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mFusion: a multiscale fusion method
bridging neuroimages to genes through
neurotransmissions in mental health
disorders

Check for updates

Luolong Cao 1,7, Zhenyi Wang 2,3,7, Zhiyuan Yuan 1,8 & Qiang Luo 1,4,5,6,8

Mental health disorders emerge from complex interactions among neurobiological processes across
multiple scales, which poses challenges in uncovering pathological pathways from molecular
dysfunction to neuroimaging changes. Here, we proposed a multiscale fusion (mFusion) method to
evaluate the relevance of each gene to the neuroimaging traits of mental health disorders. We
combined gene-neuroimaging associationswith gene-positron emission tomography (PET) and PET-
neuroimaging associations using protein-protein interaction networks, where various genes traced by
PET maps are involved in neurotransmission. Compared with previous methods, the proposed
algorithm identifiedmore disease genes on both simulated and empirical data sets. ApplyingmFusion
to eight mental health disorders, we found that these disorders formed three clusters with distinct
associated genes. In summary, mFusion is a promising tool of prioritizing genes for mental health
disorders by establishing gene-PET-neuroimaging pathways.

Mental health disorders, constituting 16% of the global burden of diseases,
rank among the leading causes of disability worldwide1. In severe cases, they
can diminish life expectancy by 10 to 20 years2. Despite substantial pro-
gresses in understanding molecular mechanisms of brain functions in
animalmodels, the rate of successful clinical translations tohumans remains
notably low3. The primary obstacle lies in the current knowledge gap
betweenmolecular processes4 and psychiatric symptoms. There exist many
complex interactions across multiple scales from genes, through neuro-
transmitters, to neural networks. This complexity is compounded by the
challenge of concurrently collectingmultiscale datawithin thehumanbrain.
As human brain data rapidly accumulate but separately at various scales,
there is an urgent need for dedicated analyticmethod to integrate these data
comprehensively, enabling the discovery of insights into mental health
disorders.

At present, some public collection databases can identify disease-
related genes, such asDisGeNET5 andCTD (Comparative Toxicogenomics
Database)6, but they lack the capacity to establish connections with neu-
rotransmitter systems or pathways. Both gene differential expression ana-
lysis and Genome-wide association study (GWAS) analysis fall short in
addressing this challenge7, with limited coverage of disease phenotypes.
Partial Least Squares (PLS) regression analysis can establish associations
between genes and imaging phenotypes based on spatial molecular dis-
tribution patterns in the brain8,9. However, it can only perform pairwise
correlation analysis, necessitating amethod to facilitate the establishment of
cross-scale pathway associations.

Neuroimaging studies have identified various alterations in neuroi-
maging features of human brains associated with mental health disorders,
i.e., spatial distributions of alterations across different brain regions in
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psychiatric patients compared with healthy controls10. Leveraging tran-
scriptomic data from postmortem brain tissues11, researchers have initiated
efforts to correlate neuroimaging featureswith gene expressions, prioritizing
relevant genes andmolecular pathways12. In this way, genes associated with
neurodevelopment, neuroplasticity, and neurotransmission have been
implicated in autism spectrum disorder (ASD)9 and schizophrenia (SCZ)13.
Despite these progresses, a significant knowledge gap persists between gene
expressions and neuroimaging traits. Recently, positron emission tomo-
graphy (PET) studies have started to reveal spatial associations between
neurotransmitter receptors/transporters and structural/functional traits of
mental health disorders in the human brain14,15. Leveraging neuro-
transmissions revealed byPET images, this study aims toestablish biological
bridges for the gap between gene expressions and neuroimaging traits for
mental disorders. The disease related genes are defined by 4 curated disease
gene databases listed in Table 1.

This study proposes a multiscale fusion (mFusion) method to bridge
genes to mental disorders through establishing links between gene expres-
sions in brain tissues, neurotransmissions, and neuroimaging traits of these
disorders. Leveraging the knowledge in the protein-protein interaction
(PPI) networkmade available by the STRINGdatabase16,mFusion provides
a tool for integrating 15,408 gene expression maps from the Allen Human
Brain Atlas (AHBA)17,18, 45 PET maps across various neurotransmitter
systems14,19,20, and neuroimaging traits associated with mental disorders.
Performances of mFusion were first evaluated by numerical simulations,
and then demonstrated by applying to neuroimaging traits of two mental
disorders (i.e., autism9 and schizophrenia13). The ENIGMA (Enhancing
NeuroImaging Genetics through Meta-Analysis) consortium has reported
neuroimaging traits for mental disorders by analyzing thousands of neu-
roimaging scans21. Using these neuroimaging traits, mFusion enabled us to
reveal the clustering structure for eight major mental disorders.

Results
Overview of mFusion framework
In this study, the mFusion integrated gene expressions in brain tissues and
PET maps for specific proteins (related to the receptors, transporters, or
release of neurotransmitters) within a PPI network, to link neuroimaging
traits to genes (Fig. 1; Additional file 1: Fig. S1) through proteins (measured
by PETmaps; Table 2; Supplementary Table S1). First, we examined Z-scores
value of genes or proteins from three types of (PLS) associations indepen-
dently, including gene-trait, PET-trait, and gene-PET associations. Second,
we utilized the Z-transform test, also referred to as the “Stouffer’s method”22,
to combine multiscale Z-scores of a gene. Meanwhile, the neighboring
information of PPI network from STRING database was used to boost the
ability of identifying disease related genes. Finally, disease category5 and Gene
Ontology (GO)23 term enrichment analysis was conducted on the top-ranked
genes, which were determined by the mFusion methods, to identify impor-
tant biomolecular pathways or processes that relate to candidate genes.
Further details are provided in Methods, and Supplementary Fig. S1.

mFusionoutperformed the traditionalmethodonsimulationdata
We compared performance on simulation data between the traditional
partial least squares (PLS) association method, and five fusion methods
proposed by this study (i.e., meanGP, meanGPT, meanPPI, maxGPT, and
maxPPI, see “Methods”). Evaluation metrics included the correlation
between estimatedgene scores and real geneweights, thenumber (or rate) of

hits, the area under curve (AUC) of receiver operating characteristic (ROC),
AUC of precision-recall (PR) curve (see “Methods”).

Comparedwith othermethods, we found that gene scores given by the
meanPPI and maxPPI methods demonstrated higher correlation with real
gene weights defined in the simulation model (Fig. 2a, unpaired Wilcoxon
test, 500 times of simulations), higher hit rates of active genes in the
simulation (Fig. 2b), and larger AUCs of both the ROC (Fig. 2c) and PR
(Fig. 2d) curves, these curves were all generated by the mean value of 500
times of simulations.

We tested the performance of mFusion under different conditions as
defined by both the sparsity in activate genes and the strength of the gene-
PET covariance (Methods). TheAUC-ROCs of bothmeanPPI andmaxPPI
outperformed the PLS method at different sparse levels of activate genes
(Fig. 2e). Conversely, the results presented in Fig. 2f indicate that the two
fusionmethods,meanPPI andmaxPPI, exhibited insensitivity to changes in
the covariance between gene expression and neurotransmission PETmaps.

