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Assessing different models
to predict the growth and
development of pepper
plants under water deficits
Jun Zhu1,2,3, Yuanda Zhang4*, Guangxian Yang2,3

and Shuxian Liu5

1Shangqiu Meteorological Bureau, Shangqiu, China, 2Henan Key Laboratory of Agrometeorological
Support and Applied Technique, China Meteorological Administration, Zhengzhou, China, 3Institute of
Henan Meteorological Sciences, Zhengzhou, China, 4State Key Laboratory of Severe Weather,
Chinese Academy of Meteorological Sciences, Beijing, China, 5National Meteorological Center, China
Meteorological Administration, Beijing, China
To construct pepper development simulation models under drought,

experiments of water capacities of 45–55%, 55–65%, 65–75% or 75–85% and

exposure (2, 4, 6 or 8 d) (Exp. 1 & 2), of 50–60%, 60–70% or 70–80% and

exposure (3, 5, and 7 d) (Exp. 3) were conducted with “Sanying” pepper.

Physiological development time (PDT), product of thermal effectiveness and

PAR (photosynthetically active radiation) (TEP) and growing degree days (GDD)

were used to simulate growth under various treatments in Exp. 1. Plant

development was influenced by the severity and drought duration. Mild water

deficits (65–75% for 2–6 d or 55–65% for 2–4 d) accelerated development, while

severe water deficits (65–75% for 8 d, 55–65% for 6–8 d or 45–55% for 2–8 d)

delayed development. The PDT gave the highest coefficient of determination (R2,

0.89–0.94) and the lowest root mean squared error (RMSE, average of 1.03–1.50

d) and relative error (RE, average of 1.60–1.88%) for simulating three growth

periods (Exp. 2). It was therefore used to construct growth models under water

capacity of 45–85% over 2–8 d with spline, cubic, makima, linear, and nearest

interpolation. Validation in Exp. 3 indicated that the spline model was optimal,

having the highest R2 (0.96–0.97) and the lowest RMSE (average of 1.31–1.75 d)

and RE (average of 1.18–2.06%). The results of the study can help producers to

optimize water management and to develop drought strategies for production.
KEYWORDS

pepper, water capacity, physiological development time, spline interpolation,
phenology simulation
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1 Introduction

Pepper (Capsicum annuum L.) is an important greenhouse crop

in China, and is rich in magnesium, iron, calcium, and zinc (Dai et al.,

2022; Padilla et al., 2023a). It is a shallow rooted crop with thin and

weak roots, and susceptible to drought (Zhang et al., 2023a). Water

deficits can significantly affect pepper growth and development

(Kurucz et al., 2023; Padilla et al., 2023b). In recent decades, many

studies have been carried out on the effects of water deficits on growth

and development in peppers (Sanogo, 2006; Peng et al., 2010; Zhu

et al., 2012; Lv et al., 2019; Castronuovo et al., 2023). Yang et al.

(2016) suggested that mild water deficits may not affect the growth of

above-ground parts, while sever deficits can significantly reduce the

shoot length and photosynthesis (Adnew et al., 2023; Molla et al.,

2023), and had an impact on fruit yield (Admassie et al., 2022). Pan

(2007) concluded that the optimal field water capacity is 80–90%

based on a series of experiments. However, some studies suggest that

short and long-term stress can cause different effects on crops

(Widuri et al., 2020; Xu et al., 2020a; Zhang et al., 2023b). We were

interested in studying the effects of different water deficit levels over

different durations from a few days to a week or more.

Current studies on models of crop growth have been developed

for several decades (Ahmad et al., 2017; Perera et al., 2020; Barriball

et al., 2022; Didevarasl et al., 2023). Diao et al. (2009) simulated the

development and yield of pepper using a product of thermal

effectiveness and PAR (TEP). Torrion et al. (2011) simulated

soybean growth in fields of the North-Central United States

according to a soybean model (SoySim). Ma and Tian (2016)

modelled phenology and leaf area of watermelon based on

physiological development time (PDT) and logistic function,

respectively. Chen et al. (2019) proposed a sugarcane

development simulation model (SDSM) to predict growth of

newly planted and perennial sugarcane based on clock model.

