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Acute myocardial infarction (AMI) and sepsis are the leading causes of high mortality rates in intensive 
care units. While sepsis frequently affects the cardiovascular system, distinguishing between sepsis-
induced cardiomyopathy and AMI remains challenging due to overlapping biomarkers. Misdiagnosis 
can hinder timely treatment and increase risk of complications. This study used multidimensional 
clinical data and machine learning techniques to develop and validate a novel predictive model for 
identifying AMI in critically ill patients with sepsis. Data from patients with sepsis were extracted from 
the Medical Information Mart for Intensive Care-IV database. Six machine learning algorithms were 
employed for model construction. Additionally, the machine learning-based models were compared 
with traditional scoring systems. Model performance was evaluated in terms of discrimination, 
calibration, and clinical applicability. In total, 2,103 critically ill patients with sepsis were included, 
459 (21.8%) of whom experienced AMI during hospitalization. A total of 26 variables were selected 
for model construction. Among all models, the Gradient Boosting Classifier model demonstrated the 
best predictive performance in terms of discrimination, calibration, and clinical applicability. Machine 
learning models have the potential to serve as tools for predicting AMI in patients with sepsis. The 
Gradient Boosting Classifier model developed herein demonstrated promising predictive performance, 
supporting clinicians in identifying patients at high-risk of sepsis and implementing early interventions 
to reduce mortality rates.
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Sepsis is a systemic inflammatory response syndrome triggered by infection, often leading to multi-organ 
dysfunction and with high mortality rates1. Despite advances in medical technology, the treatment outcomes for 
sepsis remain suboptimal, primarily due to its complex pathophysiology and uncertain clinical manifestations2. 
The cardiovascular system is frequently affected during sepsis, resulting in complications such as myocardial 
depression and circulatory failure, which further increase patient mortality3. Sepsis-induced cardiomyopathy is a 
common form of cardiac injury associated with sepsis; however, its pathophysiological mechanisms are not fully 
understood and may be related to inflammatory mediators, oxidative stress, and microvascular dysfunction4.

Abnormalities in myocardial biomarkers are commonly observed in patients with sepsis, but these biochemical 
changes are not specific to sepsis. In some cases, they may result from sepsis-induced myocardial injury5; however, 
they may also indicate that the patient has concurrent acute myocardial infarction (AMI)6. Distinguishing 
between sepsis-induced cardiomyopathy and AMI is crucial for clinical decision-making in patients with sepsis 
due to the significant overlap in their clinical presentations and biomarker profiles. Misdiagnosis can lead to 
inappropriate treatment and potentially worsen the patient’s condition. For instance, AMI typically requires 
anticoagulation, antiplatelet therapy, and sometimes early percutaneous coronary intervention; however, these 
treatments may increase the risk of bleeding in patients with sepsis. Therefore, accurately and quickly identifying 
AMI in patients with sepsis is of significant clinical importance.

In recent years, the rapid development of big data and machine learning (ML) technologies has led to 
increasing research on predictive and diagnostic models using multimodal data, including patient history, 
clinical examination results, and biomarker levels. The application of ML methods in medical diagnosis and 
prognosis offers a promising approach for the early identification of AMI in patients with sepsis. By analyzing 
large-scale clinical data, ML algorithms can uncover potential characteristic patterns, thereby enhancing 
diagnostic accuracy and providing clinicians with more precise decision-making support7–9.

Current research on abnormal myocardial biomarkers in sepsis primarily focuses on myocardial dysfunction 
caused by sepsis, with limited studies on concurrent AMI. This study aimed to develop a machine learning-based 
model to predict the likelihood of concurrent AMI in patients with sepsis. By integrating multidimensional 
data—including demographic information, laboratory test results, and myocardial biomarker levels—we 
developed an efficient algorithm that can assist clinicians in quickly identifying patients with sepsis at high risk 
for concurrent AMI, provide them with personalized treatment plans, and reduce the risk of misdiagnosis and 
delayed treatment. The findings of this study are anticipated to offer new insights and approaches for managing 
sepsis and lay the groundwork for the future implementation of artificial intelligence and ML in critical care 
medicine.

Methods
Data design and data sources
This was a retrospective cohort study. Using the structured query language, data from patients with sepsis were 
extracted from a single-center publicly available database called the Medical Information Mart for Intensive Care 
IV (MIMIC-IV) database10. The MIMIC-IV database contains clinical data from more than 190,000 patients 
admitted to the Beth Israel Deaconess Medical Center (Boston, MA, USA) from 2008 to 2019 and data from 
450,000 hospitalizations11. The requirement for ethical approval was waived by the Institutional Review Board 
of Dalian Medical University Affiliated Second Hospital because the data were obtained from the MIMIC-IV 
database (a publicly available database). The Institutional Review Board of Dalian Medical University Affiliated 
Second Hospital waived the need for written informed consent due to the retrospective nature of the study. All 
methods were performed in accordance with the appropriate guidelines and regulations.