And then, three kinds of perturbations were performed on the PPI
networks to illustrated the influence of PPI information on the mFusion
method for 500 repetitions: (1) randomly shuffle 30%of the elementswithin
the adjacencymatrix ewX × ewT

M ; (2) set theminimum30%of the elements in
the adjacency matrix to be zero; (3) randomly shuffle 30% of the elements,
and then set theminimum30%of the elements in the adjacencymatrix to be
zero. We found that the meanPPI and maxPPI methods consistently out-
performed their counterparts in all three conditions (Fig. S2).

Thirdly, we conducted a simulation of brain maps at three distinct
spatial resolutions. Specifically, the number of brain regions (n) was varied
between 100, 200, and 500 (see “Methods” for further details), as delineated
in Fig. S3. The results of this simulation demonstrated a positive correlation
between the spatial resolution of theX, Y, andZmatrices and the efficacy of
the methods in identifying activated genes. Notably, the meanPPI and
maxPPI methodologies consistently exhibited superior performance com-
pared to other methods, exhibiting a level of stability that highlights their
robustness in high-resolution brain mapping analyses.

mFusion outperformed the traditional method on empirical data
We used SCZ morphological similarity differences and ASD cortical
thickness difference as the traits and get genesZ-scores fromdifferent fusion
method, as described in Methods. Compared to the traditional PLS
regression method and other fusion methods, the meanPPI and maxPPI
method got a largerAUConDisGeNet database (SCZ: Fig. 3a and Table S2;
ASD: Fig. 3b and Table S3), which demonstrated superior identification of
disorder-related genes. On the other hand, we compared the number of hits
in the topK genes given by variousmethods.Whenwe varied the parameter
K from 41 to 1541, where 1541 was 10% of the total of 15,408 genes, we
found that the proposed methods had consistently more hits as compared
with the other algorithms (Fig. 3c–j). Notably, when referencing the Dis-
GeNet database, the meanPPImethod outperformed all the other methods
in identifying SCZ-related hit genes significantly (Fig. 3c; p < 0.001, paired
Wilcoxon test for meanPPI and PLS method. Gene scores refer to Supple-
mentaryTable S4).Among theASDrelated genes in theDisGeNet database,
the number of hit genes in the top K gene sets identified by the meanPPI
method was also significantly greater than that identified by other five
methods (Fig. 3g; p < 0.001, paired Wilcoxon test for meanPPI and PLS
method. Gene scores refer to Supplementary Table S5). Furthermore, when
compared to fusion methods lacking PPI information, such as meanGPT

Table 1 | Four gene-disease databases

Database # of SCZ risk genes # of ASD risk genes Collection date URL

DisGeNet 2872 (score > 0) 1071 (score > 0) June, 2020 (v7.0) https://www.disgenet.org/

CTD 2875 (score > 15.28) 1071 (score > 29) June 30, 2023 (17123) https://ctdbase.org/

DISEASES 1548 (Z > 3) 211 (Z > 3) March, 2015 https://diseases.jensenlab.org/Downloads

PGC-GWAS 380 (p < 5e-8) 56 (p < 5e-4) SCZ:202257/
ASD:201953

https://pgc.unc.edu/for-researchers/download-results/
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and maxGPT, their PPI-informed counterparts, meanPPI and maxPPI,
consistently demonstrated superior performance across the board
(Fig. 3c–j).

Sensitivity analysis on empirical data
To identify optimal parameters for fusion methods, we compared perfor-
mances of these methods with different network depths (d) and edge con-
fidences (c) for the PPI. We observed that the meanPPI method exhibited
superiorperformance (i.e., a largernumberof hit genes,AUC-ROCvalue, or
AUC-PR values)when its PPI depth dwas set to 1 in comparison to 2 (Fig. 4
andFig. S4). This trendwas consistent across various edge confidence values
ranging from 0.3 to 0.7. When the PPI depth was set as 2, meanPPI per-
formed similarly to other methods (Fig. S5). Meanwhile, we noted that the
meanPPI’s performance was less sensitive to the edge confidence of PPI
when it varied from 0.3 to 0.7 (Fig. 4e, f). However, when it increased to 0.8
or 0.9, the meanPPI’s performance declined mainly owing to the fact that
too few PPIs remained effective at such high confidence levels (Fig. 4 and
Fig. S4). Using the physical subnetwork (i.e., with evidence of binding or
forming a physical complex) instead of the full STRING PPI network, the
meanPPImethod exhibited a decrease in the number of hits.Nevertheless, it
consistently outperformed other methods that did not incorporate the PPI
information (Fig. S6). Consequently, we opted for d = 1 and c = 0.5 in
subsequent analyses.

In order to evaluate the importance of PPIs in the context of the
mFusion-meanPPI method, a comparative analysis was conducted on SCZ
and ASD phenotypes separately. The analysis comprised a computational

evaluation of 500 randomly generated PPIs for each disease (see “Meth-
ods”), with the resulting null distribution of the number of hit genes pre-
sented in Fig. S7A, B separately. The results demonstrated that the
application of the meanPPI method using real PPI data markedly aug-
mented the capacity to identify hit genes compared to the use of random
PPI. In addition, a similar permutation was made for the 45 PETmaps (see
“Methods”) and reapplied to the analysis of the SCZ and ASD disease. The
results in Figure S7C, D revealed a marked reduction in the ability of the
meanPPI method in pinpointing disease-associated genes, thereby indi-
cating that real PET maps are pivotal in the meanPPI method.

To assess the effect of the quality of PET maps on the results, the 45
redundant maps were synthesized and averaged into 20 unique maps
(Fig. S8). Subsequently, the characteristics of SCZ andASDwere reanalyzed
(Figs. S9, S10). ThemeanPPImethoddemonstrated remarkable consistency
with the primary findings regarding the identification of disease risk genes,
exhibiting a spearman correlation for gene scores of r = 0.97 (p < 2e-16) and
r = 0.98 (p < 2e-16), respectively (Fig. S9). Furthermore, both the meanPPI
and maxPPI methods emerged as the most effective approaches (Fig. S10).

Top-ranked genes enriched in the relevant diseases
As an analysis module of mFusion analysis, we performed enrichment
analysis for top 1541 (10%of 15,408) genes that had negative relevant scores
to SCZ or ASD given by different methods (see “Methods”). Following the
FDR correction among 30,170 diseases, traits, and phenotypes in the Dis-
GeNet (Fig. 5a, b), genes prioritized by the meanPPI method for SCZ/ASD
were enriched in the corresponding disease gene sets. In contrast, the top

Fig. 1 | The framework and working interface of the “mFusion”method. By using
partial least square association to integrate spatial correlations of gene expressions in
the human brain with information about neurotransmission and neuroimaging, the
mFusion method yields a relevance score for each gene and pathway associated with
a mental disorder, facilitating the identification of top-ranked genes and pathways.

