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Background: Schistosomiasis is considered one of the most devastating parasitic diseases globally, coming second only to malaria
in terms of morbidity. The disease-causing parasite can inhabit the body for over a decade, leading to imbalances in the host’s
metabolic systems. The flukes and their eggs can illicit various immunological and metabolic complications resulting in the
generation of reactive oxygen species (ROS). These are known to have several devastating effects on the host through increased
oxidative stress, DNA mutation, and gene modifications, which can lead to fibrosis and cancer.
Main Body: Here, we discuss oxidative stress and cancer risk in Schistosoma infection. The concept of ROS generation and the
complex antioxidant systems that enable the parasite to evade oxidant insults and prolong its life span in the host are explored.
Further, the various roles of ROS during the initiation and progression of schistosomiasis and its influence on the host are
discussed. Finally, mechanisms linked to the risk of bladder cancer in Schistosoma haematobium (S. haematobium) infections
are elucidated.
Conclusion: Finally, we provide an opinion on how some of these mechanisms could give directions for future studies as well as
provide a springboard for diagnostics and drug targeting in schistosomiasis.
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1. Introduction

Schistosomiasis, also known as bilharzia, is a tropical parasitic
disease caused by trematodes of the genus Schistosoma. It is
mainly transmitted through a cycle that involves the contam-
ination of surface water with excreta while employing specific
freshwater snails as the intermediate host. Schistosomiasis
contributes enormously to the global disease burden consid-
ering that it is prevalent in some 74 countries and affects over
200million people worldwide [1–3]. Further, it is estimated
that at least 700 million people are at risk of Schistosoma
infection, with an estimated worldwide annual mortality
rate of around 20,000 [3–5]. A variety of schistosomiasis

causative worms exist; however, among humans, Schistosoma
mansoni (S. mansoni), Schistosoma haematobium, and Schis-
tosoma japonicum (S. japonicum) are the major schistosomi-
asis causing species. Schistosoma haematobium, which causes
urinary schistosomiasis, is more prevalent in Africa and the
Arabian Peninsula and is transmitted by an intermediate host,
Bulinus Snail. Schistosoma mansoni, which is more associated
with the liver and intestines is transmitted by Biomphalaria
snails, and it is commonly found in Africa, the Arabian Pen-
insula, and South America. The intestinal and hepatosplenic
schistosomiasis widely seen in the Philippines, Indonesia, and
China could be caused by S. japonicum transmitted by the
amphibian snail,Oncomelania [6]. The economic importance
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of the burden of Schistosoma infections is based on the ability
of the disease state to degenerate into serious complications
such as colorectal and liver cancers, as has been previously
observed in the S. mansoni and S. japonicum species [7, 8].
However, the most crucial association has been the link
between S. haematobium and bladder cancer. Consequently,
both theWHO and IARC have classified S. haematobium as a
Class 1 carcinogen [9]. Schistosomiasis is characterized by
over-dispersed population distribution, such that in most
endemic areas, children between 5 and 15 years constitute
the most significant proportion associated with high infection
intensities [10].