Niu et al. (2021) used PDT and growing degree day (GDD) to

simulate growth of greenhouse cherry tomatoes. Cai et al. (2021)

modelled the plant nutrition and physiology in Chinese cabbage

using light and temperature data. Leguízamo-Medina et al. (2023)

simulated the growth and flowering of carnation based on

cumulative GDD. Xu et al. (2020a) compared three models to

simulate growth and yield in strawberry and recommended PDT

method. Therefore, PDT, TEP and GDD had been widely used to

model growth in crops (Chen et al., 2021; Shi and Li, 2021; Chen

et al., 2022; Liu et al., 2022; Sun et al., 2022; Wang et al., 2023).

Current studies on the modeling of crop growth under water

deficits have focused on a single orthogonal treatment.

Interpolation can be used to predict values of growth between

data of known points. These methods, including nearest, linear,

cubic, spline, and makima, have different applications under various

environmental conditions (Gore et al., 2023). For example, Chen

et al. (2011) suggested that the surface interpolated by a spline

method was smoother. Xiao et al. (2021) concluded that a cubic

model is optimal to simulate temperature in a greenhouse.

This study compared PDT, TEP or GDD to model growth of

pepper under water capacities of 45–55%, 55–65%, 65–75%, and

75–85% over 2, 4, 6 or 8 days. Then interpolation was used to

construct a three-dimension models under water capacity of 45–
Frontiers in Plant Science 02
85% over 2–8 days. Finally, another independent experiment of

water capacity (50–60%, 60–70% or 70–80%) and treatment days (3,

5 or 7 d) was conducted to screen out the optimal interpolation

model. We expected that the study could provide a scientific

method for application of crop simulation models in agriculture.
2 Materials and methods

2.1 Material

The widely-used cultivar, “Sanying” (Capsicum annuum L.) was

utilized. It has great disease and pest resistance as well as

high production.
2.2 Experiment design

The Experiments 1, 2 and 3 were conducted at the

Agrometeorological Experimental Station of Shangqiu

Meteorological Service (34.2°N, 115.6°E, 44 m of elevation) from

March to September in 2022 and 2023, respectively. The air

temperature and relative humidity during the experiments were

showed in Figure 1.

The plants were sown in polypropylene plastic pots (21.0 cm ×

21.4 cm × 19.1 cm) filled with a vermiculite: substrate: perlite

mixture of 1:1:1 (v: v: v). There are no holes at the bottom of plastic

basins to prevent water loss due to gravity. The water capacity of

each pot was kept within a set range by weighing with electronic

scale (Lichen YP300001D, accuracy of 0.1 g) at 7:00 and 18:00 every

day. There were four water capacities (75–85%, 65–75%, 55–65% or

45–55%) and four treatment days (2, 4, 6 or 8 days) were therefore

designed for Exp. 1 & 2 (Table 1). The data from Exp. 1 were used to

construct models, while the data from Exp. 2 were used to validate

and screen out the optimal simulations. Plants were grown at water

capacities of 70–80%, 60–70% or 50–60% over 3, 5 or 7 days for

model validation (Exp.3, Table 2). The water capacities and

treatment durations used were the median values from the

treatments in Exp. 1. The water capacity of 75–85% was set as the

control (CK) in all experiments. Thirty plants with healthy and

similar growth were selected for each experiment when four true

leaves appeared. The water capacities of all the plants were kept at

75–85% before and after the treatments during the experiments.

Awnings were used to ensure that the plants would not be wet

by rain.
2.3 Methods

2.3.1 Phenology
We recorded the start and end dates of each pepper growth

period, including planting, flowering (the first flower with more

than 30% of plants blooming), fruit set (the first fruit with more

than 30% of plants setting), and harvest stage (all of the pepper

fruits turning red) were observed and recorded.
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2.3.2 Meteorological data
Air temperature, relative humidity and photosynthetic active

radiation were automatically recorded with a FT-QC7-RP sensor every

10 minutes. Averages values per hour or a day were used in the models.

2.3.3 Physiological development time
Physiological development time (PDT) is the cumulative time

of growth under the optimum temperature and light (Xu et al.,

2020a; Zhang et al., 2022). For a specific cultivar, the cumulative

PDT at each growth period is theoretically constant (Cheng et al.,

2019; Giolo et al., 2021; Zhang et al., 2022). Cumulative PDT is

computed by relative thermal effectiveness (RTE) and relative

photoperiod effectiveness (RPE).