This fusion method additively provided the potential reasons for neurochemical
architectures (neurotransmissions) in PET images influencing gene scores. Sub-
sequent enrichment analysis of top genes identifies biological process and pathways
relate to the mental disorder.

https://doi.org/10.1038/s42003-024-07404-x Article
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Table 2 | Neurotransmission-related PET maps included in analyses

Protein Neurotransmitter Tracer Measure n Age Reference

HTR1A Serotonin [11C]CUMI-101 BPND 8 (5) 28.4 ± 8.8 Beliveau et al.75

HTR1A Serotonin [11C]WAY-100635 BPND 35 (17) 26.3 ± 5.2 Savli et al.76

HTR1B Serotonin [11C]AZ10419369 BPND 36 (12) 27.8 ± 6.9 Beliveau et al.75

HTR1B Serotonin [11C]P943 BPND 23 (8) 28.7 ± 7.0 Savli et al.76

HTR1B Serotonin [11C]P943 BPND 65 (16) 33.7 ± 9.7 Gallezot et al.77

HTR2A Serotonin [18F]altanserin BPND 19 (8) 28.2 ± 5.7 Savli et al.76

HTR2A Serotonin [11C]Cimbi-36 BPND 29 (14) 22.6 ± 2.7 Beliveau et al.75

HTR2A Serotonin [11C]MDL100907 BPND 3 (1) 35 ± 9 Talbot et al.78

HTR4 Serotonin [11C]SB207145 BPND 59 (18) 25.9 ± 5.3 Beliveau et al.75

HTR6 Serotonin [11C]GSK215083 BPND 30 (0) 36.6 ± 9.0 Radhakrishnan et al.79

SLC6A4 Serotonin [11C]DASB BPND 100 (71) 25.1 ± 5.8 Beliveau et al.75

SLC6A4 Serotonin [11C]DASB BPND 18 (6) 30.5 ± 9.5 Savli et al.76

SLC6A4 Serotonin [11C]MADAM BPND 10 (2) range: 51–67 Fazio et al.80

SLC6A4 Serotonin [11C]MADAM BPND 16 (2) range: 21–67 Dukart et al.20

CNR1 Cannabinoid [18F]FMPEP-d2 VT 22 (11) male: 27 ± 6;
female: 28 ± 10

Laurikainen et al.81

CNR1 Cannabinoid [11C]OMAR VT 77 (28) 30.0 ± 8.9 Normandin et al.82.

DRD1 Dopamine [11C]SCH23390 BPND 13 (7) 33 ± 13 Kaller et al.83.

DRD2 Dopamine [11C]FLB457 BPND 55 (29) 32.5 ± 9.7 Hansen et al.14.

DRD2 Dopamine [11C]FLB457 BPND 6 (2) 39.5 ± 6.8 Sandiego et al.84.

DRD2 Dopamine [18F]fallypride BPND 58 (22) 18.5 ± 0.6 Jaworska et al.85.

DRD2 Dopamine [11C]FLB457 BPND 37 (20) 48.4 ± 16.9 Smith et al.86.

DRD2 Dopamine [11C]raclopride BPND 7 (0) 24 ± 2 Alakurtti et al.87.

SLC6A3 Dopamine [123I]FP-CIT SUVR 174 (65) 61 ± 11 Dukart et al.88.

SLC6A3 Dopamine [123I]Ioflupano SUVR 26 (--) range 35 ~ 65 García-G et al.89.

SLC6A3 Dopamine [18F]FE-PE2I SUVR 10 (0) 28.1 ± 6.9 Sasaki et al.90.

GABRA1 GABA -- -- 26 (0) 26 ± 5 Dukart et al.88.

GABRA1 GABA [11C]flumazenil Bmax 16 (9) 26.6 ± 8 Nørgaard et al91.

HRH3 Histamine [11C]GSK189254 VT 8 (1) 31.7 ± 9.0 Gallezot et al.92.

OPRM1 Opioid [11C]carfentanil BPND 204 (72) 32.3 ± 10.8 Kantonen et al.93.

OPRM1 Opioid [11C]carfentanil BPND 39 (19) 37.0 ± 4.9 Turtonen et al.94.

SLC6A2 Norepinephrine [11C]MRB BPND 77 (27) 33.4 ± 9.2 Ding et al.95.

SLC6A2 Norepinephrine [11C]MRB BPND 20 (8) 33.3 ± 10.0 Hesse et al.96.

KIF17 Glutamate [18F]GE-179 VT 29 (8) 40.9 ± 12.7 Galovic et al.97.

SV2A* -- [11C]UCB-J BPND 10 (3) 36 ± 10 Finnema et al.98.

VAT1L Acetylcholine [18F]FEOBV SUVR 5 (4) 68.4 ± 3.4 Hansen et al.14.

VAT1L Acetylcholine [18F]FEOBV SUVR 6 (3) 67.0 ± 11.1 Aghourian et al.99.

VAT1L Acetylcholine [18F]FEOBV SUVR 4 (1) 37 ± 10.2 PI: Lauri Tuominen & Synthia
Guimond

VAT1L Acetylcholine [18F]FEOBV SUVR 18 (13) 66.8 ± 6.8 Hansen et al.14.

VAT1L Acetylcholine [18F]FEOBV SUVR 5 (1) 68.3 ± 3.1 Bedard et al.100.

CHRM1 Acetylcholine [11C]LSN3172176 BPND 24 (11) 40.5 ± 11.7 Naganawa et al.101.

GRM5 Glutamate [11C]ABP688 BPND 22 (10) 67.9 ± 9.6 PI: Rosa-Neto, P. & Kobayashi, E.

GRM5 Glutamate [11C]ABP688 BPND 28 (13) 33.1 ± 11.2 DuBois et al.102.

GRM5 Glutamate [11C]ABP688 BPND 74 (49) 20 ± 3.0 Smart et al.103.

GRM5 Glutamate [11C]ABP688 BPND 22 (10) 67.9 ± 9.6 Hansen et al.14.

CHRNA4 Acetylcholine [18F]Flubatine VT 30 (10) 33.5 ± 10.7 Hillmer et al.104.

The Protein column indicate the protein names in the STRING database. Supplementary Table S1 also includes more extensive methodological details, such as Excitatory/Inhibitory, Ionotropic/
Metabotropic, and Source toolkit. Values in parentheses (under n) indicate the number of females.
BPNDparametric and regional non-displaceablebindingpotential,Bmaxdensity (pmol ml−1) converted frombindingpotential (5-HT)or distributional volume (GABA) usingautoradiography-deriveddensities,
VT tracer distribution volume, SUVR standardized uptake value ratio.
*The synaptic vesicle glycoprotein 2 A(SV2A) is targeted by PET imaging to quantify synaptic density in human brains98.

https://doi.org/10.1038/s42003-024-07404-x Article

Communications Biology |          (2024) 7:1699 4

www.nature.com/commsbio


genes identified by the PLS method did not have such enrichments
(Tables S8, S9).

