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Abstract 

Infection prevention and control (IPC) programs form the basis of minimizing spread of pathogens in the healthcare 
setting and beyond. The COVID-19 pandemic amplified the demand for IPC. However, the environmental impact 
of IPC practices has yet to be addressed and attempts to quantify its climate implications have been sparse. We 
performed a scoping review to identify current evidence regarding the environmental footprint of IPC measures 
and to highlight existing gaps in the literature. We included 30 articles, with 23 quantifying the environmental impact 
by mass of waste generated, six via carbon emissions, and one reporting on the concentration of volatile organic 
compounds. The mass of infectious waste ranged from 0.16 to 3.95 kg/bed/day, with large variability between coun-
tries. In general, higher-income countries produced more waste than lower-income countries. Significant carbon 
emission savings resulted from substituting reusable gowns and sharps containers, compared to single use items. The 
most significant gaps are the overall lack of standardisation in quantifying the environmental footprint of IPC-related 
practices, and a lack of studies on carbon emissions stemming from low and lower-middle income countries. We 
quantify the environmental impact of IPC practices, suggest areas of infection control that warrant further evaluation, 
and an approach to standardising environmental metrics in an attempt to better map out the climate implications 
of adopted IPC measures.
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Introduction
Climate change has evolved into the greatest global 
health threat of the twenty-first century [1]. Rising tem-
peratures beyond target thresholds of 2  °C are likely to 
negatively impact every facet of human life.

Dedicated measures within health care settings to con-
tain and reduce the risk of transmission of infectious 
pathogens and hospital acquired multi-drug resistant 
organisms (MDROs), otherwise known as infection pre-
vention and control (IPC), have clear benefits in reducing 
morbidity and mortality from healthcare-acquired infec-
tions (HAIs). However, IPC practices require substantial 
personal protective equipment (PPE), including gowns, 
gloves and masks which are disposed after one time use. 
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Other single use items such as IVs, IV tubing, single-dose 
vials, etc., and those needed for cleaning and disinfecting 
are needed almost daily in patient care. Single-use items 
reduce the risk of transmission of pathogens between 
patients whether it be by person to person transfer 
(hands), environmental transfer (fomites) or transmission 
via contaminated fluids including body fluids. The use of 
PPE and other single use items for IPC not only requires 
large amounts of energy for manufacturing but can also 
create infectious or chemical waste, all of which are det-
rimental to the environment. A single surgical mask is 
estimated to release 0.059 kg carbon dioxide equivalents 
(CO2eq) into the atmosphere and contribute to 12–13 g 
of waste per unit [2, 3]. Plastic debris from improper face 
mask disposal is expected to result in 150–390 thousand 
tons of marine pollution annually worldwide [4]. There is 
a need to balance good IPC practices with sustainability; 
the recent COVID-19 pandemic has highlighted the envi-
ronmental impact of IPC measures, especially with the 
surge in demand for PPE and disposable products [5–8].

The principles governing IPC are well established, and 
evidence supports the benefits and cost-savings of IPC 
programmes, though low- and lower-middle income 
countries continue to be underrepresented [9]. In con-
trast, there is a paucity of studies assessing the environ-
mental implications of IPC practices [9]. Some studies 
have explored the impact of eye-health [10], anaesthe-
sia [11], and surgery [12–14], on the climate, highlight-
ing the evolving need for healthcare to not only serve its 
apparent medical purpose, but to also be environmentally 
sustainable in the face of a volatile climate. We therefore 
undertook this systematic scoping review in an attempt 
to quantify the available evidence on the environmental 
impact of various forms of infection control, how such an 
impact translates to sustainability in the long-term, and 
to identify gaps in the literature.

Methods
Search strategy
We performed a systematic search while adhering to 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) statement [15], and reg-
istered the study with PROSPERO (CRD42023456805). 
The PRISMA Extension for Scoping Reviews (PRISMA-
ScR) can be found in Table S1 [16]. We searched Medline 
(Ovid) and Embase databases from inception through 18 
September 2024 using the keywords “infection”, “trans-
mission”, “climate change”, “global warming” and relevant 
infection control terms such as “mask”, “PPE” and “gloves” 
(Table  S2). References were imported into EndNote X9 
for the initial sieve with the removal of duplicates. Refer-
ences of related reviews and included articles were also 
hand-screened to ensure a comprehensive search.