Participants
When patients were diagnosed with sepsis according to the International Classification of Disease 9th revision 
(ICD-9; 99591, 99592) and ICD-10 (A021, A227, A267, A327, A40, A400, A401, A403, A408, A409, A410, 
A4101, A4102, A411, A412, A413, A415, A4150, A4151, A4152, A4153, A4159, A418, A4181, A4189, A419, 
A427, A5486, B377, R652, R6520, R6521, T8144, 8144XA, T8144XD, and T8144XS) after the first ICU 
admission, patient eligibility was considered. When patients were diagnosed with AMI using the ICD-9 (41000, 
41001, 41002, 41010, 41011, 41012, 41020, 41021, 41022, 41030, 41032, 41040, 41041, 41042, 41050, 41051, 
41052, 41080, 41081, 41082, 41090, 41091, 41092) and ICD-10 (I21, I210, I2101, I2102, I2109, I211, I2111, 
I2119, I212, I2121, I2129, I213, I214, I219, I21A, I21A1, I21A9, I22, I220, I221, I222, I228, I229) after the first 
ICU admission, patient eligibility was considered. The inclusion criteria were (1) age ≥ 18 years and (2) meeting 
the diagnostic criteria for sepsis-312—infection and Sequential Organ Failure Assessment (SOFA) score ≥ 2. The 
exclusion criteria were patients who (1) had a length of ICU or hospital stay less than 24 h; (2) had malignant 
tumors, metastatic solid tumors, or acquired immunodeficiency syndrome; or (3) had pregnancy-related or 
neonatal sepsis.

Data extraction
Patient data from the initial 24  h following admission were retrieved from the MIMIC-IV database. The 
following information was used in this study: (1) demographic features, including sex, age, and ethnicity; (2) 
comorbidities, including congestive heart failure, cerebrovascular disease, chronic pulmonary disease, rheumatic 
disease, renal disease, hypertension, diabetes and liver disease; (3) vital signs, including heart rate, respiratory 
rate, temperature, oxygen saturation, systolic blood pressure, and urine output; (4) scoring systems: SOFA, 
Acute Physiology Score III (APS III), the Logistic Organ Dysfunction System, Glasgow Coma Scale, Charlson 
Comorbidity Index (CCI), Oxford Acute Severity of Illness Score; (5) laboratory parameters, including counts 
of white blood cells, red blood cells, platelets, neutrophils, lymphocytes, and monocytes; levels of hemoglobin, 
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hematocrit, corpuscular hemoglobin, ferritin, total calcium, chloride, sodium, potassium, bicarbonate, 
creatinine, glucose, blood urea nitrogen, alkaline phosphatase, glutamic oxaloacetic transaminase, glutamic 
pyruvic transaminase, total bilirubin, lactate, creatinine kinase, lactate dehydrogenase (LD/LDH), and troponin 
T (cTnT); and the red blood cell distribution width, mean corpuscular hemoglobin concentration, corpuscular 
volume, anion gap, international normalized ratio (INR), prothrombin time (PT), partial thromboplastin time 
(PTT), pH-value, arterial partial pressure of oxygen (PO2), arterial partial pressure of carbon dioxide, and 
base excess; (6) therapeutic and clinical management, including norepinephrine, dobutamine, dopamine and 
mechanical ventilation use. All the laboratory test and vital sign data were extracted from the data generated 
within the first 24 h after admission to the ICU, and their averages were taken. For the scoring systems, only 
initial test values were analyzed. Since this was an epidemiological study based on hypotheses, no attempt was 
made to estimate sample size. Instead, all eligible patients in the MIMIC-IV database were enrolled to achieve 
maximized statistical power.

To minimize biases caused by missing data, variables with more than 20% of their values missing were 
excluded from the final cohort. Simultaneously, the multiple imputation (MI) method was used to impute 
missing values for other variables. MI is an excellent and widely used method for handling missing values in 
medical research13. MI can be used to estimate each missing value using several plausible values. This process 
considers the uncertainty behind the missing values and generates multiple datasets from which the parameters 
of interest can be estimated14. Considering the uncertainty in estimating missing values, combining these 
coefficients provides an effective estimate of the coefficients. The variance of the coefficients estimated using MI 
is more likely to be underestimated than when estimated using single imputation15.

Statistical analysis
Continuous variables are expressed as medians with interquartile ranges due to the non-normal distribution of 
the data. Differences between groups were compared using the Wilcoxon rank-sum test. Categorical variables 
are presented as frequencies and percentages. Given the large sample size, the Chi-squared test was used to 
compare group differences.

Feature selection is a critical step in model development. In this study, the Boruta algorithm was applied 
to identify significant features. The Boruta algorithm compares the Z-scores of the original features with the 
maximum Z-score of the shadow features to determine which features are significantly more important than 
the shadow features16. For each iteration, a random seed of 77 was set, and a maximum of 800 iterations were 
performed. The Boruta algorithm generates shadow features by randomly shuffling the original data, which 
reduces the risk of overfitting and enhances the stability of feature selection. Compared to single Random Forest 
(RF) feature selection methods, the Boruta algorithm is more robust, reducing misleading results caused by 
random fluctuations and feature correlations17.