The matured schistosome flukes colonize the blood vessels
of humans for years with unique abilities to evade the immune
system. They rely on blood components such as globulins,
plasma proteins, and red blood cells to meet their nutritional
needs [6]. During these periods, the worms lay thousands of
eggs daily, which could either be trapped in adjacent tissues or
be excreted through feces or urine. Several local and systemic
pathological conditions are triggered based on the specific
immune-mediated granulomatous responses elicited by
tissue-trapped eggs. This effect may range from urogenital
inflammation (as in the case of haematobium), anemia, stunted
growth in children, reduced physical fitness, cognitive
impairment, periportal fibrosis (PPF), hepatosplenism, and
portal hypertension [11]. In some cases, immune resistance
could be slowly acquired through a set of complex immune
mechanisms [6]. It has long been argued that the parasite’s
ability to modulate the host’s immune response depends on
the deposition of eggs. Severe tissue damage and inflammation
can result from strong immunological reactions triggered by
the release of eggs into host tissues. However, new data sup-
ports the idea that all stages of the infection could contribute to
immune modulation [12]. Migrating schistosomula, larval,
adult worms, and the skin-penetrating cercariae can release
biomolecules that modulate both the innate and adaptive
immune responses to facilitate parasitic evasion of the host’s
immune system. This immune modulation may serve dual
purposes. On one hand, the attenuated immune responses
enhance parasite survival in the host, while at the same time
limiting severe host reactions through the modulation of criti-
cal immunopathology [13]. Thus, various mechanisms such as
the down or upregulation of inflammation or inhibition of
cytokines production, coupled with Type 1 helper (Th1) and
Type 2 helper (Th2) immune response switches are employed
[14]. During the first phase of the parasitic infection, Type 1
inflammatory immune responses within the plasma and tissues
are propagated by interferon-γ, IL-1, IL-12, and TNF- α. How-
ever, as the disease progresses to a chronic phase, antigens by
deposited eggs trigger the release of CD4+ Th2 responses [15].

Oxidative stress is a major factor in the pathophysiology
of schistosomiasis. Hence, the breakdown of the parasite’s
defensive mechanisms depends heavily on the antioxidant
potential of the host. Certain cells are considered significant
sources of reactive oxygen species (ROS) and include eosi-
nophils (E), macrophages (M), and neutrophils (N). Inflam-
mations characterized by the infiltration of these cells serve
as a hallmark of urogenital schistosomiasis [16]. A clear

association between schistosomiasis and endogenous gener-
ation of ROS and reactive nitrogen species (RNS)-mediated
chronic inflammation has been established [17]. Further, it is
known that inducible nitric oxide synthase (iNOS)-mediated
oxidative stress is elevated in infectious diseases in response to
inflammation [18]. Additionally, oxidative stress associated
with lipid peroxidation and DNA damage could aggravate
the disease itself. Evidence suggests that schistosomiasis
with accompanying oxidative stress is significantly connected
with bladder cancer [9, 19]

Therefore, it is vital to understand the state and role of
oxidative stress and how it modifies the pathogenesis of uri-
nary schistosomiasis and its consequences, in particularly
cancer.

2. Oxidative Stress as an Early Process
in Schistosomiasis

The host’s immune system produces ROS in the early stages
of Schistosoma infection as a means of combating the para-
sites’ invasion [12]. This results in oxidative stress, especially
in the host liver and spleen tissues where the parasites
migrate and start the maturation process. Oxidative stress
in these organs could lead to tissue damage and inflamma-
tion as well as potential damage to cellular constituents such
as proteins, lipids, and DNA [12, 20]. This is associated with
an early release of cytokines including TNF-α, IL-1β, and
IFN-γ by the host immune system. ROS plays several physi-
ological roles, as they are usually formed as oxygen metabolic
byproducts or due to the presence of environmental stressors
and xenobiotics. ROS may also alter genetic and epigenetic
information [21–23].

To compensate for the oxidative damage caused by the host’s
immunological response, Schistosoma parasites employ a range
of antioxidant enzymes, such as catalase, glutathione peroxidase
(GPx), and superoxide dismutase (SOD), to neutralize the ROS
and enable the parasites to survive in the host’s hostile environ-
ment [12, 20]. These enzymes are essential in the early stages of
infection when the parasites are vulnerable to the immune sys-
tem’s oxidative attack. Even though high levels of oxidative stress
can cause tissue damage, fibrosis, and persistent inflammation. It
is possible for the parasites’ antioxidant defenses to take charge
and evade immune destruction leading to the development of a
chronic infection [20]. As far back as 1987, it was known that
many parasites, including schistosomiasis, have increased sus-
ceptibility to oxidative insults compared to their host. This was
seen in either their susceptibility to ROS in vivo, increased
reserve antioxidant capacity of the host, or drugs that induce
oxidative stress [24].