Study selection
Eligibility for inclusion was determined by two authors 
(OL and WYC) who screened articles independently 
from the initial sieve, with a third independent author 
involved in the resolution of conflicts (AW). We included 
studies which quantitatively measured the environmen-
tal impact of infection control practice found in stand-
ard, contact, droplet or airborne precautions [17], using 
measures including mass of waste (usually in kg or tons), 
carbon dioxide equivalents (CO2eq), energy expenditure 
(kWh), and air or marine pollution, in a hospital setting 
and/or health-care facility. Studies were excluded if they 
were reviews, meta-analyses, editorials, commentaries or 
non-Human studies. Conference abstracts were included 
if they contained relevant information. We sought trans-
lation for non-English language studies if the need arose. 
With previous reviews having analysed the environ-
mental cost of surgery [13], we excluded studies with a 
surgical focus and those performed in the setting of an 
operating theatre. Studies which reported data that did 
not have direct environmental implications or lacked 
suitable conversion formulae to a measurable metric of 
interest (i.e. economic cost of waste management, num-
ber/incidence of new infections, number of hospital 
admissions) were also excluded.

Data extraction
Data from the included articles were extracted indepen-
dently by two authors who were blinded in the process. 
The data collection template can be accessed in Table S3. 
Briefly, we extracted data on study characteristics (coun-
try, year of study, setting of study, COVID-19 vs non 
COVID-19, income-level of country in the year of pub-
lication (as defined by the World Bank classification), 
infection-control related data (specific type of precau-
tion being studied, main findings), and environmental 
impact (mass of waste, number of beds and patients, car-
bon dioxide emissions, and other relevant environmental 
matrices if reported by the authors). Any discrepancies 
which arose post-extraction were brought up for discus-
sion and resolved, with involvement of a third independ-
ent author where deemed necessary. Data on infectious 
waste and emissions were reported in differing units 
across the included studies, and were standardised wher-
ever possible.

Data synthesis
We had initially planned to perform a systematic review. 
However, recommendations have been made for scop-
ing reviews over systematic reviews when the scope of a 
topic remains poorly defined, and when broad research 
questions have yet to be answered [18, 19]. The lack of 
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literature and overwhelming heterogeneity of data led to 
a switch in study type. Data from studies were themati-
cally assessed, with both qualitative and quantitative data 
synthesised and presented narratively. We expanded on 
themes related to the environmental cost of each form of 
IPC, how cost was quantified across studies, and looked 
for possible reasons when discrepancies arose.

Role of the funding source
There was no funding source for this study.

Results
Summary of included studies
Of 8,911 articles, we excluded 8,741 articles and short-
listed 170 full texts for review. A total of 30 studies were 
included. [20–49] (Fig.  1). Fourteen of the studies [22, 
23, 25, 27, 30, 31, 34–36, 39, 42, 44, 48, 49] were identi-
fied via hand-screening of included articles and citation-
searching. 23 studies reported on the mass of infectious 
waste produced [20–29, 32–34, 36–40, 42–44, 47, 48], six 
on carbon emissions, [31, 35, 41, 45, 46, 49] and one on 
the concentration of volatile organic compounds (VOCs) 
emitted. [30] The summary of included articles can be 
found in Table 1.

Mass of waste
The majority of our articles reported on mass of waste, 
of which a large proportion (21 studies) was infectious 
waste. Other specific waste types included PPE waste 
and N95 or respirator generated waste (one study each). 
Studies were evenly spread across income brackets, with 
12 and 11 studies originating from upper-middle to high 
income countries and low to lower-middle income coun-
tries respectively. We attempted to standardise the units 
for waste generated, ideally reporting it in kg/bed/day (or 
kg/patient/day) to allow for some degree of inter-study 
comparison. Across all studies, infectious waste ranged 
from 0.16 to 3.95 kg/bed/day [21, 40]. The study respon-
sible for the largest amount of waste was conducted at 
the height of the COVID-19 outbreak [21]. Excluding this 
study, all other studies were non-COVID-19 in nature, 
with infectious waste ranging from 0.16 to 2.5 kg/bed/day 
[34, 40]. Four articles reported on infectious waste using 
other units, ranging from 2.3 to 20.1 kg/day and 0.04 kg/
patient/day to 0.4 kg/patient/day.