PDT  =on
i=1RTEi · RPEi (1)

where i and n represent the ith day and the total number of days

of the plant growth period, respectively.
Frontiers in Plant Science 03
RTE represents relative growth of a plant at actual temperature

for one day relative to those at the optimal temperature.

RTE =

  0                                      T  ≤  Tb

(T  − Tb)=(Tob  −  Tb)             Tb< T <  Tob

  1                                Tob  ≤  T  ≤  Tou

(Tm  −  T)=(Tm  −  Tou)           Tou < T <  Tm

  0                                        T ≥ Tm

8>>>>>>>><
>>>>>>>>:

(2)

where T represents the actual temperature of environment, Tm and

Tb represent upper and lower limit temperatures, and Tou and Tob
represent upper and lower limit of optima. Three critical temperatures

at various stages of peppers are presented in Table 3 (Yue et al., 2018).

RPE represents the growth of plants under an actual photoperiod

for one day relative to that under the optimal photoperiod.

RPE =

0 DL ≥ DLc

(DL − DLc)=(DLo − DLc) DLo < DL ≤ DLc

1 DL ≤ DLo

8>><
>>: (3)

where DLc denotes the critical day-length of peppers (16 hours),

and DLo denotes the optimal day-length (10 hours). DL represents

the actual day-length:

DL = 12� ½1 + 2
p
· asin (a=b) (4)

a = sinl � sind (5)
TABLE 2 Treatments used in Experiment 3.

Water capacity (%)
Treatment days (d)

3 5 7

70%–80% V1 V2 V3

60%–70% V4 V5 V6

50%–60% V7 V8 V9
TABLE 3 The three critical temperatures for the growth of peppers.

Growth
period

Lower
temperature

(°C)

Optimum
temperature

(°C)

Upper
temperature

(°C)

Seedling 10 25 35

Flowering 15 20 35

Fruit
setting

15 25 35
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FIGURE 1

Temperature and relative humidity of environment during the experiments in 2022 (A) and 2023 (B).
TABLE 1 Treatments used in Experiments 1 & 2.

Water capacity (%)
Days

2 4 6 8

75–85% CK

65–75% W1D1 W1D2 W1D3 W1D4

55–65% W2D1 W2D2 W2D3 W2D4

45–55% W3D1 W3D2 W3D3 W3D4
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b = cosl � cosd (6)

sind = −sin (p � 23:45=180� cos (2p � (DOY + 10)=365)) (7)

cosd =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sind � sind

p
(8)

where l denotes the latitude of the study region (34°45’ N),

d denotes the obliquity of the ecliptic, and DOY is day of the year.

2.3.4 Product of thermal effectiveness and PAR
The product of thermal effectiveness and photosynthetically

active radiation (PAR), which is defined as TEP, can be used to

model growth (Wu et al., 2021). Cumulative TEP is obtained from

the accumulation of daily relative TEP (DTEP):

TEP  =on
i=1DTEPi =on

i=1(RTEi · PARi) (9)

where DTEPi (MJ·m-2), RTEi (MJ·m-2) and PARi (MJ·m−2·d−1)

represent TEP, daily mean thermal effectiveness and PAR of the ith

day, and n denotes the total number of days of the period.

2.3.5 Growing degree day
GDD is used to express the relationship between effective

accumulated temperature and development (Wu et al., 2021).

Only temperature is required in the calculation. GDD is the

summation of effective temperature, i.e., the cumulative difference

between daily mean temperature and lower limit temperature:

Tavg =

          Tx+Tn
2                         Tbase ≤ Tavg ≤ Tupper

  Tbase                                       Tavg ≤ Tbase

      Tupper                                   Tavg ≥ Tupper

8>><
>>: (10)

GDD  =  on
i=1(Tavg − Tbase) (11)

where Tavg represents daily mean temperature (°C), Tn

represents daily minimum temperature (°C), Tx represents daily

maximum temperature (°C), Tupper and Tbase represent the upper

and lower limit temperature (°C), respectively, and n represents the

total number of days of the period.

2.3.6 Interpolation methods
Based on MATLAB R2018a, the five interpolation methods,

including linear, nearest, cubic, makima and spline, were used to

construct growth models under various field water deficits of 45%–

85% over 2–8 days.