Top-ranked genes enriched in more biological pathways
For SCZ, the meanPPI and PLS methods shared enrichment in 92 GO
terms, while the meanPPI had enriched 837 new GO terms. The shared
terms included the establishment of protein localization to the membrane
(GO_BP:0090150), regulation of synapse structure or activity
(GO_BP:0050803), channel inhibitor activity (GO_MF:0008200), etc.
(Fig. 5c; Table S6). Newly enriched terms of meanPPI included the calcium

ion transport (GO_BP:0060402), cation channel activity
(GO_MF:0022843), GABA-A receptor activity (GO_CC:1902711), etc.
(Fig. 5d). Importantly, these unique biological processes have been impli-
cated in SCZ24,25.

For ASD, these two methods shared enrichment in 38 GO terms,
including the synaptic membrane (GO_CC:0097060), neuron projection
terminus (GO_CC:0044306), positive regulation of protein transport
(GO_BP:0051222), etc. (Fig. 5e). In comparison to the PLS results, the
meanPPI results introduced new enrichments in 795 GO terms, including
the gated channel activity (GO_MF:0022836), neurotransmitter secretion

Fig. 2 | Evaluation of fusion methods from simulated datasets. a The correlation
between real gene weights and fusion weights measured by different fusion methods
of 500 simulated experiments. The lowerwhisker extends from the first quartile (Q1)
to the smallest data point that iswithin 1.5 * interquartile range (IQR) belowQ1. The
upper whisker extends from the third quartile (Q3) to the largest data point that is
within 1.5 * IQR above Q3. The number next to bar represents the median of the
population (using unpaired Wilcoxon test). b Average hit rates of genes in all
500 simulations. The hit rate was measured by the rate of really active genes in top K

genes ranked by specific fusion method. c ROC (Receiver Operating Characteristic)
curve of different fusion methods on simulation data. In simulation experiments,ewX × ewT

M is completely accurate connection matrix, and this noiseless PPI infor-
mation greatly improves the performance of maxPPI and meanPPI methods, so the
AUC-ROC ofmaxPPI is 1. d PR (precision-recall) curve of different fusion methods
on simulation data. e AUC-ROC value of different fusion method when number of
active genes changed. fAUC-ROCvalue of different fusionmethodwhen covariance
between latent variables changed.
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(GO_BP:0001956), GABA-A receptor activity (GO_MF:0004890), etc.
(Fig. 5f; Table S7).

Top-ranked genes had more hits in a disease-related gene
database
To characterize differences between genes prioritized by the proposed
method (i.e., mFusion-meanPPI) and the traditional PLS method, we
compared the top 1541 (10%of 15,408) genes identifiedby different ranking
methods (Fig. 6). By comparing gene scoreswith disease-related genes listed
in the DisGeNet database, we observed that higher meanPPI fusion scores
were associatedwithhigher hit rates. Since thePLS-regression is essentially a
multivariate approach, which is prone to overfitting, we found more false
positives in the genes with high PLS-regression weights. In contrast, we
demonstrated that the mFusion-meanPPI approach reduced the false
positive rate by combining the information frommultiscale. Among the top
10% genes, the meanPPI method identified 534 SCZ-related genes listed in
the DisGeNet database, which was significantly more than the 235 genes

identified by traditional PLS method (p < 2.2e-16, Chi-squared test; Fig. 6a;
Tables S4, S6). Similarly, among the 1071 ASD risk genes listed in the
DisGeNet database, the meanPPI method identified 221 of them within
the top 10% genes, which was significantly more than the 98 genes
identified by the PLS method (p = 5.42e-13, Chi-squared test; Fig. 6b;
Tables S5, S7). Therefore, the proposed approach identifiedmore genes that
have already been implicated in mental disorders than the traditional PLS
method did.

We examined the neurotransmissions-trait and gene-
neurotransmissions association for SCZ and ASD (Fig. 6c, d). We
found that the top 20 genes prioritized for SCZ by mFusion-meanPPI
had two patterns of correlations with five neurotransmitter receptors,
including 17 genes with positive correlations with HTR1A, CNR1,
DRD1 DRD2, and OPRM1, and 3 genes with negative correlations
with these receptors (Fig. 6e). Similar patterns were observed for ASD
(Fig. 6f). Gene-neurotransmission PLS association analysis revealed
that the majority of the top 20 genes were linked to these

Fig. 3 | Performance on SCZ and ASD disease of fusion methods under different
disease databases. a ROC curve of different fusion methods on DisGeNet database
for SCZ. b ROC curve of different fusion methods on DisGeNet database for ASD.

c–j Number of overlapped genes for SCZ (c–f) and ASD (g–j) in different standard
datebases: DisGeNet, CTD,DISEASES, andPGC-GWASdatasets (corresponding to
Table 1). Line types mean different fusion methods.
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neurotransmissions (Fig. 6e, f). Specifically, 14 of the top 20 genes
identified by the mFusion-meanPPI method were listed as SCZ-
related genes in the DisGeNet database, and five of these 14 genes
were not detected by the PLS method.

Comparison of correlations among multiple brain disorders
We applied the mFusion-meanPPI algorithm to neuroimaging traits of
eight disorder cohorts separately (Fig. 7a, see “Methods”), and prioritized
top 10% genes based on their Z-scores. Spearman correlation analysis of
these genes was performed to assess the similarity between each pair of
disorders. Following this, hierarchical clustering was applied to the
spearman correlation coefficients among these diseases, resulting in
the identification of three distinct clusters. These clusters reflected the
expressional association among these diseases, as inferred from the gene
Z-scores. The first cluster comprised the ASD, EPI, and PD, the second
included the ADHD and DEP, and the third cluster encompassed the
OCD, SCZ, and BIP (Fig. 7b). This clustering structure was supported by
both morphological (Fig. 7c) and genetic (Fig. 7d,) correlations.

Especially, the OCD-SCZ-BIP cluster and the EPI-PD cluster presented
in all three clustering structures, which are supported by previous studies
of the cross-disease similarity at different levels10,26,27. In the other two
clusters, the EPI-PD correlation exhibited consistent stability. However,
while genetically ASD showed more similarity to the DEP-ADHD
cluster, neuroimaging traits placed it closer to the EPI-PD cluster.
Simultaneously, the DEP-ADHD correlation was more pronounced
genetically but less evident in terms of imaging trait correlation. Our
identification of the clustering structure for eight major mental disorders
unveiled a notable concordance of these disorders across multiple scales
(Supplementary Table S8, Table S9, and Table S10).

Comparing among the top 10% genes for each disorder, we identified
three cluster-specific gene sets including 102, 410 and 109 genes for three
clusters, respectively (Fig. 7e; Table S11). Meanwhile, the genes related to
cluster 1 were enriched in a wide range of pre- and post-synaptic functions,
and the genes for cluster 2 enriched mainly in the postsynaptic functions
(Fig. 7f). Notably, the “GABRA1”was the only gene associated with all eight
disorders but with distinct gene-transmission pathways (Fig. 7g, Table S12).

