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ABSTRACT: Chiral nitrogen-containing compounds are crucial for the chemical, pharmaceutical, and agrochemical industries.
Nevertheless, the synthesis of certain valuable scaffolds remains underdeveloped due to the vast chemical space available. In this
work, we present a diastereoselective methodology for synthesizing 3,3-diarylallyl phthalimides, which, following iridium-catalyzed
asymmetric hydrogenation using Ir−UbaPHOX, yield 3,3-diarylpropyl amines with high enantioselectivity (98−99% ee). The
importance of alkene purity to achieve high enantioselectivity is discussed. The synthetic utility of the chiral propylamines obtained
is demonstrated through the preparation of medicinally useful bioactive compounds like the drugs tolterodine and tolpropamine and
4-aryl tetrahydroquinolines. This strategy enables the synthesis of these compounds with the highest enantioselectivity reported to
date.

Chiral amines are key fragments in many biologically active
compounds, including drugs, natural products, and

agrochemicals.1 Furthermore, many chiral amines have been
used for a wide variety of synthetic purposes like resolving
agents, chiral auxiliaries, or building blocks of chiral complex
molecules.2 As a result, over recent decades, synthetic chemists
have been particularly focused on their asymmetric synthesis.3

Despite the widespread importance of chiral amines, traditional
synthetic methods, such as resolution, are still being used. To
overcome the drawbacks of these methodologies, innovative
catalytic asymmetric approaches are being developed.4 Among
these, the asymmetric hydrogenation (AH) of unsaturated
compounds stands out as one of the most powerful tools.5

Unfortunately, due to the extension of the chemical space, the
AH of certain types of amine substrates is still underdeveloped.
In particular, the AH of allyl amines has received little
attention because they lack a proper coordinating group.
On this matter, 3,3-diarylpropyl amines rise as an interesting

target. They are found in several medicinally useful bioactive
compounds, including the commercially available drugs
tolterodine6 and fesoterodine (Figure 1a).7 Additionally, the
cyclization and functionalization of these substrates grants
access to 4-aryl-substituted tetrahydroquinolines (THQs),

which also hold significant relevance in the pharmaceutical
industry, as reflected by their presence in numerous drugs and
natural products (Figure 1b).8

So far, catalytic asymmetric methods to synthesize 3,3-
diarylpropyl compounds rely mainly on two strategies. The
most widely used is the enantioselective rhodium-catalyzed
1,4-conjugate addition of arylboronic acids to β-aryl-α,β-
unsaturated esters.9 This strategy provides good results in
terms of enantioselectivity when meta- or para-substituted
boronic acids are employed. However, when it comes to ortho-
substituted compounds, the selectivity decreases. Other
organometallic nucleophiles and α,β-unsaturated groups have
been used without success.10 The alternative strategy involves
metal-catalyzed AH (Figure 1c), the reaction employed herein.
Currently, this approach is dominated by rhodium catalysts.11

Recently, the Rh-catalyzed hydrogenation of a single diarylallyl
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phthalimide was reported to provide 86% ee.11e The
unsatisfactory results obtained when synthesizing ortho- or
para-substituted compounds make the use of this metal far
from ideal. Iridium is another metal frequently used in AH.
However, to our knowledge, only two studies on iridium-
catalyzed AH of this class of compounds have been reported,
both with suboptimal enantioselectivites.12 Therefore, a
general and highly enantioselective methodology for the
synthesis of 3,3-diarylpropyl amines is desirable.
Here we describe a novel approach based on the iridium-

catalyzed AH of 3,3-diarylallyl phthalimides.13 Our strategy
grants access to the desired motifs with optimal enantiose-
lectivities regardless of the aryl substitution. We also show that
the resulting substrates can be easily derivatized to obtain
medicinally useful bioactive compounds like the drugs
tolterodine and tolpropamine14 and 4-aryl THQs.
The synthesis of 3,3-diarylallyl phthalimides was envisaged

from allylic alcohol 1, which is easily accessible in a
stereoselective manner from E-cinnamyl alcohol by Monteiro’s
procedure.15 From compound 1, the phthalimide and aryl
fragments can be introduced in any order. Initially, we
introduced the phthalimide first. This can be done either by
a Mitsunobu reaction or by substitution on the corresponding
mesylate. Both procedures afforded vinyl bromide 2 in
excellent yield (Scheme 1). Next, the Suzuki coupling with

different boronic acids provided a diverse array of 3,3-
diarylallyl phthalimides 3 in good yields.