2.3.7 Model construction and validation
Based on the results of Exp. 1, the PDT, TEP and GDD models

were used to simulate pepper growth. The meteorological data and

phenology from Exp. 2 were used to validate and screen out the

optimal method according to the root mean squared error (RMSE),

relative error (RE), and coefficient of determination (R2) (Tang
Frontiers in Plant Science 04
et al., 2007; Shi et al., 2022). The optimal simulation method was

selected to construct models of growth based on values of RMSE, RE

and R2.

RMSE  =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(OBSi − SIMi)
2

n

s
(12)

RE ( % ) =
RMSE

on
i=1OBSi

· n� 100 (13)

where OBSi and SIMi represent observed and simulated values,

and n is the number of samples.

R2 = 1 − (residual SS=corrected SS) (14)

where residual SS denotes residual sum of squares and corrected

SS denotes corrected sum of squares.
3 Results

3.1 Effect of water deficits on growth

Under the optimal condition (CK), it took 96, 116 and 171 days

from planting to flowering, fruit set and harvest, respectively (Table 4).

The plants under W1D1, W1D2, W1D3, W2D1 and W2D2 were

advanced compared with the controls. Days to flowering, fruit set, and

harvest under W1D3 were 3, 4 and 5 days earlier. However, the plants

under water capacity of 55–65% for 6 or 8 days, or water capacity of 45–

55% for 2, 4, 6, 8 days were all delayed. Days to flowering, fruit set, and

harvest under W3D4 were 12, 14 and 18 days slower than the controls.
TABLE 4 Effect of water deficits on the phenology of pepper in Exp.
1 (N=30).

Treatment
Days to
flowering

(d)

Days to fruit
set (d)

Days to
harvest (d)

CK 96 116 171

W1D1 94 114 169

W1D2 94 113 168

W1D3 93 112 166

W1D4 97 118 172

W2D1 94 113 168

W2D2 93 112 168

W2D3 98 119 173

W2D4 99 120 174

W3D1 101 123 175

W3D2 103 125 181

W3D3 105 127 185

W3D4 108 130 189
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3.2 Simulation of growth with PDT, TEP
and GDD

Phenology of the plants is shown in Figure 2, with the darker the

color, the slower growth. Cumulative PDT/TEP/GDD under water

capacity of 75–85% for 2, 4, 6 or 8 days were similar. Growth was

accelerated for W1D1, W1D2, W1D3, W2D1 and W2D2 (lighter).

Plants given a water capacity of 65–75% for 6 days had the quickest

growth. However, plants given a water capacity of 55–65% for 6 or 8

days, or a water capacity of 45–55% for 2, 4, 6 or 8 days were slower.

Plants given a water capacity of 45–55% for 8 days required higher

values of cumulative PDT, TEP, and GDD than the other plants.
3.3 Simulation and validation of growth
models using PDT, TEP or GDD

All of three methods accurately simulated growth with the

scatter points of the data nearly distributed along the 1:1 line
Frontiers in Plant Science 05
(Figure 3). Overall, the scatter for PDT was closer to the 1:1 line

than that for other two methods. Simulation with PDT showed the

highest R2 of 0.94, 0.91, and 0.89 for flowering, fruit set, and

harvest compared with TEP and GDD. The TEP model had a

higher R2 than GDD in simulating flowering (0.86) and fruit set

(0.82), with a smaller R2 in simulating harvest (0.78).

Simulation errors increased as growth increased (Table 5). For

example, the errors from planting to flowering with PDT, TEP or

GDD were 0–2, 1–3 or 1–3 days. The errors from planting to

harvest using PDT, TEP or GDD increased to 1–3, 1–5 or 2–4

days. Simulations using PDT were overall better with smaller

errors. Simulations using PDT with water capacity of 75–85%

were more accurate than those for the other treatments with the

errors only 1 or less day for three growth periods. The GDD

models had a larger error in simulating growth (mostly 3–4 days).

