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Purpose: We developed an artificial intelligence (AI) model to detect immunotherapy -related adverse events (irAEs) from clinical 
narratives of electronic health records (EHRs) at the patient level.
Patients and Methods: Training data, used for internal validation of the AI model, comprised 1230 clinical notes from 30 patients at 
The Ohio State University James Cancer Hospital−20 patients who experienced irAEs and ten who did not. 3256 clinical notes of 50 
patients were utilized for external validation of the AI model.
Results: Use of a leave-one-out cross-validation technique for internal validation among those 30 patients yielded accurate 
identification of 19 of 20 with irAEs (positive patients; 95% sensitivity) and correct dissociation of eight of ten without (negative 
patients; 80% specificity). External validation on 3256 clinical notes of 50 patients yielded high sensitivity (95%) but moderate 
specificity (64%). If we improve the model’s specificity to 100%, it could eliminate the need to manually review 2500 of those 3256 
clinical notes (77%).
Conclusion: Combined use of this AI model with the manual review of clinical notes will improve both sensitivity and specificity in 
the detection of irAEs, decreasing workload and costs and facilitating the development of improved immunotherapies.
Keywords: immunotherapy, cancer, adverse events, machine learning, natural language processing, artificial intelligence, electronic 
health records

Introduction
Adverse drug events (ADEs) are harmful side effects of drug use that can prolong hospitalization, heighten healthcare 
costs, and significantly increase the number of morbidity and mortality cases.1–4 Notwithstanding, ADEs are frequently 
preventable,5,6 and their early identification and prevention are vital to ensure patient safety, mitigate healthcare costs, 
and improve therapies.7,8 Though the field of immunotherapy has revolutionized cancer treatment, enhancing survival 
rates across various types of cancer,9,10 therapeutic advancements have been associated with unfavorable outcomes,11 

referred to as immunotherapy -related adverse events (irAEs). IrAEs can affect any organ system and commonly target 
the gastrointestinal tract, endocrine glands, skin, and liver, resulting in such conditions as colitis (eight to ten percent in 
some studies), diarrhea (27 to 54%), pneumonitis, thyroid abnormalities, rash/dermatitis (34 to 45%), hepatitis (five to 
ten percent), myalgia, and cardiotoxicity−side effects that can lead to severe and even life-threatening conditions.12–14 

Throughout this manuscript, we will discuss ADEs in the context of immunotherapy and use the terms ADE and irAE 
interchangeably.
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Electronic health records (EHRs) can contain longitudinal patient information, including details related to ADEs, that 
can be used as source data for the surveillance of post-marketing drug safety.14 However, our recently published study on 
irAEs, including colitis, hepatitis, and pneumonitis, revealed that the electronic health records of 46% of patients with 
irAEs that were noted during manual record review registered no ICD code evidence of these events.15 This illustrates 
the urgency for building an automated system capable of processing clinical texts and extracting pertinent information 
that avoids the time-consuming and labor-intensive task of manually extracting irAE data from clinical narratives.

Natural language processing (NLP), a branch of artificial intelligence (AI), has become popular in clinical research. 
NLP can automatically process text and extract valuable information. In both biomedical literature and EHRs, NLP has 
been extensively used for information extraction, such as named-entity recognition (NER) and relation extraction 
(RE).16,17 Early NLP favored rule-based methods, leading to the development of tools like KnowledgeMap,18 

MedEx,19 and MedXN,20 but the preference has shifted to machine learning (ML) and deep learning (DL) methods 
for the extraction of information from clinical texts.16,17,21,22

ML and DL techniques, in particular, have transformed the detection of ADEs in EHRs, enabling the analysis and 
extraction of ADE data from vast amounts of unstructured data in clinical notes.21,22 As a result, by automating the 
detection process, AI technologies can reduce the workload for labor-intensive manual chart review, significantly 
improving efficiency and minimizing human error. Notwithstanding the substantial progress, particularly in ADE 
detection challenges, such as the 2018 National NLP Clinical Challenges (N2c2)23 and 2019 Medication and Adverse 
Drug Events from Electronic Health Records Challenge (MADE 1.0),24 most models primarily focus on ADE detection 
at the event rather than patient level, thereby limiting comprehensive ADE detection and failing to account for the 
longitudinal nature of ADEs.