Fig. 4 | Performance of meanPPI method on DisgeNet database with different
threshold for pruning the PPI network. a, b Number of hit genes for SCZ with
different PPI depth d and confidence scores c, d = 1 in A and 2 in B, respectively.

c, d Number of hit genes for ASD with different PPI depth and confidence scores,
d = 1 in C and 2 in D, respectively. e ROC curve at different PPI confidence for SCZ.
f ROC curve at different PPI confidence for ASD.
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Fig. 5 | Enrichment analysis of top-ranked genes related to SCZ and ASD traits.
a, bDisease enrichment results in DisGeNet diseases on top 1541 trait-related genes
for SCZ (a) and ASD (b). The Y-axis lists disease with categories in alphabetical
order. c–f Clusters of GO terms enrichment results on top 1541 genes for SCZ
(overlapped terms in c, terms uniquely enriched bymeanPPImethod in d) and ASD
(overlapped terms in (e), terms uniquely enriched by meanPPI method in (f). The
size and color of the dots were proportional to the number of pathway genes and

enrichment significance, respectively. The p-values were adjusted using Bonferroni
correction. Clusters were generated from enriched GO terms by aPEAR (Advanced
Pathway Enrichment Analysis Representation) package. It exploits the similarities
between pathway gene sets and represents them as a network of interconnected
clusters. Each cluster is assigned a meaningful name that highlights the main bio-
logical theme of the experiment.
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Fig. 6 | Differential plot of genes by different fusion methods and neuro-
transmissions for SCZ and ASD. a, b Gene scores frommeanPPI method and PLS
method. Black dots: genes overlapped among the genes from DisGeNet standard
database, top 10% genes from meanPPI method, and top 10% genes from PLS
method simultaneously. Blue triangles: genes overlapped between the genes from
DisGeNet database and 10% genes from PLS method. Magenta triangles: genes
overlapped between the genes from DisGeNet database and 10% genes from

meanPPI methods. The bar chart at the edge shows the hit rates of these disease
related genes. c, d Associations measured by PLS Z-score between all PET maps of
various neurotransmission process and disease trait (c: SCZ; d: ASD). e, f Top 20
candidate genes identified by meanPPI method, and the gene-PET effects measured
by PLS Z- score for SCZ (e) and ASD (f) disease trait. Point shapes of genes in (e–f)
have the same meanings as in (a, b).
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The GABRA1-GRM5 or -CNR1 pathway was prioritized for PD, while the
GABRA1-HRH3 pathway was prioritized for OCD. This is consistent with
the literature reporting that CNR1 agonists help relieve symptoms in PD
patients28–30.

In total, all 43,126 gene-neurotransmissions-trait pathways among
15,408 genes, 20 neurotransmissions, and 29 disease traits were listed in a
quadrable database (https://xomicsbio.shinyapps.io/mfusion_shiny/) and
summarized in Supplementary Fig. S12.

Discussion
For making use of the human brain data, that have been rapidly accumu-
lating but separately collected at various scales, this study proposed an
analytical method, namely mFusion, to bridge neuroimaging traits and
genes for mental disorders. Different from previous methods that examine
pair-wise associations across two scales, mFusion establishes gene-
neurotransmissions-trait pathways across three scales. The advantage of
the mFusion method over the previous methods was demonstrated in both

Fig. 7 | Correlation of eight brain disorders from multiple biomolecular levels.
a Cohen’s d maps of cortical thickness difference for eight disorders on
Desikan–Killiany atlas regions. bHeatmap of expressional correlations across eight
disorders (Spearman’s r value). c Heatmap of morphological correlations across
eight disorders (Pearson r value). d Heatmap of genetic correlations across eight
disorders (LDCS rg value). e The overlap of top10% genes among three disease

clusters is shown in the Veenmap. fGO:MF (molecular function) terms enrichment
results for three groups of cluster-specific genes (Cluster1: 102; Cluster 2: 410;
Cluster 3: 109). g GABRA1 related pathway scores across different neuro-
transmissions. ADHD Attention-deficit/hyperactivity disorder, ASD Autism spec-
trum disease, BIP Bipolar disorder, DEP Depression, EPI Epilepsy, OCDObsessive-
compulsive disorder, PD Parkinson’s disease, SCZ Schizophrenia.
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simulated and experimental datasets. Both well-known genes and new
candidate genes were identified by thismethod formental disorders. To our
knowledge, it is the first method to prioritize cross-scale pathways for
mental health disorders, providing a richer and more comprehensive per-
spective on disease exploration. In the current study, we demonstrated the
performance of the proposed mFusion as a tool for finding gene hits in
mental disorders using the PET maps, it is worth noting that the method
could be applied to any brain maps, such as the functional MRI or mag-
netoencephalography, single-photon emission computed tomography, etc.

The proposed method, mFusion, also suggested new disease-related
genes that have not been listed in the reference database (e.g., DisGeNet,
Fig. 6E, F). For example, the gene CNR1 was prioritized for SCZ by
mFution-meanPPI but not the traditional PLS method (Fig. 6E). The
CNR1 (cannabinoid receptor 1) encodes cannabinoid receptors and is
implicated in the pathophysiology of SCZ. In the literature, the decreased
expression of this gene has been reported in the DLPFC of patients with
schizophrenia31. The prioritization of this gene by the proposed method
was contributed to by its gene-PET association with the DRD2, which is
supported by its physical interaction with DRD2 to form CB1R–DRD2
heteromers32.

Another example is the gene KCNC1 (Potassium Voltage-Gated
Channel Subfamily C Member 1, see Supplementary Fig. S11A for its PPI
network), which is involved in the monoatomic ion channel activity and
delayed rectifierpotassiumchannel activity33. Itwas reported that the levelof
KCNC1 channels protein decreased in the neocortex of SCZ-infected mice
compared with the control group34,35. Another example is GABRA3, which
has already been associatedwith both dopamine transporter transcripts and
the disinhibition of nigrostriatal dopamine neurotransmission in the
literature36. A recent study using peripheral blood-mesenchymal stem cells
has reported its transcriptomic association with ASD37.

Furthermore, for different disorders, gene-PET-trait pathways medi-
ated by different neurotransmissions had great changes of influence
(Fig. S11B, Table S12). For example, the neurotransmission GRM5 have
strong effect on PD disease (average pathway score = 4.92, refer to
Table S12) while not for SCZ (score = 1.64) and BD (score = 1.95) disease.
When we refer to pathways in Table S12, the “SNCA” have stronger
pathway scores mediated by neurotransmissions including GRM5
(score = 5.76), CHRNB4 (score = 5.00), and CNR1 (score = 4.87), com-
pared with other disease (these pathways scores less than 3 all). The SNCA
(alpha-synuclein gene) has been widely reported to be involved in the onset
of Parkinson’s disease, especially in the formation of Lewy bodies38–40.

Nevertheless, the multiscale fusion analysis framework has its limita-
tions. First, the currently available 45 PET maps of neurotransmissions
cover only 9 neurotransmitter systems and the synaptic density, more PET
maps of neurotransmitters remained exclusive due to numerous metho-
dological and data-sharing challenges. The present study would be
strengthened in future with advanced biomolecular imaging techniques.
Second, the choice of processing parameters can influence the AHBA gene
expression estimates41. To mitigate this challenge, we normalized the
expression values and focusedonly on analyses related to the relative rank of
genes as opposed to the absolute values. Third, the gene expression data
within brain tissues is restricted to a finite set of samples. As additional data
encompassing a broader range of genes becomes accessible in the future, the
proposed method will be poised for application to these expanded datasets.