Overall, the RMSE values of simulations with PDT, TEP, and

GDD increased with growth, while the RE of the simulations

increased and then decreased (Figure 4). The simulation of

peppers from planting to flowering with PDT had the lowest
FIGURE 2

Cumulative physiological development time (PDT), product of thermal effectiveness and PAR (photosynthetically active radiation) (TEP) and growing
degree days (GDD) required for pepper plants to flowering, fruit set and harvest under different water deficits (N=30).
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RMSE (average of 1.03 d) compared with other methods.

However, the mean RE of simulation for planting–harvest was

0.24 and 0.28 lower than that for planting–flowering and

planting–fruit set. The GDD model had the highest RMSE and

RE in simulating growth.
Frontiers in Plant Science 06
3.4 Construction of growth models with
five interpolation methods

The PDT model was more accurate to predict growth and was

selected for the simulation study with water capacities of 45–85%
FIGURE 3

Comparison of observed and simulated days to flowering (A), fruit set (B) and harvest (C) in pepper with physiological development time (PDT), product of
thermal effectiveness and PAR (photosynthetically active radiation) (TEP) and growing degree days (GDD) models. Dashed line represents the 1:1 line.
TABLE 5 Simulated errors (observed - simulated values) for the number of days from planting to flowering, fruit set, and harvest of peppers using
models based on physiological development time (PDT), product of thermal effectiveness and PAR (photosynthetically active radiation) (TEP) and
growing degree days (GDD).

Period
Water

capacity

PDT TEP GDD

Days Days Days

2 4 6 8 2 4 6 8 2 4 6 8

Planting
to

flowering

75–85%
65–75%
55–65%
45–55%

95 (0)
93 (1)
92 (-2)
101 (1)

94 (1)
92 (-1)
89 (-1)
103 (1)

95 (0)
91 (-2)
99 (-1)
106 (2)

94 (1)
97 (1)
100 (-1)
109 (1)

94 (-1)
96 (2)
91 (1)
100 (-2)

96 (1)
92 (1)
87 (-1)
102 (-2)

94 (-1)
90 (1)
101 (3)
106 (-2)

96 (1)
100 (2)
100 (1)
109 (-1)

93 (-2)
93 (-1)
92 (2)
105 (3)

94 (-1)
88 (-3)
90 (2)
107 (3)

93 (-2)
90 (1)
99 (1)
110 (2)

94 (-1)
99 (1)
101 (2)
113 (3)

Planting
to

fruit set

75–85%
65–75%
55–65%
45–55%

114 (-1)
112 (-1)
108 (2)
121 (2)

113 (1)
111 (-2)
107 (-1)
124 (2)

114 (-1)
110 (-2)
116 (-1)
126 (2)

113 (1)
116 (1)
119 (-1)
128 (2)

110 (-3)
113 (2)
113 (3)
126 (3)

113 (-1)
110 (1)
108 (2)
128 (2)

110 (-3)
109 (1)
112 (-3)
130 (2)

113 (-1)
115 (-2)
116 (-2)
133 (3)

109 (-4)
114 (3)
113 (3)
122 (-1)

112 (-2)
113 (4)
110 (4)
124 (-2)

109 (-4)
112 (4)
112 (-3)
130 (2)

112 (-2)
116 (-1)
115 (-3)
133 (3)

Planting
to harvest

75–85%
65–75%
55–65%
45–55%

169 (1)
166 (1)
162 (1)
174 (2)

169 (-1)
165 (-1)
160 (-2)
177 (2)

169 (1)
164 (-3)
171 (1)
179 (2)

169 (-1)
173 (-1)
172 (3)
182 (2)

169 (-1)
165 (-2)
161 (-2)
180 (4)

166 (-2)
165 (1)
155 (-3)
182 (3)

169 (-1)
160 (-1)
174 (2)
186 (5)

166 (-2)
169 (-3)
178 (3)
188 (4)

166 (-4)
171 (4)
160 (-3)
172 (-4)

165 (-3)
167 (3)
154 (-4)
175 (-4)

166 (-4)
164 (3)
175 (3)
178 (-3)

165 (-3)
169 (-3)
177 (2)
181 (-3)
fron
N=30.
tiersin.org

https://doi.org/10.3389/fpls.2024.1436209
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1436209
over 2–8 days (red scatter points in Figure 5). This experiment then

compared and validated the distinct models (blue scatter points in

Figure 5), based on values of RMSE, RE and R2.

All the models exhibited similar trends under water deficits.