A cost-analysis study by Chu et  al. reported on the 
mass of N95 waste with different respirator strategies. 
We assumed a period of 6  months to be approximately 
182.5  days, and estimated the environmental impact to 
range from 0.022  kg/patient/day when using reusable 
respirator and decontaminated filters to 1.16 kg/patient/
day if one N95 respirator was used per patient encounter. 
Across five healthcare facilities in Bahrain, we calculated 

that the average amount of PPE utilised per healthcare 
worker was 2.62  kg/day, although this included facili-
ties dealing with both suspected and confirmed cases of 
COVID-19 infection [22].

Carbon emissions
Six studies quantified environmental impact through car-
bon emissions. Two studies looked at the environmental 
impact of sterilisation methods. Rizan et al. examined the 
carbon footprint of waste streams in a UK hospital, with 
high-temperature incineration having the greatest envi-
ronmental impact producing 1074  kg CO2e/t of waste. 
This method of sterilisation was utilised for clinical waste, 
clinical sharps, anatomical waste and medicinal waste, as 
mandated by national guidelines [45]. Specific to infec-
tious waste, autoclave decontamination produced 569 kg 
CO2e/t. The carbon footprint from electricity, gas/oil, 
and water supplies was 338 kg CO2e/t. A similar study on 
treatment systems for infectious waste found the highest 
and lowest global warming potentials with incineration 
and microwave disinfection respectively (1213 kg CO2e/t 
vs. 99 kg CO2e/t).

Articles performing life-cycle assessments were also 
included. A study of PPE use during the first six months 
of the COVID-19 pandemic in the UK was performed. 
The carbon footprint of individual PPE items were: Sin-
gle-use gown (905  g CO2e), face shield (231  g CO2e), 
respirators (76–125  g CO2e), apron (65  g CO2e), gloves 
(26  g CO2e), surgical masks (13–20  g CO2e). The total 
carbon footprint produced over 6  months from all PPE 
items was 106,477,990  kg CO2e. Two studies compared 
reusable vs disposable IPC strategies related to isolation 
gowning and sharps container use. Per 1,000 uses, reus-
able gowns emitted 30% less greenhouse gases (218 vs. 
310 kg CO2eq). Sensitivity analyses with different prod-
ucts showed consistent environmental benefits with a 
reusable gown strategy. Adopting a reusable strategy with 
sharps containers generated 628.9 tonnes of CO2 com-
pared to 3896.4 tonnes over a 12  month period, repre-
senting a 83.9% decrease in CO2 emissions.

In the sole longitudinal study across a 10 year period, 
the total annual carbon footprint produced by the 
Nagoya University Hospital steadily increased. This was 
accompanied by a spike in infectious waste from 2019 
to 2020 and a significant increase in yearly infectious 
waste related emissions from 114.47 to 147.62  tCO2eq, 
although the overall carbon footprint had dropped dur-
ing the pandemic owing to confinement measures and 
lower patient load [41]. A positive correlation between 
the monthly average temperature and monthly carbon 
emissions across a 7-year period was also seen, with a 
significant increase in the carbon footprint per admission 
between 2018 and 2020 owing to ‘more intensive medical 
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care’ provided per-admission during the early part of the 
COVID-19 pandemic, and longer average hospital stays 
in 2020 as compared to 2018 (12.2 days vs. 11.9 days).

Other environmental metrics
The concentration of volatile organic compounds (VOCs) 
emitted via four non-incinerator waste disposal methods 

(autoclave with and without shredder, dry-heat system, 
and hydroclave) were studied by Farshad et  al. Briefly, 
VOCs have been linked to a wide range of environmen-
tal and health implications, including respiratory, neuro-
logical and carcinogenic effects [50]. The concentration 
of VOCs ranged from 1.78 to 9.3  ppm when using an 
autoclave without and with a shredder respectively. The 

Fig. 1  Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram
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comparative study on reusable vs disposable isolation 
gowns also reported on other environmental metrics 
besides carbon emissions, with a reusable strategy con-
suming 28% less energy (3712 vs. 5150  MJ), 41% less 
blue water (43.8 vs. 74.6  kg, with blue water defined as 
all water that is removed from the supply chain, includ-
ing water lost to evaporation and incorporated into the 
product), and large savings in waste generation (0.4 kg vs. 
63.4 kg).