2.1. ROS Production by the Host. Generally, M produce ROS
to fight invading pathogens, thus, contributing majorly to the
net ROS synthesis in hepatic fibrosis [25–27]. In hepatic
granuloma cells, M regulate granulomatous inflammation
depending on which effector phenotype is activated [28].
In this regard, the differentially activated M M1 and M2
function differently in regulating the inflammation’s initia-
tion, progression, and resolution. For instance, in Schistoso-
miasis, M1 induces a cytotoxic effect on the schistosomula,
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reducing the risk of hepatic fibrosis in the host [28]. In con-
trast, M2macrophage-rich granulomas are generally induced
by antigens secreted by schistosome eggs which trigger the
release of CD4+ Th2 responses. This prevents acute mortal-
ity but enhances the development of liver fibrosis in the
chronic stages [15, 28–30]. Interestingly, the differentiation
of M2 macrophage depends on ROS but this is not the case
for M1 macrophage [31, 32]. In S. japonicum infected mice,
ROS generation was extensively observed in the liver and it
was further demonstrated that S. japonicum eggs antigen
stimulates the increase in ROS levels in M through the nico-
tinamide adenine dinucleotide phosphate (NADPH) oxidase
2 (NOX2) pathway [20].

This is in line with the theory that ROS generation during
infection is stimulated by the activation of M and is critical
for M2 macrophage differentiation. Again, available evidence
indicates that S. japonicum antigen-associated ROS will pref-
erentially propagate the differentiation of M2 M [33]. This is
also true for S. mansoni, as the maximum intensity of ROS
intermediates was observed in M2 macrophage-rich granu-
lomas near S. mansoni eggs [34]. Eosinophil cells are associ-
ated with schistosome-induced granulomas derived from
superoxide and hydroxyl radicals [35]. However, the conse-
quences of ROS generation in schistosomiasis are largely still
unknown.

2.2. Antioxidant Systems of Schistosomes. Adult Schistosoma
worms can persist in the human body, an indication that the
parasite is efficient in evading or resisting the host’s immune
response. Parasites in their early developmental stages (includ-
ing the schistosomula and cercaria phases) are less exposed to
redox insults than adult stages [36, 37]. During the schistoso-
mula stage, the parasites have highly developed adequate pro-
tective mechanisms for their survival. These include the
sequestration of the glycolipids of host erythrocytes at the teg-
ument surface and the lowering of protein antigenic expression
[38, 39]. Further, the parasites can enhance complement C3
degradation [40] and initiate a specific mechanism geared
towards antioxidant defense buildup in the course of its devel-
opment [41–43]. Adult Schistosomaworms encounter myriads
of redox challenges derived from the digestion of blood, acti-
vated immune cells, and self-derived aerobic metabolism [44].
Thus, the parasite can survive over a long period by tolerating
and detoxifying ROS in the human host, as seen in S. mansoni
[44]. Specifically for S. mansoni, specialized improvement in its
antioxidant defense system led to an increase in its capacity to
decompose hydrogen peroxide (H2O2) in the vertebrate host
[44–57]. In the bloodstreamof the vertebrate host, adult S.man-
soni can utilize continuous exposure to molecular oxygen (O2)
to sustain egg production [48, 49], while maintaining cellular
energy through oxidative phosphorylation [50, 51]. In S. man-
soni parasites, various enzymes that metabolize ROS including
glutathione reductase, SOD, cytochrome c peroxidase, andGPx
have been identified [41]. In schistosomes, there is a
developmental-based regulation of redox activity. This is
expressed in the levels of antioxidant enzymes such as GPx,
cytosolic SOD (CT-SOD), glutathione S-transferase (GST), and
signal peptide-containing SOD (SP-SOD). These areminimally