The initial catalyst screening for AH was carried out using
different catalysts developed by our group, like the Ir−
MaxPHOX16 and Ir−PepPHOX17 families, on substrate 3a
(Scheme 2). Although these catalysts afforded excellent results,

the best enantioselectivity (99% ee) was obtained using
commercially available Ir−(S,S)-UbaPHOX.18 For full details,
see the Supporting Information (SI).
Next, we studied the optimization of the hydrogenation

conditions with p-methyl-substituted substrate 3b and Ir-
UbaPHOX catalyst (Table 1). Dichloromethane (DCM),
trifluorotoluene (TFT), and dichloroethane (DCE) all
provided 96−97% ee (Table 1, entries 1−3). Toluene also
provided comparable selectivity but with a significant loss of
activity (Table 1, entry 4). The use of a weakly coordinating
solvent such as ethyl acetate (EtOAc) was detrimental in terms
of conversion (Table 1, entry 5). The use of greener solvents
such as dimethyl carbonate (DMC) and propylene carbonate
(PC) was also attempted without success due to the poor
solubility of the allyl phthalimide (Table 1, entries 6 and 7).
Regarding the hydrogen pressure, the best results were
obtained at 50 bar (Table 1, entry 1). Decreasing the pressure
to 10 bar resulted in a slight decrease in selectivity (Table 1,

Figure 1. (a) Examples of commercially available drugs containing a
3,3-diarylpropyl amine core. (b) Examples of biologically active
compounds with a 4-aryl-substituted THQ core. (c) Previous AH
approaches to access 3,3-diarylpropyl amines and strategy envisaged
in this study.

Scheme 1. Synthesis of 3,3-Diarylallyl Phthalimides 3 by
Route A

Scheme 2. Summarized Screening of Catalysts for the AH of
3aa

aThe catalysts shown afforded full conversion. See the SI for the
complete catalyst screening results.
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entry 8), and when the pressure was set at 3 bar, the reaction
did not reach full conversion (Table 1, entry 9). Finally, the
catalyst loading was decreased to 1 mol % with no loss of
selectivity (Table 1, entry 10).
While screening the reaction conditions with 3b, we

encountered a few reproducibility issues. In some instances,
the hydrogenation was not complete, and the isomerized
starting material E/Z-3b was recovered. After closer inspection,
we realized that this occurred with non-recrystallized samples
of 3b. HPLC-MS analysis of such batches revealed that they
contained small amounts of the previous bromoalkene
intermediate 2 (see the SI for more details). To confirm that
the presence of the bromoalkene was responsible for the
isomerization, a 1 mol % loading of 2 was added to a
recrystallized batch of E-3b (Scheme 3a). Hydrogenation at 1
mol % catalyst in this case was completely suppressed, and the
isomerized alkene was recovered. This observation confirmed
that any bromoalkene impurity was extremely detrimental for
the conversion and selectivity of the AH process. To avoid the
presence of 2, we tackled the synthesis of alkene substrates 3
via an alternative route. Reversing the order of the reactions,
the arylboronic acids were introduced first via a Suzuki
coupling, and the phthalimide group was incorporated later
using a Mitsunobu reaction (Scheme 3b). After column
chromatography and/or recrystallization, the desired E-3,3-
diarylallyl phthalimides 3 were obtained as single diaster-
eomers. Notably, the AH of 3a synthesized via Route B
resulted in an increase in selectivity from 96% to 98% ee
(Table 1, entry 11).
Using both routes, a set of 3,3-diarylallyl phthalimides with

different substituents on one of the aryl groups (3a−3j) were
prepared. These substrates were subjected to AH at 1 mol %
under the optimized conditions (Scheme 4). All olefins bearing
para substituents (3a−3d) on the aryl ring gave enantiose-
lectivities ranging from 98% to 99% ee. When this substitution
was placed at the meta position (3e), 98% ee was achieved.

Example 3f with ortho substitution yielded 99% ee. Similarly,
3g also provided 99% ee but required a longer reaction time
and an increase in the catalyst loading. The transformation also
proved to be effective with disubstituted compounds. In this
regard, 3h and 3i were successfully hydrogenated, achieving
99% ee. Finally, the naphthyl substituted substrate 3j was also
attempted, yielding 98% ee. It was observed that compounds
synthesized through Route B consistently provided higher
selectivity. This observation confirmed that trace amounts of 2
that remained on substrate 3 were responsible for partial
isomerization of the substrate, thus resulting in a decrease in
selectivity.19 Hydrogenation of substrates containing acetyl,
furan, and thiophene moieties provided low conversion and
selectivity (see the SI). This is most likely due to coordination
of these moieties to the iridium center, resulting in catalyst
deactivation.
Examples 3a, 3b, 3g, 3h, and 3i were also hydrogenated on

larger scales ranging from 0.5 to 1.7 mmol (150−650 mg) of
starting material without loss of selectivity. Example 3f was also
hydrogenated at a 0.5 mol % catalyst loading with a minimal
decrease in enantioselectivity (98% ee). The stereochemistry
of all the products was predicted to be S using Andersson’s
quadrant model (see the SI).20 This was later confirmed by
comparison of the sign of the optical rotation of 10g (vide
inf ra) with the literature.21 The stereochemical outcome was
assumed to be the same for all substrates.
We next proceeded to demonstrate the usefulness of the