Trends across income level
Economic fluctuations in the countries were adjusted for 
based on year-specific data provided by the World Bank 
[51]. An assessment of the studies which had reported 
waste in kg/bed/day revealed that nine were conducted 
in countries belonging to low and lower-middle income 
brackets, of which eight generated less than 1 kg/bed/day 
of infectious waste. In contrast, all studies conducted in 
upper-middle and high income countries generated more 
than 1 kg/bed/day of infectious waste, with the exception 
of two Taiwanese studies producing 0.19  kg/bed/day to 
0.39 kg/bed/day of infectious waste [26, 37].

Discussion
In its 2020 guidance report, the World Health Organi-
sation (WHO) underlined the need for a sustainable 
approach to healthcare given a rapidly changing climate 
[52]. At the same time, the recent WHO global report on 
IPC reveals a worrying lack of progress, especially with 
“respect to the proportion of countries with an active 
national IPC programme, evidence-based and standard-
ised national guidelines [9]”. However, there has been lit-
tle mention in guidelines of the environmental impacts 
of current well-established IPC programs and the impact 
that the scaling up of programs globally will have on 
increasing carbon emissions from healthcare in general. 
Regardless, some countries have made concerted efforts 
to meet the aims of introducing sustainability in health-
care. The National Healthcare System (NHS) launched 
the ‘Greener NHS’ campaign to decarbonise itself, and 
move toward being a ‘net zero’ service by 2040 for emis-
sions directly under its purview. A recent analysis across 
49 regions demonstrated an increase of resource foot-
prints in healthcare systems in the last 20  years, and is 
expected to grow as more energy intensive treatments 
continue to be implemented [53]. The need for greener 
healthcare services has clearly gained traction on the 
international stage. Yet, our scoping review highlighted 
the paucity of data measuring the environmental impact 
of the numerous IPC practices undertaken, rightfully, for 
patient safety. In contrast, the impact of volatile anaes-
thetic gases, such as desflurane, has received major atten-
tion throughout the years, due to its substantial global 

warming potential, and is gradually being phased out 
from use internationally [11, 54, 55]. The ubiquity of 
infection control is perhaps many times greater than the 
use of volatile anaesthetics, as evidenced by the unprec-
edented COVID-19 pandemic, and is poised to grow 
with the WHO’s recent call to increase IPC programs 
world-wide. Infection control practices are already being 
included as part of larger carbon footprint assessments, 
albeit as a constituent of other sectors such as medical 
and non-medical equipment, as well as water and waste 
[55, 56]. Isolating its impact from the larger umbrella of 
healthcare sectors would provide greater clarity on emis-
sions attributable to infection control. This is critical for 
IPC programs so as to direct available resources at prac-
tices that are most likely to reduce the carbon footprint, 
while also preventing health care associated infections.