Conclusion
In this study, we proposed an analytical method to integrate information
across multiple scales, including genes, neurotransmitters, and neuroi-
mages. This method provides a neurotransmission bridge, bridging neu-
roimaging traits to genes in human brains for mental disorders. The
mFusion method identified both well-known genes and new candidate
genes of SCZ and ASD separately, demonstrating its advantages in mental
disorder phenotypes. This novel method also prioritizes cross-scale path-
ways related to mental disorders, providing a richer and more compre-
hensive perspective on disease exploration.

Methods
Data preprocessing
Gene expression in human brain tissues. Microarray expression data
for brain tissues were sourced from the Allen Human Brain Atlas
(AHBA)11,17, featuring samples from six neurotypical donors aged
between 26 to 54 years, with five males and one female. The database
encompasses probe expressions from a total of 3702 samples,
which have been normalized across all brains. Given the limited
availability of right hemisphere samples from only two donors, our
analysis focused on 2664 samples from the left hemisphere across all six
donors. Following recommended preprocessing steps outlined by
Arnatkevičiūtė et al. 18 and consistent with procedures detailed in our
prior publication42, the data underwent re-annotation, intensity filter-
ing, probe selection based on mean values, and normalization. This
process yielded a matrix of gene expression comprising 2664 sam-
ples × 15,408 unique genes.

Neurotransmission images. PET imaging has proven invaluable for
noninvasively mapping the in vivo spatial distributions of neuro-
transmissions within the human brain. In this study, we curated a
comprehensive database comprising 45 neurotransmission-related PET
maps for 9 neurotransmitter systems and synaptic density. Among them,
36 maps were provided in the neuromaps toolbox (https://netneurolab.
github.io/neuromaps/index.html)19, 6 were available through the JuSpace
toolbox (https://github.com/juryxy/JuSpace)20, and 3 were available at
the PET imaging database provided by Hansen et al. 14 (https://github.
com/netneurolab/hansen_receptors/tree/main/data/PET_nifti_images).
These systems encompass serotonin, cannabinoid, dopamine, gamma-
aminobutyric acid, histamine, mu-type opioid, norepinephrine, N-
methyl-D-aspartate, synaptic vesicle membrane protein, acetylcholine,
glutamate, and nicotinic-acetylcholine (Table 2 and Supplementary
Table S1).

Protein-protein interaction (PPI) network. Recognizing the collabora-
tive nature of proteins coded by genes in performing various functions43,
our study employed the STRING Protein-Protein Interaction (PPI)
network (Version 11.5, August 12, 2021)16. This repository stands as one
of the largest andmost widely utilized sources of PPI data, encompassing
both direct (physical) and indirect (functional) interactions. These
interactions are derived from a range of sources, including experimental
data, gene co-expression, and text-mining. Within the PPI network, the
strength of an edge is quantified by the confidence score (c), while the
distance between two nodes is measured by the depth (d). Specifically, a
larger c and a smaller d contribute to a PPI network that is substantiated
by stronger evidence.

Brain traits ofmental disorders using theDesikan–Killiany (DK) atlas.
The ENIGMA consortium and ENIGMA toolbox (https://enigma-
toolbox.readthedocs.io/en/latest/index.html#)21 have provided the
structural case-control differences for eight mental disorders, including
attention-deficit/hyperactivity disorder (ADHD)44, ASD45, bipolar dis-
order (BD)46, common epilepsy syndromes (EPI)47, depression (DEP)48,
obsessive-compulsive disorder (OCD)49, Parkinson’s disease (PD)50, and
SCZ51. In this study, we employedmaps detailing case-control differences
in cortical thicknesses, represented by inverted Cohen’s d values14 (this
means, larger values represent greater cortical thinning), for 68 specific
DK brain regions (Table S13).

Brain traits of mental disorders in the DK308 Atlas. In our investiga-
tion, we incorporated a brain map depicting case-control differences in
morphological similarity, specifically the correlation of seven morpho-
logical parameters (i.e., gray matter volume, surface area, cortical
thickness, Gaussian curvature, mean curvature, fractional anisotropy,
andmean diffusivity) derived fromMRI and diffusion-weighted imaging
data, concerning schizophrenia. This map is defined by the
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Desikan–Killiany 308 atlas (DK308)13, an improved version of the DK
atlas that maintains small-world properties of anatomical cortical net-
works while enhancing resolution with 308 regions8. We also employed
another case-control differences map in cortical thickness for ASD illu-
strated by DK308 atlas9.

GWAS summary statistics for mental disorders. We compiled GWAS
summary results for six mental disorders from published research,
drawing from the Psychiatric Genomics Consortium (PGC) datasets for
ADHD52, ASD53, BIP54, DEP55, OCD56, SCZ57. Additionally, we incor-
porated data from other relevant studies (EPI58, PD59). Table S14 offers
comprehensive details on the individual GWAS samples, including
references, sample sizes, and SNP numbers.

Multiscale-fusion framework
Calculations of multiscale associations. We examined three types of
associations, including gene-trait, PET-trait, and gene-PET associations.
Each type of association was separately estimated by partial least squares
(PLS) regression, a widely employed method for evaluating the associa-
tion between a 1-dimention response variable (Yn× 1) and a multi-
dimensional predictor (Xn× p), where n is the sample size and p is the
dimension of predictors60–62. Let L be the rank of matrix X, the PLS
regression iteratively computes L latent variables (i.e., components) forX
by singular value decomposition (SVD). Suppose the data matrices have
already been normalized, if not, we normalize (i.e., Z-score) them before
entering the algorithm. At the initial step, the covariance matrix was
decomposed by SVD asXT

n× pYn× 1 ¼ Up× 1 × s, whereU is an orthogonal
vector and s is the corresponding singular value. The first component of
was X formed as t1 ¼ Xn× p ×Up× 1. Therefore, U specifies the weight of
each predictor for the first component (note as ui; i ¼ 1; 2; � � � ; n). Next,
data X is regressed on the first component t1 and the residuals eXn× p are
used as the data for the next iteration. The second component is given by
applying the SVD to eXT

n × pYn× 1. The iteration stops when L components
are established as (t1; t2; � � � ; tL).

For each component (tl; l ¼ 1; 2; � � � ; L) established from X, the
effect size of its association with Y can be estimated by the variance
explained in the linear regression of Y on this component. The sig-
nificance of this association was assessed by 1000 permutations, i.e.,
randomly shuffling the elements of Y to re-conduct the PLS
regression and re-calculate the variance explained. Following the
literature60, the estimation error in each weight ui is established
empirically by 1000 bootstraps as the standard error in the boot-
strapped estimations (σ i) and is adjusted for by ui=σ i: The error-
adjusted weights entered the following analyses. For brevity, the
error-adjusted weight was referred to as the Z-score in the
following texts.