The challenge of developing AI models lies in achieving high sensitivity at the patient level. For patients receiving 
immunotherapy, missing irAEs could lead to undetected and, therefore, unmanaged severe outcomes that compromise 
patient safety.13,25,26 However, efforts to identify irAEs at the individual patient level have inadequately emphasized the 
necessary high sensitivity.27

Our study aims to bridge these gaps by leveraging NLP and ML technologies to develop a high-sensitivity model 
capable of detecting patient irAEs from clinical notes in EHRs, and we validate the performance of our AI model through 
manual review. We also investigate how NLP and ML can reduce the workload for manual review to achieve high 
specificity in detecting irAEs.

Material and Methods
Data Source
As part of our collection of data for training our model, we obtained the clinical notes of 30 patients who had received 
immune checkpoint inhibitors (ICIs) at The Ohio State University James Cancer Hospital between 2011 and 2021. The 
patients were selected randomly, and for each patient, we collected the clinical notes from the first twelve months 
following the date when the first ICI dose was administered. The ICI dose date was obtained from structured data. We 
collected 1230 clinical notes from the 30 selected patients, which we used to train our model, and we collected 3256 
clinical notes from 50 additional patients as validation data. The institutional review board of The Ohio State University 
approved this study (#2020C0145).

Data Annotation
The drug-ADE relationship is annotated in the training data at the sentence level in each note, after which the patient- 
level drug-ADE relationship is annotated. In the validation data, only the patient-level drug-ADE relationship is 
annotated. Therefore, the cost and labor of training data annotation are much more expensive than validation annotation. 
This is the primary reason the number of patient samples in validation is larger than the training sample. The annotation 
process involved examining each patient’s medical history and identifying relevant drug-ADE relationships. Two 
independent annotators, each with distinct expertise, performed the manual review. The first annotator was a graduate 
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student with four years of experience developing corpora using EHRs, and the second was a clinical researcher with 
hands-on experience working with EHRs.

Guideline for Manual Annotation of Drug-ADE Relations
Annotation of a positive drug-ADE relation required clear evidence in the note that the adverse event was induced by the 
drug. Cases in which an ADE was related to multiple, or a combination of drugs required separate annotation of each 
drug to the ADE to draw a drug-ADE relationship.

Sentence-Level Annotation
The goal of sentence-level annotation, to annotate drug-ADE relations within a sentence, required annotators to examine 
only the relations in which the drug and adverse event appeared in the same sentence. Relations between drugs and 
adverse events across sentences were outside the scope of this study. After the first round of annotation, the two 
annotators resolved any disagreements in their assessments through discussion.

Patient-Level Annotation
We established a clear criterion to determine whether a patient was positive or negative for a drug-ADE relation. Patients 
were classified as positive if their clinical notes identified at least one positive drug-ADE relation and negative if the 
notes showed no indication of a positive drug-ADE relation. This manuscript will consistently apply this definition of 
positive and negative patients. After a thorough manual review of the clinical notes for all 30 patients that were included 
in the training data, 20 patients were identified as positive and ten as negative. Complete agreement of the two 
independent annotators in their assessments at the patient-level annotation based on the clinical notes created 
a reliable gold standard dataset. We developed an NLP pipeline for further analysis and detail its components in the 
following sections.

Natural Language Processing Pipeline
Our machine-learning model was fed clinical notes that underwent several processing steps through our NLP pipeline 
(Figure 1).

Note Collection
We randomly selected 30 patients and collected 1230 clinical notes from the first twelve months after the first ICI dose 
was noted in structured data. We automated the collection process employing Python programming and maintained the 
order of the notes based on their respective dates.

Data Processing
The primary objective of the data processing procedure was to standardize the clinical notes, ensuring their consistency 
and suitability for further analysis. This included but was not limited to normalization of drug names and abbreviations 
and removal of uneven spaces to normalize space. We used regular-expressions28 techniques to perform the data 
processing task.