Most published studies focused on the mass of waste 
generated, in particular infectious waste, but demon-
strated great variability between studies ranging from 
0.16  kg/bed/day in a Moroccan study to 2.5  kg/bed/day 
in Taiwan. However, the Taiwanese study assumed a 
100% occupancy rate of 95,810 beds across the nation, 
possibly overestimating the waste generated. We noted 
a general pattern of higher waste production with high 
and upper-middle income countries as opposed to those 
in lower-income brackets (Fig. 2A). This finding mirrors 
that of previous literature, including WHO’s fact sheet 
on healthcare waste [57, 58]. An important caveat lies 
with higher rates of improper waste segregation in lower-
income countries, which we found to approach 30–50% 
in our studies [20, 42, 47], perhaps underestimating the 
true extent of infectious waste output in these countries. 
While mass of waste serves as a valuable research metric, 
its utility may fail to extend much further. Management 
of infectious waste differs depending on local policies 
and waste management strategies, ultimately generat-
ing varying amounts of carbon emissions even with the 
same amount of waste. Nonetheless, we propose that 
mass of waste be reported in kg/bed/day whenever fea-
sible for future studies, instead of raw mass, enabling 
greater standardisation and comparison across both time 
and region. There was limited data on how generated 
waste further translated to greenhouse gas emissions, 
which failed to capture the potential carbon footprint of 
included IPC practices. The Japanese study was unique 
in the manner in which it broke down its carbon foot-
print in a detailed and practical way with measurements 
of electricity, gas, and waste, which were then coupled 
with country-specific emission factors to derive its car-
bon footprint [41]. However, the logistical and financial 
constraints of being able to amass such data should not 
be underestimated. Japan mandates that its institutions 
report their annual carbon footprint [59]. Additional 
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Fig. 2  A: world map illustrating the geographic distribution of studies reporting on mass of waste. World map illustrating the geographic 
distribution of studies reporting on mass of waste. Countries reporting on mass of infectious waste (kg/bed/day) are shaded blue, with darkening 
of the colour gradient as mass of infectious waste produced increases. Countries shaded are Bangladesh (< 1), Morocco (< 1), Nigeria (< 1), India 
(< 1), Ivory Coast (< 1), Kuwait (1–2), Australia (1–2), USA (1–2), Taiwan (2–3), Iran (2–3) and Jordan (3–4). Several studies conducted in Ethiopia, Iran, 
and Nigeria reported on infectious waste using units other than kg/bed/day (e.g. kg/patient/day or kg/day) and are not shaded in the diagram. B: 
world map illustrating the geographic distribution of studies reporting on carbon emissions. World map illustrating the geographic distribution 
of studies reporting on carbon emissions. All countries reporting on carbon emissions are high-income, and include the UK (3 studies), South Korea, 
Japan and the USA
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costs incurred by round-the-year monitoring and out-
sourcing of waste are not realistic on a global scale, 
particularly in less developed countries. Future stud-
ies should aim to quantify—ideally using standardised 
units—the carbon emissions, energy and water consump-
tion, and risk for environmental pollution, from both the 
materials used for IPC, and those resulting from waste of 
the products, while accounting for any recycling versus 
disposal of IPC products (Fig. 3, Table S4).

The studies on carbon emissions provided valuable 
input on the environmental impact of various IPC meas-
ures. Notably, we found large savings in carbon emissions 
when switching to reusable isolation gowning and sharps 
disposal from single-use. Of note, transport distances 
may play a substantial role in overall carbon savings with 
reusable containers, having accounted for 67.1% of its 
life-cycle global warming potential. The vast reduction in 
CO2 emissions were made possible with “relatively short 
UK transport distances”, and may suggest attenuated 
environmental savings with different healthcare settings 
that are more geographically sparse. This finding under-
lines one of many differences that exist between countries 
and health systems, limiting the ability to extrapolate 
such data to a global context. Importantly, we noted that 
all six studies reporting on carbon emissions stemmed 
from high-income countries (Fig.  2B), highlighting yet 

another discrepancy in data across income brackets. High 
income countries remain the main drivers of greenhouse 
gas emissions, while lower income countries experience 
a disproportionate burden from the climate crisis [60]. 
Improvements in quantifying the environmental impact 
of IPCs could, and should, begin with institutions in high 
income countries where resources are ample, before 
being implemented in lower income countries where the 
need for proper infection control continues to grow. This 
is in line with the Sustainable Development Goals (SDGs) 
by the United Nations, SDG 13— “Climate Action” and 
SDG 17—“Partnerships For The Goals”, where collective 
action to tackle the global threat of climate change is par-
amount [61].

Fundamentally, any change from current IPC practices 
for an environmental benefit will need to retain efficacy 
and patient safety in order to justify the switch. Limited 
data exist which adequately address environmental costs 
of current versus alternative IPC practices and the cli-
mate benefits (or drawbacks) of each option, especially in 
terms of showing longitudinal safety outcomes. We had 
initially set out with the aim of categorising studies into 
the various types of precautions for ease of data organisa-
tion and presentation. However, we found that no studies 
had a pre-specified focus on a particular set of precau-
tions, and papers had to be independently screened and 

Fig. 3  Standardising reporting of environmental impact of infection control practices
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manually categorised where possible. Future studies, 
focusing on singular aspects of infection control, be it a 
single method, or Infection Control bundles, are likely 
to be more useful. This is especially since focusing on a 
particular aspect over the full life-cycle, will allow for an 
easier calculation of the corresponding carbon emissions 
data from said practice. In our drive to be sustainable, 
identification of “carbon hotspots” is a necessary step 
to determine the highest impact practices to focus on. 
Various countries such as the UK [55], USA [62], China 
[63], and Australia [64], have broadly identified the sup-
ply chain (62%), overall hospital care (36%), and public 
hospitals (47% and 34%) as their biggest contributors to 
healthcare emissions respectively. Scaling it down to IPC-
specific components, and using standardized metrics for 
measurements, would allow infection control specialists, 
policymakers and governmental organisations to focus 
efforts on IPC “hotspots” that contribute most heavily to 
greenhouse gas emissions.