expressed in the schistosomula with a relatively elevated
expression during schistosome development in the mamma-
lian host, thus, enhancing the resistance action of parasites in
the presence of ROS [58, 59]. Similarly, Mei et al. [52] showed
that GPx activity was developmentally regulated by observing
elevated enzyme activity levels in the extract of adult flukes
compared to the larval stages. One of the most important anti-
oxidant enzymes that protects the parasites against oxidant
insults is thioredoxin reductase which modulates the intracel-
lular redox environment due to its reductive effect on thiore-
doxin [53]. Other specific antioxidants detected in S. mansoni
include 2-cysperoxiredoxins (Prx) 2 and 3 which enable
organic peroxides and H2O2 decomposition by employing glu-
tathione and thioredoxin as electron donors [54–56]. It is inter-
esting to note that, apart from the developmental stages,
schistosomes’ redox regulation may also be enhanced by the
sexes of adult worms. In S. mansoni worms, sexual preferences
influence nutrient utilization which could regulate ROS gener-
ation and endogenous parasite O2 consumption. This is linked
to the differential contribution of male and female adult worms
to redox biology [45]. The nature of the detoxification between
male and female adult S. mansoni flukes follows different
mechanistic pathways. While the male redox homeostasis
mechanism is geared towards reducing the generation rate,
females aremore geared towards detoxification than repression
of ROS generation [57, 60, 61].

There is also an important selenoenzyme thioredoxin
glutathione reductase (TGR) that prolongs the survival of
schistosomes during redox insults in the mammalian host
[62]. TGR is a chimeric flavo-enzyme that naturally occurs
through the fusion of a thioredoxin reductase domain with a
glutaredoxin domain [63, 64]. It mainly functions in the
parasites’ ROS detoxification pathway ensuring its survival
and presents a unique drug target against the parasite [65].
However, irrespective of these extensive mechanisms, the
antioxidant capacity of schistosomes is limited compared
to the human host [66]. Apart from the lack of catalase
[67], lower activity of schistosome GPx proteins in the pres-
ence of hydrogen peroxide has also been observed. Due to
this, schistosome worms are more likely to be affected by
oxidative insults than the human redox pathways. Hence
the parasite’s redox pathways are possible targets for drugs
[68]. Recent studies have shown that auranofin, a gold-
containing compound can significantly lower the burden of
S. mansoni in mice by inhibiting TGR [69].

3. Markers of Oxidative Stress in
Schistosoma infection

3.1. Lipid Peroxidation in Schistosome Infection. Lipid perox-
idation occurs when the lipid component of the liver cell mem-
brane gets damaged by excess ROS produced from the
immunological response to Schistosoma infection. Byproducts
of lipid peroxidation can damage the liver cells and adjacent
tissues by releasing inflammatory molecules and causing cell
death. Hepatic stellate cells (HSCs) and fibroblasts are activated
by the continued generation of inflammatory cytokines and
ROS, which promotes fibrogenesis [12, 70]. Collagen and
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extracellular matrix constituents are produced leading to PPF
and scarring in the liver tissues. More serious liver diseases
including portal hypertension and liver failure may eventually
result from lipid peroxidation [12]. Studies have shown that
treating S. mansoni not only lowers infection levels but also
improves clinical symptoms of hepatosplenomegaly and pro-
gressive PPF [68, 71]. A study by Ewuzie et al. [67] suggests that
people with current schistosome infection have a 2.5-fold
higher chance of developing PFF than people who are not.
Ultimately, this can lead to more severe liver conditions like
portal hypertension and liver failure [67].

A study that sought to elucidate the possible contribution
of products of lipid peroxidation in the hepatic pathophysiol-
ogy of S. mansoni-infected individuals, revealed a significant
elevation of plasma malondialdehyde (MDA) among the
patients with schistosomiasis compared to the control group
[72]. A positive correlation between plasma MDA levels and
two hepatic fibrosis parameters: ultrasonography-graded PPF
and serum hyaluronic acid has been reported [72]. An insig-
nificant (10%) elevation in plasma MDA among patients
infected with S. mansoni compared to the controls was
reported in another study, which however employed a rather
reduced sample size of 18 [58]. Contrary to the above findings,
Eboumbou et al. [59] reported that hepatitis rather than Schis-
tosoma infection was more likely to induce a higher level of
MDA among co-infected individuals. In animal models, S.
mansoni-infected mice showed higher levels of MDA, which
was reduced after the administration of vitamin E and sele-
nium [73]. Due to the scarcity of data and the inconsistencies
in existing data, more studies are required to establish the
exact role of MDA in Schistosoma infection.