For the gene-trait association, the regional gene expressions
from AHBA (Xn× p), n is the number of brain regions and p is the
number of genes) served as predictors, while the neuroimage trait
(Yn× 1) was considered as the response variable. We selected the first
component of PLS regression analysis if it had a p-value < 0.05 by
permutation; otherwise, we selected the component that explained
the most variance of Y. Subsequently, the weight of the ith gene was
normalized and given by the Z-score of bootstrapped coefficients60,
denoted as Zg;t ið Þ. These Z-scores was used to rank the relevance of
genes to the trait in most previous studies.

The gene-PET associations were assessed by 45 PLS regressions
separately for each of the 45 PET maps, and the regional gene expression
matrix Xn× p was the predictors. Therefore, for the j-th PET map
(j ¼ 1; 2; � � �; v), the normalized Z-score Zg;p i; j

� �
was used to measure the

association of the i-th gene to this PET map (i ¼ 1; 2; � � �; n).
Similarly, for the PET-trait association, we conducted the same PLS

analysis using vð¼ 45ÞPETmaps as the predictors and estimated theweight
of the jth PET map. And then the weight was normalized by the Z-score
from bootstraps as Zp;tðjÞ.

Combination of multiscale associations to rank genes. Here, we
utilized the Z-transform test, also referred to as the “Stouffer’s method”22,
to combine K independent Z-scores by

Zsum ¼
PK

k¼1Zkffiffiffiffi
K

p

where the Zk is a number drawn from a normal distribution with mean 0
and standarddeviation1. If the commonnull hypnosis is true, theZsum has a
standard normal distribution. Based on this test, we developed the following
five fusion methods to rank genes according to their relevance to a given
disorder, i.e., the larger the absolute value of the combined Z-score, the
greater the relevance.

meanGP We combined the gene-trait association with gene-PET
association for the ith gene by

meanGPi ¼
Zg;tðiÞ þ

Pv
j¼1Zg;pði; jÞffiffiffiffiffiffiffiffiffiffiffi

v þ 1
p

meanGPTWe first combined the PET-trait association with the gene-PET
association by φði; jÞ ¼ Zp;t ð jÞþZg;pði;jÞffiffi

2
p for the ith gene. Next, the φ i; j

� �
was

further combined with the gene-trait association by

meanGPTi ¼
Zg;t ið Þ þ

Pv
j¼1φ i; j

� �
ffiffiffiffiffiffiffiffiffiffiffi
v þ 1

p

meanPPI We applied a cut-off of high confidence (i.e., confidence
threshold c) for edges of the STRING PPI network16, and focused
exclusively on the closely interacted nodes within the network. The
neighboring information is recorded in a binary matrix G(i, j) with 1
indicating a high-confidence interaction between genes i and j, and 0
indicates low-confidence interaction. To score the relevance of a pathway
linking gene to trait via a neurotransmission, we combined the PET-trait

and gene-PET associations by φGði; jÞ ¼
Zp;t ðjÞþGði;jÞ×Zg;pði;jÞffiffi

2
p . This combi-

nation is especially informative when the PET-trait association is strong
(i.e., above a threshold tp ¼ 3)63, so we defined a filtering function

ηðZp;tðjÞÞ ¼
0; jZp;tðjÞj<tp
1; otherwise

�
. The influence pathway of the ith gene

through proteins (referred by specific PET maps) to trait were calculated
by:

meanPPIi ¼
Zg;tðiÞ þ

Pv
j¼1η Zp;t j

� �� �
φG i; j

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
v0 þ 1

p

where v0 ¼ Pv
j¼1ηðZp;tðjÞÞ:maxGPT In biological systems, a strong signal

can sometimes override several weaker signals to achieve a regulatory
effect64,65. To mimic this phenome in the biological systems, we also intro-
duced the following score:

maxGPTi ¼ signmax Zg;t ið Þ; φ i; j
� �� 	v

j¼1

� �

where signmaxð�Þ is defined as the operation to identify the elementwith the
largest absolute value within a vector and then retain its original sign.

maxPPI To introduce the PPI information in the maxGPT score, we
further defined:

maxPPIi ¼ signmax Zg;t ið Þ; η Zp;t j
� �� �

φG i; j
� �n ov

j¼1


 �

Combination of multiscale associations to rank gene-
neurotransmission-trait pathways Similar to gene ranking method above
mentioned,wemeasure the associations betweengene-PETpairs (i.e., gene i
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and PET map j) and disorders by the following method:

Scorei;j ¼
G i; j
� � � abs Zg;t ið Þ

� �
þ abs Zp;t j

� �� �� �
ffiffiffi
2

p :

The larger the value of the combined Z-score, the more important the
gene-PET pair.

Application of mFusion to numeric simulations
To assess the performance of mFusion, we adopted settings of
numeric simulations in the literature66 to mimic properties of the
real-world data. Specifically, we supposed to have 200 brain regions
(n), 2000 genes ðXn × 2000Þ), 20 PET maps of neurotransmitters
(Mn× 20), and 1 neuroimaging trait of a mental disorder ðYn × 1Þ. The
trait and genes shared a latent variable tX , while the trait and PET
maps shared another latent variable tM . The relationships between
genes and PET maps were modeled by a multi-dimensional Gaussian

distribution as
tX
tM

� 
� N

0
0

� 
;

In 0:9In
0:9In In

� 
 �
, where In is an

identity matrix. Therefore, we generated the simulation data from the
following model:

X ¼ tXewT
X þ EX ;

M ¼ tMewT
M þ EM ;

Y ¼ ðtX þ tMÞewT
Y þ EY ;

where the EX ; EM ; and EY are noises drawn independently from standard
Gaussian distributions, and the ewX ; ewM ; and ewY are weight vectors drawn
from a uniform distribution U½0; 1�. For sparsity, we retained 20% of these
weights to be active and reset others to be zeros. We used the matrixewX × ewT

M to represent the interaction network betweenX andM (similar to
the role of PPI in the real world, but not necessarily equivalent to the
structure or characteristics of PPI). This simulation was repeated for 500
times. To test the performance of mFusion at different sparse levels, we
varied the number of active genes from 200, 400, 600, to 800. To assess the
impactof gene-PETcovarianceon fusionmethods,we varied the covariance
between latent variables within a range of 0.3, 0.6, and 0.9.

Furthermore, to evaluate the impact of Protein-Protein Interaction
(PPI) networks on the mFusion method, we conducted a series of pertur-
bations on the PPI network. Firstly, 30% of the elements within the adja-
cency matrix ewX × ewT

M were randomly shuffled, thereby introducing a
degree of artificiality to the PPI, akin to the inherent noise present in real-
worldPPInetworks. Secondly,we set aminimum30%of the elements in the
adjacencymatrix to zero, thereby simulating the incompleteness of PPI that
is often encountered in biological systems. Thirdly, we changed the
dimension ofX, Y, andZmatrix (i.e., the brain regions n ranges in 100, 200,
or 500) to investigate the influence of varying spatial resolutions of
microarray-derived gene expression andPETmaps to themFusionmethod.
In conclusion, we executed 500 repetitions of themFusionmethod on these
perturbed PPI matrices to evaluate the robustness and sensitivity to such
perturbations.