We hope that our study will help to inform the type of 
future research needed in this field, and act as a precur-
sor for future systematic reviews where specific elements 
of infection control are more comprehensively and sys-
tematically addressed. The sheer scale of IPC programs 
across hospitals of all sizes suggests the urgent need for 
dedicated studies. Studies comparing the impact of vari-
ous aspects of in-hospital infection control practices, 
using the WHO breakdown of the 7 aspects of an IPC 
program would be a good first step, and includes com-
ponents that are frequently overlooked, but of every-
day importance. These components are outlined by the 
WHO Minimum Requirements for infection prevention 
and control programmes, and include hand hygiene, 
linen management, environmental cleaning, sterilization 
of medical devices, waste management, personal protec-
tive equipment (PPE) and air management [17]. We sum-
marise these components in Fig. 3, and provide specific 
suggestions on environmental metrics that may be useful 
in quantifying environmental impact based-off each IPC 
measure.

Our study had some important limitations. First, the 
cross-sectional nature of most included studies inher-
ently carry limitations when attempting to establish 
causality, and associations should be interpreted with 
caution. Second, we had to make manual calculations 
in an effort to standardise units and allow comparison. 
However, we were careful to make these calculations 
only if sufficient data was made available by the origi-
nal article, and assumptions, if any, were clearly stated, 
as in the case of time conversions made (e.g. months 
to days). Third, besides life-cycle assessment studies, 
other articles, especially those on waste production, did 
not provide sufficient granularity when assessing the 

environmental impact of each stage of a product’s life-
cycle (e.g. production vs transport vs disposal). Identi-
fication of IPC-specific activities in some articles also 
proved challenging. Nonetheless, we acknowledge that 
the field of IPC sustainability appears relatively nascent, 
with no scoping reviews performed to date, which led 
us to adopt a broad criteria for inclusion so long as use-
ful environmental metrics were presented. Fourth, we 
would have liked to assess for trends across time, but 
were limited by substantial inter-study heterogeneity 
in waste and data collection methodology, along with 
variations in healthcare setting. It would have been 
difficult to pin-point any conclusions drawn on varia-
tions in waste solely to the effect of time. We had also 
planned to compare the environmental impact across 
different healthcare settings, such as hospital-based 
care vs primary care. Unfortunately, most of the stud-
ies reported solely on hospital-generated waste, with an 
insufficient number of articles available for inter-setting 
comparisons to be made. Finally, we were unable to 
expand on all forms of environmental metrics included 
in our scoping review, notably on concentration of 
VOCs emitted. Given the broad scope of the topic, we 
decided to focus our discussion on the more ubiquitous 
metrics reported in healthcare settings globally. Never-
theless, these metrics represent important markers of 
environmental impact, and will be better characterized 
once more relevant studies are performed.

In conclusion, our scoping review found only 30 arti-
cles attempting to quantify the environmental impact 
of IPC measures, with most reporting on mass of waste 
generated. The few studies reporting on carbon emis-
sions were all conducted in high-income countries, 
highlighting a marked discrepancy in studies being 
performed across countries of varying incomes. Over-
all, the quality and scope of the available evidence on 
IPC appears relatively limited considering its impor-
tance, warranting an urgent need to invest in IPC envi-
ronmental impact research to strengthen the evidence 
base that must be considered in order to move toward 
a more sustainable IPC agenda. The largest survey on 
IPC in healthcare facilities covering 81 countries was 
concluded in 2022, and reflected the WHO’s resolu-
tion to rapidly understand the interplay between IPC 
preparedness and pathogen transmission on a global 
scale [65]. The utility of IPC programs will gradually 
increase as lower-income countries continue to refine 
healthcare standards to meet minimum requirements. 
To achieve sustainability moving forward, collective 
action from every rung of the ladder needs to be initi-
ated in addressing the environmental implications that 
infection control practices will likely precipitate in our 
natural environment.
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