Similar to the formation of MDA, conjugated dienes and
lipid hydroperoxides, among other products, are formed during
the oxidation of polyunsaturated fatty acids and other lipids by
intermediate ROS [74]. The levels of erythrocyte-conjugated
dienes were significantly elevated in S. mansoni individuals com-
pared to the controls [58]. Further, schistosomiasis has been
shown to enhance lipid peroxidation by reducing the activity
of lecithin–cholesterol acyltransferase, a plasma enzyme essential
for cholesterol esterification and the regulation of cell membrane
lipid composition in schistosomiasis-infected patients [75]. In
mice, excess lipid peroxide generation due to S. mansoni infec-
tion caused a reduction in antioxidant capacity leading to liver
damage [34].

3.2. Markers of Oxidative DNA and Protein Damage in
Schistosomiasis. The alterations to DNA molecules resulting
from ROS overproduction could occur in diverse ways. These
include mutations, modifications of purines and pyrimidine
bases, and changes in the DNA sugar backbone. ROS can also
produce breakages in either a single- or double-stranded
DNA, leading to mutations such as deletions or transloca-
tions. Typically, ROS-associated oxidative DNA damage
occurs by oxidizing purines and pyrimidines at apurinic/apyr-
imidinic (abasic) DNA sites [76]. Major ROSmodifications of
DNA that occur endogenously include 2,6-diamino-4-
hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydro-
guanine (8-oxoGua). An 8-hydroxy-7,8-dihydroguanyl

radical is generated when a hydroxyl radical is added to the
C8 position of a guanine ring. Subsequent oxidation or reduc-
tion of the 8-hydroxy-7,8-dihydroguanyl radical produces
either an 8-oxoGua or the ring-opened hydroxy-5-formami-
dopyrimidine (FapyGua) [77, 78]. The frequency and extent
of these DNA alterations correspond to the intensity and
quality of oxidative stress and other accompanying factors.
DNA glycosylases in humans are responsible for repairing
damaged DNA caused by oxidative-stress-induced base
changes such as the development of 8-oxo-2′-deoxyguanosine
(8-oxo-dG). By cleaving the damaged base from the DNA
backbone, this enzyme starts a base excision repair to prevent
long-term genetic instability [79, 80].

In schistosomiasis, there is an increased deposition of eggs
in the subepithelial tissues of infected subjects which causes
chronic inflammation. This enhances ROS release and makes
the DNA prone to oxidative stress lesions [22, 81]. Antigens
released by S. haematobium eggs deposited in the bladder walls
modulate the levels of TNF-α, whichmediates inflammation in
themononuclear cells of the peripheral blood. The activation of
NF-κB leads to iNOS-mediated overproduction of nitric oxide,
an essential precursor to 8-nitroguanine and 8-oxodG produc-
tion. Ma et al. [82] observed that, in cystitis and bladder cancer
patients, S. haematobium-mediated inflammation increases the
population of mutant stem cells. Activation of F-κB leads to
DNA damage and subsequent tumorigenesis mediated by
iNOS release [82]. In terms of the significant oxidative stress
which results in DNA lesions, 8-oxo-dG formation is the most
prominent mainly due to its pernicious nature as it is known to
cause an impairment in the CpG island methylation of the
promoter region of genes [22]. Salim et al. [17] observed an
increased level of 8-hydroxy-2-deoxyguanosine (8-OHdG) in
schistosomiasis-associated squamous cell carcinomas com-
pared to nonschistosomal carcinomas. In line with that, the
researchers observed a significant association of the 8-OHdG
with an elevated expression of 8-oxoguanine-DNA-glycosylase
and apurinic/apyrimidinic endonuclease which are known
DNA repair genes [17]. Again, others have demonstrated the
formation of 8-oxo-dG and 8-nitroguanine in tissues of S. hae-
matobium-infected bladder cancer patients and further showed
a strong correlation between S. haematobium infection and
oxidative DNA damage [17, 82]. Thus, it may not be surprising
that in 8-nitroguanine-positive schistosomiasis-associated
bladder tumor cells, NF-κB was colocalized with an increased
expression of iNOS [83].