present methodology by applying it to the synthesis of
biologically active compounds of pharmacological interest
(Scheme 5). First, the deprotected primary amine derivatives
of 5 were readily obtained in quantitative yield by phthalimide
deprotection using hydrazine (Scheme 5a). (R)-Tolterodine is
a commercially available drug that has been synthesized on
numerous occasions using racemic resolution,22 chiral
auxiliaries,23 rhodium-catalyzed 1,4-conjugate addition,9 or
AH on coumarins.24 Nonetheless, none of these approaches
contemplate iridium-catalyzed AH as the key step. Starting
from (R)-6i (Scheme 5b), obtained using Ir−(R,R)-Uba-
PHOX, the free amine was alkylated with two isopropyl groups
using acetone and Pd/C under H2 pressure to yield 7. A final
deprotection of the phenol group provided (R)-tolterodine (8)

Table 1. Optimization of Pressure, Solvent, and Catalyst
Loading Parametersa

entry
catalyst loading

[mol %]
PHd2

[bar] solvent
conv.
[%]b

ee
[%]c

1 5 50 DCM >99 96
2 5 50 TFT >99 97
3 5 50 DCE >99 96
4 5 50 toluene 62 95
5 5 50 EtOAc 3 −
6 5 50 DMC 0 −
7 5 50 PC 0 −
8 5 10 DCM >99 91
9 5 3 DCM 53 57
10 1 50 DCM >99 96
11d 1 50 DCM >99 98

aThe experiments were carried out at 0.17 M. bDetermined by 1H
NMR analysis of the crude reaction mixtures. cDetermined by HPLC
analysis on a chiral stationary phase. dThe starting material was
synthesized via Route B (Scheme 3b).

Scheme 3. (a) Isomerization Induced by the Presence of 2;
(b) Synthesis of 3,3-Diarylallyl Phthalimides 3 by Route B

Organic Letters pubs.acs.org/OrgLett Letter

https://doi.org/10.1021/acs.orglett.4c04076
Org. Lett. 2024, 26, 10903−10909

10905

https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.4c04076/suppl_file/ol4c04076_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.4c04076/suppl_file/ol4c04076_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.4c04076/suppl_file/ol4c04076_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c04076?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c04076?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c04076?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.4c04076?fig=sch3&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.4c04076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in optically pure form. Tolpropamine, an antihistaminic drug,
has only been described as a racemate, and no asymmetric
synthesis has been previously reported. Here, starting from 6b
(Scheme 5b), the free amine was dimethylated via an
Eschweiler−Clarke reaction to yield (S)-tolpropamine (9).
Ultimately, regarding the promising activity of 4-aryl THQs

against biological targets, we envisioned their asymmetric
synthesis from the cyclization of o-chloro-substituted 3,3-
diarylpropyl phthalimides 5g/5h (Scheme 5c). After depro-
tection of the phthalimides, a Buchwald−Hartwig cyclization
yielded the desired 4-aryl THQs. Comparison of the optical
rotation of 10g with literature data confirmed not only the
absolute configuration of the hydrogenation products but also
that no racemization occurred during the deprotection and
cyclization reactions.20 To the best of our knowledge, the
approach described herein provides the best enantioselectivity
in the synthesis of such compounds reported to date. All of
these applications demonstrate the versatility of the chiral

diarylpropyl amine intermediates obtained using our method-
ology.
In summary, here we describe a novel methodology to

prepare 3,3-diarylallyl phthalimides 3 as single diastereomers.
Iridium-catalyzed asymmetric hydrogenation of these com-
pounds provides the corresponding 3,3-diarylpropyl amines
with high enantioselectivity. During optimization of the
reaction, it was found that bromoalkene impurities induced
the isomerization of the alkene starting material, thus lowering
the selectivity of the overall process. Using a synthetic route
that minimizes the bromoalkene impurities in the starting
material, the final chiral propylamines were obtained with
selectivity ranging from 98 to 99% ee. The scope of the
reaction has been shown to tolerate distinct functional groups
and substitutions patterns. The synthetic utility of 3,3-
diarylpropyl phthalimides 5 has been proven by preparing
tolpropamine, tolterodine, and 4-aryl THQs, achieving the
highest enantioselectivities reported to date.

Scheme 4. Scope of the Catalytic Hydrogenation of 3,3-Diarylallyl Phthalimides 3d

a98% ee was obtained when the catalyst loading was decreased to 0.5 mol %. b2 mol % catalyst loading and 64 h reaction time were used. cLarge-
scale hydrogenation was performed with Ir−(R,R)-UbaPHOX to yield (R)-5i. dSee the SI for the molarity values used in each reaction. All
substrates provided complete conversion, except for 5h (Route B; 97%). The ee values were determined by HPLC analysis on a chiral stationary
phase.
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