the dis-
tribution of top predictive features (P < 0.001), such as 
BMI and PLGF (V1, V2). Due to the correlation between 
some top features, we cannot simply normalize each by 
race. Therefore, adjusting the predictive threshold for the 
Black population is still an efficient way to reduce bias. 
While the cost of a false negative diagnosis for maternal 
and fetal health is very high, the stress, fees, and possibly 
inappropriate treatment of a false positive should not be 
ignored.

Distinguishing between sPE + E and NPH is criti-
cal, but the binary labels pose a challenge. The former 
group undoubtedly contains different subgroups and 
phenotypes of preeclampsia, and learning to make these 
distinctions will have the dual benefit of enhancing our 
understanding of preeclampsia and allowing for bet-
ter predictive performance. Thus, moving beyond the 
initial literature-inspired feature set to a broader set of 
features will be the target of future work. Furthermore, 
temporal features capturing change between clinical 
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measurements at different visits will be investigated, as 
this may enhance prediction quality at the second and 
third time points [32]. This would enable more timely 
monitoring and treatment of late onset preeclampsia.

A more significant departure will involve re-framing 
the prediction task. Compelling arguments have been 
made that preeclampsia is best interpreted as a syndrome 
rather than a disease [31, 45]. Label difficulties have led at 
least one study of short term preeclampsia screening to 
focus on a label that consists of the presence, or not, of at 
least one of multiple adverse maternal or fetal outcomes 
[31].

Limitations
A set of features identified in the related medical litera-
ture was employed for this initial study, but this can be 
expanded without issue. Using the nuMoM2b data rep-
resents an exciting opportunity to learn from a sizable 
sample of U.S. mothers that is more diverse than other 
similar studies and that has been captured in a longitu-
dinal study with a considerable number of features [3, 31, 
46]. The occurrence rate of PE in this study was consist-
ent with reported rates [4, 47]. However, this meant that 
even with such a sizable sample, the analysis was limited 
to more than a couple of hundred sPE + E cases. The sub-
study also had limitations: analytes were only available 
for V1 and V2. Our study only applies to the nulliparous 
population within the US. Therefore, our models do not 
take previous obstetric history into account.

One noticeable limitation of the study is the limited 
cases of existing medical conditions in participants of 
the placental analytes sub-study. This low presence can 
cause the model to attribute less importance to these risk 
factors, while these could be crucial in clinical practice. 
Lastly, our study only focuses on comparing patients with 
sPE + E and NPH, without addressing those patients who 
developed PE with mild features, or only hypertension. 
The scope of the paper is focused on those with severe 
conditions, as these cases are of greater clinical concern 
for practitioners involved in treatment decisions. How-
ever, to provide insight into the generalizability of our 
model for broader preeclampsia conditions, we evalu-
ated all cases of preeclampsia versus those without, as 
reflected in the supplement Table 13.

nuMoM2b is a comprehensive cohort comprising an 
extensive array of features available for a nulliparous 
population. This dataset has a substantial number of 
patients across the United States. We believe that the 
AUC achieved through our model demonstrates the 
limits of predictive power when combining a multitude 
of factors previously acknowledged but always analyzed 
individually. However, we posit that enhancing the 

predictive model could be achieved by increasing the 
sample size and incorporating data related to metagen-
omics and the microbiome, potentially bolstering its 
predictive capacity. A possible source for future work 
would be looking at the CDC Natality cohort, with 
births ranging from 1968 up until 2021. This data was 
previously analyzed for trends related to preterm birth 
(PTB), but adjusting the target outcome to sPE + E 
could be an appropriate line of research to explore in 
the future, given the significant sample size [48].

Conclusions
Our analysis suggests that it is important and possible 
to create screening models to predict the participants 
at risk of developing preeclampsia with severe features 
and eclampsia for a nulliparous study cohort. The top 
features stress the importance of using several tests, in 
particular tests for biomarkers and ultrasound meas-
urements. The models could potentially be used as a 
screening tool as early as 6–13 weeks gestation to help 
clinicians screen for and identify participants who may 
subsequently develop preeclampsia, confirming the 
cases they suspect or identifying unsuspected cases. 
The proposed approach is easily adaptable to address 
any adverse pregnancy outcome with fairness.
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