The proposed fusionmethods aim to discern active genes, indicated by
non-zero elements of ewX . We evaluate the performance through three
metrics: (1) The Spearman correlation between true weights and their
estimations,measured by the absolute values of gene scores provided by our
method. (2) The AUC-ROC (Area under Curve of the receiver operating
characteristic curve) captures the dynamic relationship between true posi-
tive rate and false positive rate in binary classification tasks. At each
experiment, the first K genes with the highest score (the K was predefined)

were predicted as active geneswhile otherswere deemed as inactive.A larger
AUC-ROC signifies a more robust classification ability of the model. We
usedRpackage “multiROC” to compute themean value of true positive and
false positive genes at all simulated experiment. (3) The AUC-PR (Area
under Curve of the precision-recall curve) illustrates the trade-off between
recall rate and accuracy rate in the classification model. A higher AUC-PR
denotes a stronger classification ability of the model.

Application of mFusion to two mental disorders
To assess the efficacy of the mFusion in real-world data, we conducted a
comprehensive evaluation by comparing prioritized genes with four well-
established gene-disease databases (Detailed information are inTable 1, and
Tables S4, S5). The DisGeNet database stands as a comprehensive resource
integrating data from expert curations, GWAS catalogues, animal models,
and more, establishing gene-disease relationships across 21,671 genes and
30,170 diseases, traits, and phenotypes5. The CTD (Comparative Tox-
icogenomics Database) contains expert-curated and method-inferred
gene–disease relationships drawn from published literature or the OMIM
database6. The DISEASES, a weekly updated web resource, consolidates
evidence on disease-gene associations from automatic text mining, manu-
ally curated literature, cancer mutation data, and genome-wide association
studies67. Additionally, we applied fine-mapping analysis in MAGMA68 to
derive GWAS-based gene sets from GWAS summary results provided by
the SCZ andASDworking groups in the Psychiatric Genomics Consortium
(PGC)53,57. A superior performance of a fusion method is indicated by a
greater overlap of top-ranked genes generated by the method with those
present in the gene-disease databases.

Sensitivity analysis. In above analyses, we employed a PPI confidence
threshold (c) set at 0.5, and a PPI depth (d) set at 1. To assess the sensi-
tivity of mFusion on different confidence (c) level and depth (d) in cal-
culation, we conducted additional tests. Specifically, we explored a range
of confidence values from 0.3 to 0.9 in increments of 0.1, while main-
taining PPI depths at both 1 and 2.

To assess the influence of PPI information on the mFusion method,
500 times of shufflingwere conducted on the nodeswithin the STRINGPPI
networks. This type of shift preserved the network properties of the original
PPI and the characteristics of the node itself, while modifying the neighbor
relationship of each node. The null distribution of results in random PPI
network cases was obtained and compared with results from real STRING
PPI networks. Similarly, we permutated the 45 PET maps 500 times (by
shuffling the order of brain regions across 45 maps concurrently at each
time) to evaluate their contributions to the mFusion methodology. If the
number of hit genes significantly reduced, themolecular distributions given
by the real PET maps contributed significantly to mFusion.

Furthermore,we averaged thePETmapsmeasuring the samemolecule
and got 20 PETmaps each of whichmeasured a differentmolecule (Fig. S8).
To test the potential bias introduced by the redundant PET maps for some
molecules, we compared the gene scores given the mFusion using these 20
uniquePETmapswith the gene scores given byusing all the 45PETmaps. If
these scores are significantly correlated with each other, there is little evi-
dence for the bias.

Enrichment analysis. For disease enrichment analysis, the R package
“disgenet2r”5 was employed, and Gene Ontology (GO)23 term enrichment
analysis was conducted using another R package, “clusterProfiler”69.
Following the literature13, these analyses focused on the top 1541 genes,
representing 10% of the total 15,408 genes70, exhibiting the most negative
Z-scores as determined by the meanPPI method. To correct for multiple
comparisons, a false discovery rate (FDR) correction (p.adjust < 0.05) was
applied. The visualization was accomplished using the R package aPEAR
(Advanced Pathway Enrichment Analysis Representation)71, which
leverages similarities between pathways to represent them as an inter-
connected network of clusters.
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Correlations between mental disorders assessed by mFusion
Applying the mFusion to neuroimaging traits of eight mental disorders
given by the ENIGMA consortium as described above, we investigated the
correlation between each pair of mental disorders. Spearman correlation
coefficients were calculated between the fusion scores of the top 10% genes
ranked by the meanPPI method. Subsequently, a hierarchical clustering
analysis of these correlations was conducted, implementing complete-
linkage clustering through the “hclust” function in R program72. To offer a
comparative perspective, we investigated the clustering structure using both
neuroimaging and genetic correlations. The formerwas established through
Pearson correlation between neuroimaging traits for each pair of mental
disorders. The latter was estimated using the Linkage Disequilibrium Score
Regression (LDSC) method, employing default parameters for the Eur-
opean population63,73. To elucidate the clustering pattern of these disorders,
we focused on the top 10% of disease-related genes within each disorder
clusters and explored the cluster-specific gene sets. Subsequently, the study
collected the gene-neurotransmissions-trait pathways of these diseases, and
calculated the average scores of gene-neurotransmitter pairs across different
neurotransmitter types, which provided the importance of pathways
mediated by neurotransmissions in specific trait or disorder.

Statistics and reproducibility
Data manipulation and processing analyses were conducted using the
packages MATLAB (version 2018b), R (version 4.1.0). We considered a p-
value < 0.05 as significant unless otherwise stated. All relevant information
of statistical tests and post hoc tests methods are included in the figure
legends. The plots in our study are drawn by ggplot2 (version 3.5.1), aPEAR
(version 1.0.0), and multiROC (version 1.1.1).

Ethics approval and consent to participate
All ethical regulations relevant to human research participants were fol-
lowed. All the utilized data in our study were previously published and
publicly available. The research conformed to the principles of the Helsinki
Declaration.

Data availability
Microarray expression data for brain tissues were sourced from the Allen
Human Brain Atlas (AHBA), refer to https://atlas.brain-map.org/. This
study employed the STRING Protein-Protein Interaction (PPI) network at
https://version-11-5.string-db.org/ (Version 11.5, August 12, 2021). The
disease-risk genes were acquired from the following websites: (1) DisGeNet
database (https://www.disgenet.org/home/. Accessed 12 Dec 2023); (2)
Comparative Toxicogenomics Database (https://ctdbase.org/. Accessed 12
Dec 2023); (3) DISEASES database (https://diseases.jensenlab.org/Search.
Accessed 12 Dec 2023); (4) GWAS-based gene sets from GWAS summary
results as described in Methods section. GWAS summary statistics of eight
psychiatric disorders are available on the PGC website (https://www.med.
unc.edu/pgc/results-and-downloads). All ethical regulations relevant to
human research participants were followed in the public datasets used and
approved by the respective boards and institutions. All Supplementary
tables (Table S1–S12) are available at Supplementary Data 1.

Code availability
An open-source implementation of the mFusion method can be down-
loaded from https://github.com/CaoLuolong/XomicsEnrich. These codes
are also publicly available in the Zenodo repository at https://doi.org/10.
5281/zenodo.1437487974.
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