Figure 1 Natural language processing (NLP) pipeline involving a combination of manual and automated methods. Specifically, sentence-level annotation was carried out 
manually, and all other steps were automated using various programming languages (such as Python and C++), tools, and techniques. Adverse Drug Events (ADE), adverse 
drug event; Electronic Health Records (EHR), health record.
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Screening Drug Names and Adverse Drug Events
The automated screening was performed to separate clinical notes containing the drug name and adverse drug event 
within the same note and make the dataset more relevant to our study. During the screening process, we included all 
possible mentions of the immune checkpoint inhibitor drugs, including both generic and brand names (Table 1). Our 
primary source of information for drug references was DrugBank,29 and we used the Common Terminology Criteria for 
Adverse Events (CTCAE)30 as our reference guide for collecting all potential references of the ADEs (Table 1). Thus, we 
enriched the list of drugs and ADEs. A physician further verified and updated the drug and ADE list to guarantee 
accuracy and reliability. We then utilized the finalized list to automate the screening process by implementing C++ 
programming.

Sentence Segmentation
The Apache™ clinical Text Analysis and Knowledge Extraction System (cTAKES™)31 is an open-source tool that can 
perform several NLP tasks along with sentence segmentation. We used the system for sentence segmentation. Clinical 
notes contain many abbreviations, punctuation, and unexpected line breakers that make sentence segmentation very 
challenging. To address the challenges we encountered, we employed encryption of clinical notes. Specifically, we 
replaced characters that caused unexpected line breaks before performing sentence segmentation, thereby improving the 
performance of cTAKES™. After the segmentation, we decrypted the notes to preserve their original format.

Sentence-Level Annotation
Based on the sentence segmentation, we performed a sentence-level annotation.

Definition of Positive and Negative Drug-ADE Relationships and Annotation Extraction
We considered all possible combinations between drugs and ADEs within a sentence to build the gold standard dataset of 
positive and negative relations. For instance, Figure 2 contains a sentence that mentions three drugs and one ADE. From this 
sentence, we can derive three potential drug-ADE pairs, with one pair indicating a positive relation and the remaining two 
suggesting negative relations. The annotators directly labeled the positive drug-ADE relation from the text through manual 
annotation. However, the negative drug-ADE associations were determined indirectly. Computationally, we generated all 
possible drug-ADE combinations and removed those positive relations manually identified by the annotators, and this left us 
with the negative drug-ADE relations. From every positive patient, we extracted both positive and negative drug-ADE 
relations. Negative patients had no positive drug-ADE relations. The two annotators disagreed regarding 23 drug-ADE 
relations after the first round of annotation and resolved their disagreements after discussion. Finally, 175 positive and 745 
negative drug-ADE relations were extracted from the clinical notes of the 30 patients in the training data and served as the 
gold-standard positive and negative drug-ADE relations dataset. To every drug-ADE relation, we further assigned a patient 
identifier labeling the patient having the relation. This helped us separate the relations extracted from a particular patient.

Table 1 Names of Immune Checkpoint 
Inhibitor (ICI) Drugs and Adverse Drug 
Events (ADEs) Used in This Study

Drug Adverse Drug Event

Atezolizumab 
Avelumab 

Cemiplimab 

Durvalumab 
Ipilimumab 

Nivolumab 

Pembrolizumab 
Tremelimumab

Cardiotoxicity 
Cardiovascular disorders 

Colitis 

Hepatitis 
Myalgia/arthralgia 

Pneumonitis 

Thyroid abnormalities 
Rash/dermatitis 

Hepatobiliary disorders
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Data Processing for the Validation Set
We used the same NLP pipeline (Figure 1) to extract drug-ADE relation samples within the same sentences for the 50 
validation patients. We considered all possible drug-ADE pairs within a sentence, similar to the training data while 
extracting those samples in our validation set. We did not conduct manual annotation at the sentence level for our 
validation set. Consequently, we obtained drug-ADE relationships with undefined labels, which we used to test the 
performance of our machine learning model.

Machine Learning Model
We built support vector machine (SVM), a supervised machine learning model to perform the analysis of our patient- 
level ADE detection in the training data.

Training and Test Data
We applied the leave-one-out cross-validation (LOOCV)32 method to detect drug-induced adverse events at the 
individual-patient level. To ascertain whether a patient had experienced drug-induced adverse events, the test dataset 
included all drug-ADE relations gathered from that particular patient. The training data comprised all other drug-ADE 
relations extracted from the remaining patient population. We then applied our SVM model on the training and testing 
set, performing this process separately for each patient.