3.3. Antioxidant Levels in Schistosomiasis. Naturally, during
parasitic infections, various bioactive compounds counteract
the progress of infection either as an antioxidant or through
an oxidative insult which evades the parasite’s antioxidant
system [84]. Antioxidant enzymes play a significant role in
reducing the severity and progression of schistosomiasis.
Thus, with the recognition of schistosome infection as a state
of oxidative stress, antioxidants that combat the myriads of
ROS released into the host system are essential for recovery.
Interestingly, in schistosomal infected baboons, the use of
SOD (specifically S. mansoni CT-SOD and S. mansoni extra-
cellular SOD) and GPx as vaccine components was able to
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reduce the number of worms compared to controls that were
not vaccinated [85]. Again, the enzymatic antioxidant profile
in mice models of schistosomiasis revealed a reduction in
antioxidants such as catalase, SOD2, and glutathione levels
[86, 87]. Others have shown that lipid peroxidation products
and nitric oxide were increased with a concomitant decrease
in antioxidants such as vitamin E, glutathione, SOD, and
catalase activities in the spleen, kidney, and liver of mice
infected with S. mansoni [88, 89].

4. Oxidative Stress and Cancer Risk
in Schistosomiasis

Elevated levels of oxidative DNA damage markers such as 8-
OHdG and elevated expression of DNA repair genes, 8-oxo-
guanine-DNA-glycosylase, and apurinic/apyrimidinic endonu-
clease have been observed in S. haematobium infections [17].
The involvement of ROS in carcinogenesis is mainly explained
by twomechanisms. First is the ability of ROS to induce genetic
mutations stemming from cellular injury. Second, is the effect
of ROS on transcriptional factors and signal transducers. How-
ever, various factors such as the stress level and type of ROS
involved might direct the specific mechanism it follows [90].
ROS are known to cause mutations in some telomere genes as
well as damage to some cell cycle-related and tumor suppressor
genes such as p53. Again, ROS is a major contributor to the
activation of oncogenes (such as Fos and Jun), transcriptional
factor NF-κB, and some protein kinases [91].

Schistosoma haematobium infection may cause chronic
granulomatous cystitis, a precursor to the formation of squa-
mous metaplasia of transitional epithelium leading to subse-
quent squamous cell carcinoma [92]. Indeed, there is a high
incidence of squamous cell carcinoma Schistosomiasis endemic
areas [93]. Specifically, Rambau, Chalya, and Jackson [92]
reported that, among patients living in the western part of
Tanzania, Schistosoma eggs were retrieved from about 44.9%
of cases diagnosed with urogenital bladder cancer. Again, they
reported that schistosomiasis-associated bladder cancer
showed more aggressive behavior, as they quickly invaded
the muscularis propria of the bladder [92].

Similarly, in the Sokoto region of northern Nigeria, a
strong association of chronic schistosomiasis with bladder
cancer was observed [94]. Others have shown that, in
endemic areas, effective schistosomiasis treatment led to an
attenuated occurrence of squamous cell carcinoma [87, 95].
The specific involvement of S. haematobium in squamous
cell carcinoma could be traced to a myriad of mechanisms.
For instance, the deposition of S. haematobium eggs on the
bladder walls induces fibrosis with its attendant proliferation,
hyperplasia, and metaplasia [96]. Again chronic urinary
infection promotes the synthesis of nitrosamines from their
urine precursors [97]. Therefore, it is not surprising that both
the WHO and IARC have classified S. haematobium as a
Class 1 carcinogen [9].