Cumulative PDT required for each growth period showed a

decreased trend and then an increased trend as water capacity

decreased from 85% to 45%. The required PDT of each growth
Frontiers in Plant Science 07
period remained constant under water capacity of 75–85% over 2–8

days, and increased under water capacity of 45–55% over 2–8 days.

The interpolation surfaces for the spline, cubic and makima

models were smoother than that of the linear or nearest models.

Overall, the validations were better using spline than using the other

models. The spline models had the highest R2 (0.96–0.97) and the

lowest RMSE (1.31–1.75 d) and RE (1.18–2.06%). The errors with
FIGURE 4

Boxplots of RMSE (d) and RE (%) for the simulation of growth in pepper from planting to flowering, fruit set, and harvest, with physiological
development time (PDT), product of thermal effectiveness and PAR (photosynthetically active radiation) (TEP) and growing degree days (GDD)
models under different water deficits.
FIGURE 5

Three-dimension surface map of flowering models in pepper under water deficits with spline, cubic, makima, linear and nearest interpolation
algorithms based on accumulated physiological development time (PDT).
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spline were in the order of flowering< fruit set< harvest. The RMSE and

RE of each pepper growth period using nearest model were the highest

among the five models, except for a slight lower RMSE (0.06 d) than

the linear model in planting–fruit set stage. The interpolation images of

nearest models for growth were segmentate.
4 Discussion

Pepper is a typical short-day plant (Lu et al., 2020; Zhang et al.,

2020; Wang et al., 2021). The PDT model characterized the

relationship between temperature and development speed by

converting the response of crop to temperature into relative

thermal effectiveness on the basis of three critical points of

temperature, but also considered the relative photoperiod

effectiveness of crops (Zhu et al., 2023). Thus, this model was

more accurate and robust than those based on TEP and GDD.

Combined stresses of different water capacities and duration

days might affect the growth differently. Interpolation models can

approximately simulate growth under various water capacity and

duration days. Spline models gave the highest values of R2 and the

lowest RMSE and RE across all of the growth. This response is

consistent with the results of Gore et al. (2023). Development with

water capacities of 75–85% for 2, 4, 6, and 8 days was similar

possibly, because 75–85% is the optimal water level for peppers.

Phenology was accelerated as water capacity decreased from 85% to

45%, and then was delayed. Cumulative PDT for each growth

period under water capacity of 65–75% for 2–6 days and 55–65%

for 2–4 days was lower than that under the other treatments,

indicating a mild water deficit may promote crop growth and

development (Xu et al., 2020b; Zhang et al., 2023b). However,

long-term mild and moderate water deficits (65–75% for 8 days or

55–65% for 6–8 days) and severe water deficits (45–55% for 2–8

days) can significantly decrease growth, protein metabolism and

yield (Jiang et al., 2008; Li et al., 2020; Yang et al., 2022).

The spline model was proved to successfully and precisely

simulate growth under a water capacity from 45% to 85% for 2–8

days based on accumulated PDT. Nevertheless, some limitations

exist in our study.

The size of pots used to plant peppers in this study was based on

earlier research (Zhang et al., 2023b; Zhu et al., 2023). However,

previous studies have demonstrated that root restrictions can

reduce growth (He et al., 2022; Li et al., 2022; Liu et al., 2023).

The applicability of the models in our study may not apply to other

cultivars and growing system.

We only used water capacities of 45–85% over 2–8 days, which

is common in commercial pepper cultivation. Further, studies are

required with other watering strategies (Mills et al., 2018; Clifton

et al., 2020; Otieno et al., 2022).
5 Conclusion

Three independent experiments were conducted to construct

and validate models in pepper growth under water deficits. Mild

water deficits (65–75% for 2–6 days or 55–65% for 2–4 days)
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accelerate development while severe water deficits (65–75% for 8

days, 55–65% for 6–8 d or 45–55% for 2–8 days) delay development.

Models based on PDT simulated growth from planting to flowering,

fruit set, and harvest compared those based on TEP and GDD.

Growth can be simulated using spline interpolation under a water

deficit based on a water capacity from 45% to 85% over 2 to 8 days.

The study provides a scientific basis for assessment of pepper

growth and development under various water deficits to develop

irrigation strategies for best commercial production.
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