Drug-ADE Prediction at the Patient Level
Our study categorized patients as positive if their clinical notes included at least one drug-ADE relationship and negative 
if none was found. We assessed the performance of our machine learning model based on its correct identification of 
these positive and negative patients.

Input of the Support Vector Machine Model and Feature Selection
In SVM model development, the model input was the clinical text between a drug-ADE relation, including the drug and ADE 
names (Figure 2). We used character n-gram features to leverage the contextual information of a drug-ADE relation. All 
possible character n-grams were generated from the beginning to the end of our input text with a range of values for n, and 
those n-grams were then converted into term frequency-inverse document frequency (TF-IDF)33 vectors. We applied a grid 
search34 technique to obtain the best hyperparameter set from a range of values for the parameters c (rages from 0.001 to 
1000) and gamma (ranges from 0.0001–100), applied different kernels, and eventually selected the radial basis function 
(RBF) kernel35 because it performed the best. Figure 3 illustrates the different steps in our SVM model with examples.

Figure 2 Example of sentence-level drug-adverse drug event (ADE) relation along with model input.

Figure 3 Implementation of our Support vector machine (SVM) model with an example of a bigram. Here, we generated character-level bigrams of the input text, 
performed term frequency-inverse document frequency (TF-IDF) vectorization (v1, v2, v3 …. vn-1, vn), and then applied the SVM model and obtained the output indicating the 
class label (positive/negative).
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Results
Evaluation of Prediction Performance on Internal Validation
Table 2 shows the SVM model’s performance for predicting negative patients. Because negative patients had no positive 
drug-ADE relation, the sensitivity value was 1.0 by default.36 Here, the specificity score indicates the model’s probability 
of identifying true-negative relations. As examples, the specificity score of 1 for Patient 1 indicates that the model 
accurately predicted both true-negative drug-ADE relations as negative, whereas the specificity of 0.92 for Patient 7 
reveals that the model mistakenly predicted two of 25 true-negative drug-ADE relations as positive.

To make patient-level prediction, we predict the patient as positive when the model predicts one positive drug-ADE relation 
for the patient. Table 2 highlights that eight of ten negative patients were predicted negative, and two were predicted positive.

Table 3 shows the model predictions for positive patients. Patient 11, for example, had five positive drug-ADE 
relations and 18 negative relations. The model predicted three drug-ADE relations that were true positive, and the model 
predicted 20 negative relations, 18 of which were true negative. Thus, the model demonstrated 60% sensitivity and 100% 
specificity in predicting drug-ADE relations for this patient. Because Patient 11 had three predicted drug-ADE relations, 
the patient was classified as positive. Patient 18 was predicted negative because the model predicted no drug-ADE, 
missing three true-positive relations and reflecting the model’s 100% specificity and 0% sensitivity. Interestingly, Patient 
27 had one true-positive and 18 true-negative drug-ADE relations, but the model made six positive predictions, none of 
which was correct. Its 67% specificity and 0% sensitivity indicated very poor performance. However, because the model 
made a positive prediction, Patient 27 was correctly predicted as positive for the wrong reason.

Overall, at the patient level, the model correctly predicted eight of ten negative patients (80% specificity) (Table 2) 
and 19 of 20 positive patients (95% sensitivity) (Table 3). Table 4 details our model’s performance metrics for the 
identification of drug-ADE relations. Achieving only 51% sensitivity and 97% specificity in predicting drug-ADE 
relations, the model had a much greater sensitivity in predicting drug-ADE at the patient level. However, the model 
demonstrated higher specificity at the individual drug-ADE-relation level than the patient level.

Table 2 Results of Our Support Vector Machine (SVM) Model for Negative Patients. The Right-Most Column Indicates Whether the 
SVM Model Was Able to Correctly Identify a Negative Patient. The Same Model Was Run Separately for Each Negative Patient. We 
Can See That the SVM Model Was Able to Identify All the Negative Patients Except Those with Identifiers 7 and 10