Interestingly, nitrosamines modulate the production of
nitrogen dioxide radicals, hydroxyl radicals, and superoxide
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FIGURE 1: Proposed interplay between Schistosoma haematobium infection, oxidative stress, and the risk of bladder cancer.
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anion radicals, thereby, inducing oxidative stress [98]. Further,
evidence shows that during S. haematobium infection, both the
miracidia and adult schistosomes influence the production of
high levels of urinary β-glucuronidase with the subsequent
release of carcinogenic amines in urine [99]. Schistosomiasis
can also induce the overexpression of cyclooxygenase 2 [100], a
known promoter of oncogenesis [101]. Finally, in S. haemato-
bium associated squamous cell carcinoma, multiple oncogenic
mutations and abnormal expression of certain vital genes and
proteins (e.g., c-erbB-2, p53, and epidermal growth factor
receptors) have been observed [102, 103]. An illustration of
the interaction between S. haematobium infection, oxidative
stress, and the risk of bladder cancer is shown in Figure 1.

Schistosoma haematobium eggs deposited in the bladder
walls release antigens which promote TNF-α and NF-κB
release. Activated NF-κB leads to iNOS-mediated increased
NO, OH. and O2

. radicals leading to oxidative stress. Adult
worms cause inflammation and release nitrosamines, leading
to further elevating ROS. Again, inflammation causes the
accumulation of E, M, and N, which also contribute to
iNOS and ROS production. Excessive ROS production leads
to oxidative stress marked by increased lipid peroxidation
(MDA, DNA, and protein oxidation (8-oxo-dG). This even-
tually influences gene mutation, DNA damage, proliferation,
and cancer. Urinary glucuronidase produced by the miracid-
ium and cyclooxygenase-2 (COX 2) generated through
inflammation by adult worms could lead to the synthesis
of oncogenic amides which could lead to cancer.

The data on S. haematobium’s impact on carcinogenesis
are the strongest, but it remains unclear if S. mansoni and
other S. japonicum species possess a direct carcinogenic
potential [104]. Available evidence shows that S. mansoni
could generally act as a cofactor for a hepatic lesion in Hep-
atitis B and C virus infections, potentiating liver injury [105].
In S. mansoni infections, antigens released from schistosome
eggs trapped in tissues influence the release of proto-
oncogenes associated with hepatocellular carcinoma [106].
Among these are the transcriptional factors STAT3 and c-
jun, both of which are crucial in the molecular pathway
leading to inflammation and the development of cancer.
Therefore, targeting these underlying pathways could be use-
ful in providing therapeutics for schistosomiasis-related car-
cinogenesis [106].

5. Future Perspective and Conclusion

Schistosomiasis remains a public health burden, especially in
less developed countries and the need to find a lasting solu-
tion is apparent. More worrying is the fact that some species
such as S. haematobium is known to carry some risk for
cancer development.

Various studies have established the importance of oxida-
tive stress in schistosome infection. This is enabled through
oxidative damage to DNA and lipid peroxidation and direct
immunologic complications leading to fibrosis. There is a
huge interplay between S. haematobium infection and bladder
cancer mediated by oxidative stress. Thus, it is our opinion
that treatment of these infections should be considered

alongside the remediation and if possible, the reversal of the
damages caused by the oxidative insults. In this review, we
have elucidated that redox activity in the schistosomes is reg-
ulated based on its developmental stage and thus, the expres-
sion of antioxidant enzymes by the flukes is minimal in the
schistosomula. Therefore, diagnosis and treatment of schisto-
somiasis in the early stages are crucial to avoid further com-
plications. Therefore, drugs targeting the schistosomula may
have maximum effect during the treatment of the infection in
the early stages. Consequently, future studies should be
directed at elucidating the mechanism needed to overcome
the antioxidant systems of the parasite.

Comparatively, there is less data on the role ROS plays in
modulating the molecular and metabolic activities involved
in S. haematobium and S. japonicum infections compared to
S. mansoni. Most attention has been given to oxidative DNA
damage caused by S. mansoni species when compared to
other human parasitic flukes such as S. haematobium and
S. japonicum. Interestingly, it is S. haematobium that has
been classified as a class I carcinogen by the WHO. It is,
therefore, suggested that more studies focusing on the
mechanisms connecting ROS with cancer development and
progression should be carried out.
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