Patient ID Number of Manually 
Labeled Drug-ADE 

Relations

Predicted Drug-ADE Relations Specificity Sensitivity Patient-Level 
Model 

Prediction

+ - Correctly Predicted  
+/ Predicted +

Correctly Predicted  
-/ Predicted -

1 0 2 0/0 2/2 1 1 0

2 0 7 0/0 7/7 1 1 0

3 0 1 0/0 1/1 1 1 0

4 0 23 0/0 23/23 1 1 0

5 0 1 0/0 1/1 1 1 0

6 0 5 0/0 5/5 1 1 0

7 0 25 0/2 23/23 0.92 1 1

8 0 17 0/0 17/17 1 1 0

9 0 17 0/0 17/17 1 1 0

10 0 29 0/4 25/25 0.86 1 1
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Model Performance on the External Validation Set
We performed an external validation of our model using the data of a cohort of 50 new patients from the same data 
source employed to generate the data of the 30 patients used for the internal validation. A patient was labeled positive 
who demonstrated at least one true drug-ADE relation and otherwise labeled negative.

The SVM model was trained using the data of 30 patients, which contained 175 positive and 745 negative drug-ADE 
relations, and we then evaluated the model’s performance on the data of each of the 50 new patients. Model prediction at 

Table 3 Results of Our Support Vector Machine (SVM) Model for Positive Patients. The Same Model Was Run Separately for Each Positive 
Patient. Here We Can See That the SVM Model Was Able to Identify All the Positive Patients Except the Patient Identified as 18

Patient 
Identifier

Number of Manual 
Labeled drug-ADE 

Relations

Predicted Drug-ADE Relations Specificity Sensitivity Patient-Level 
Model 

Prediction

+ - Correctly Predicted  
+/ Predicted +

Correctly Predicted  
-/ Predicted -

11 5 18 3/3 18/20 1.00 0.60 1

12 7 92 6/6 92/93 1.00 0.86 1

13 13 2 7/7 2/8 1.00 0.54 1

14 3 12 3/6 9/9 0.75 1.00 1

15 1 2 1/1 2/2 1.00 1.00 1

16 9 15 6/6 15/18 1.00 0.67 1

17 6 26 1/2 25/30 0.96 0.17 1

18 3 26 0/0 26/29 1.00 0.0 0

19 4 4 1/1 4/7 1.00 0.25 1

20 5 8 2/3 7/10 0.88 0.40 1

21 4 29 3/3 29/30 1.00 0.75 1

22 1 10 1/2 9/9 0.90 1.00 1

23 11 130 2/2 130/139 1.00 0.18 1

24 15 34 9/16 27/33 0.79 0.60 1

25 8 3 6/6 3/5 1.00 0.75 1

26 2 5 2/2 5/5 1.00 1.00 1

27 1 18 0/6 12/13 0.67 0.00 1

28 8 30 4/5 29/33 0.97 0.50 1

29 41 150 10/10 150/181 1.00 0.24 1

30 28 4 23/23 4/9 1.00 0.82 1

Table 4 Performance Metrics for Our Model’s Identification of Drug-Adverse Drug Event Relations for the 30 Patients in the Internal 
Validation Set, Showcasing the Model’s Performance in Various Measures and Criteria

Total Number 
of Relations

Manual 
Positive Label

Manual Negative 
Label

Correctly Predicted 
+/Predicted +

Correctly Predicted 
-/Predicted -

Specificity Sensitivity

920 175 745 90/116 719/804 0.97 0.51
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the individual-patient level involved predicting the number of positive and negative drug-ADE relations from all the 
notes of a single patient, with the presence of at least one predicted positive drug-ADE relation in the record predicting 
the patient as positive. Table 5 details our model’s performance metrics for those 50.

The SVM model predicted 31 patients as positive and 19 as negative. A physician who independently examined the 
clinical notes and identified the positive and negative patients then evaluated the model’s performance, comparing these 
results with the manual review findings. Manual review of clinical notes identified 22 true-positive and 28 true-negative 
patients. Twenty-one of the 31 patients predicted positive were true positive; and 18 of the 19 patients predicted negative 
were true negative. In the end, in the validation cohort, sensitivity was 95% and specificity, 64%. We think the external 
validation study confirms the high sensitivity, 95%, in the internal validation cohort. The 64% specificity in the external 
validation cohort was moderately lower than that in the internal validation group, 80%.

The SVM Model Can Significantly Reduce the Workload of Manual Review
The SVM model predicted 31 patients as positive based on positive drug-ADE relations predicted from 756 clinical notes from 
these patients. These notes were those remaining after our AI model filtered out 2500 of the initial 3256 notes through NLP steps 
to detect irAEs. Consequently, manual review of these residual 756 notes will allow us to detect ten false-positive patients of 31 
patients predicted positive. This process allows us to maintain the 95% sensitivity while achieving 100% specificity.

Discussion
Erroneous predictions arose from the model’s inability to manage negation among causative terms and ambiguity surrounding 
the use of ADE terms in contexts unrelated to adverse events that complicated the classification process. In the first case, for 
instance, the causal term “related” in the relation “‘rash is unrelated to the treatment, and no difference related to durvalumab 
has been noticed’ was misinterpreted as a causal connection between the drug and the adverse event. In the second case, only 
43 of 120 total occurrences of the term ‘cough’ in our internal validation data represented an ADE.

Furthermore, we believe broader context would provide our model with increased flexibility for accurate classification 
with greater number of positive and negative relations. Our internal validation set identified a positive patient with only 
one positive drug-ADE relation, resulting in a model misclassification. However, incorporation of drug-ADE relations 
across sentences would likely uncover additional positive drug-ADE relations for that patient. We plan to integrate drug- 
ADE relations across sentences in future work to avoid such issues and thereby enhance model performance.

Our study demonstrated the effectiveness of the traditional NLP method SVM in clinical text analysis, particularly as part of 
a screening tool to reduce the manual review workload. TF-IDF features with an SVM were chosen for their computational 
efficiency, suitability for the relatively small dataset used in this study, and ability to provide interpretable and reliable outputs. 
Additionally, our model can be easily integrated into clinical workflows without requiring extensive computational resources. 
Our model had a high sensitivity in the internal validation, correctly classifying 19 of 20 positive patients. However, in seven 
patients, sensitivity scores below 50% indicated the need for improved identification of positive relations; the model misclassified 
one of these patients. In our external validation, the model’s high sensitivity score (95%) indicated its ability to identify most 
positive cases correctly, but its 64% specificity recommends the need for improvement to reduce false-positive predictions. 
Pretraining machine learning models on large clinical or biomedical domain knowledge data sets could significantly enhance the 
identification of positive relations and reduce false positives, and we can better understand the contextual nuances surrounding 
relationships to improve our model’s accuracy by leveraging domain-specific insights. In future endeavors, we plan to utilize 
corpora trained in biomedical and clinical texts, such as BioBERT37 and ClinicalBERT,38 to incorporate domain knowledge.

Table 5 Performance Metrics of Our Model for the 50 Patients in the External Validation Set, Showcasing the Model’s Performance in 
Various Measures and Criteria

Number of Notes 
for the 50 Patients

Manual 
Positive 
Label

Manual 
Negative 

Label

Predicted 
Positive 
Label

Predicted 
Negative 

Label

Notes in 
Predicted 

Positive Label

Specificity Sensitivity

3256 22 28 31 19 756 0.64 0.95
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Conclusion
This study effectively demonstrates the development and application of an AI model adept at detecting irAEs from 
clinical narratives in EHRs. Use of this model substantially streamlined the process of identifying patient-level irAEs, 
showing particularly strong sensitivity, a pivotal factor for effective detection. This impressive performance underpins its 
potential applicability in real-world settings to aid clinicians in the accurate identification of irAEs from patients’ EHRs. 
The model also drastically reduced the workload associated with the manual review of clinical notes, efficiently sifting 
out notes lacking related irAE information and achieving 95% sensitivity in the external validation set.

Data Sharing Statement
The datasets featured in this article are currently unavailable for public access, as they include clinical notes from 
Electronic Health Records (EHRs). Consequently, these datasets are not published at this time. For inquiries regarding 
access to the datasets, please contact LL, Lang.Li@osumc.edu.

Ethical Statement and Institutional Review Board
The study received IRB (#2020C0145) approval for secondary data analysis of existing data, which contains identifiable 
patient data. As the data were accessed and analyzed in a secure environment in the College of Medicine at the Ohio 
State University, the loss of confidentiality risk was minimized. Because this study analyzes a limited set of variables and 
patients from electronic medical records, according to IRB approval, it does not need informed consent from patients. 
Our study complies with the Declaration of Helsinki.
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