After feature selection, six ML algorithms were used to build predictive models: logistic regression (LR), 
k-nearest neighbors (KNN), support vector classifier (SVC), decision tree (DT), RF, and Gradient Boosting 
Classifier (GBC). Hyperparameter tuning was performed using 10-fold cross-validation and GridSearchCV. 
Cross-validation divided the data into 10 folds, using each fold as a validation set, while the remaining 9 folds 
were used for training. This ensured robust model evaluation, checking its generalizability across different subsets 
of the data. Grid search was employed to optimize hyperparameters (e.g., regularization parameters, learning 
rates, tree depths) for each algorithm, identifying the best combination. The model with the highest area under 
the receiver operating characteristic curve (AUC) was selected as the optimal model for each algorithm. We also 
compared the performance of the optimal ML models with traditional scoring systems, including SOFA, APS 
III, Logistic Organ Dysfunction System, CCI, and Oxford Acute Severity of Illness Scores, which are commonly 
used to predict disease severity and prognosis in patients with critical illness.

The performance of the models was evaluated in terms of discrimination, calibration, and clinical applicability. 
Discriminatory ability was quantified using multiple metrics, including the AUC, F1 score, recall, precision, 
accuracy, the Highest-J-Value of Youden’s index18,19, and the best threshold. To enhance the robustness of the 
performance evaluation, bootstrapping was applied to estimate the precision error. The dataset was randomly 
split into 10 folds, with training and validation performed on each fold. This process was repeated 10 times to 
ensure that model evaluation was not dependent on any single training or validation set. The model with the 
best performance was then subjected to bootstrapping to estimate error in test accuracy. Confidence intervals for 
bootstrapping results were derived from 1000 resamples, providing 95% confidence intervals (2.5% and 97.5% 
percentiles) for the AUC, F1 score, recall, and other metrics. This approach helps assess the stability of model 
performance. Decision curve analysis was used to evaluate the clinical applicability of the model20. SHapley 
Additive exPlanations (SHAP) technique for model interpretability in machine learning revealed the top 10 
features had the greatest impact on the GBC model’s predictions21. All statistical analyses were performed using 
R version 4.2.3, with statistical significance set at P < 0.05. Model training and evaluation were conducted using 
the Python scikit-learn package.

Results
Baseline characteristics
In total, 12,616 patients were diagnosed with sepsis at admission. Additionally, 10,513 patients were excluded 
based on the exclusion criteria (Fig. 1). Ultimately, 2,103 patients were included in our analysis, 459 of whom 
had AMI.

Table  1 shows the baseline differences between patients with and without AMI. Patients with sepsis 
complicated by AMI were more likely to be of Caucasian descent and had higher rates of congestive heart 
failure, diabetes, and cerebrovascular and renal diseases, as well as more frequent use of norepinephrine and 
dobutamine (P < 0.05). Patients with AMI showed significantly higher values for several biomarkers, including 
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creatinine kinase, LD/LDH, cTnT, neutrophil and monocyte counts, calcium, potassium, anion gap, glucose, 
glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and PTT (P < 0.05). Patients with sepsis 
complicated by AMI exhibited higher Glasgow Coma Scale and CCI scores but lower APS III scores (P < 0.05). 
Other key differences included lower heart rate, red blood cell distribution width, hemoglobin, mean corpuscular 
hemoglobin concentration, chloride, bicarbonate, total bilirubin, INR, PT, and PO2 levels in patients with AMI 
than in those without AMI (P < 0.05).

Feature selection
Using the Boruta algorithm, 26 variables most associated with AMI were identified (Fig. 2). Notable features 
included cTnT, PO2, CCI, LD/LDH, PT, hemoglobin, chloride, monocyte count, INR, and hematocrit.

Overall discriminative power of all models
Receiver operating characteristic curves illustrated the performance of 11 models for predicting AMI in patients 
with sepsis (Fig. 3). The GBC model achieved the highest predictive accuracy (AUC = 0.838), outperforming 
logistic regression (AUC = 0.737), support vector classifier (AUC = 0.729), and other models. Performance 
metrics for the eleven ML models are shown in Table 2. The GBC model achieved the highest accuracy (0.77), 
recall (0.79), F1 score (0.76), Highest-J-Value (0.53) and best threshold (0.21), while the decision tree model 
performed the worst.

Recall and decision boundary
Figure 4 displays recall rates for the GBC model across decision boundaries. At T = 0.5, the recall for patients 
with AMI was 0.25. Adjusting to T = 0.77, the recall for patients with and without AMI was balanced at 0.75, 
improving identification of AMI with a minor (19%) reduction in recall for patients without AMI. Recall rates 
for each model at different thresholds are shown in Fig. 5.

Testing error
Figure 6 shows ROC curves for the GBC model based on bootstrapped samples (N = 1000), with an average AUC 
of 0.799 and 95% confidence interval from 0.771 to 0.824, indicating a stable classification performance.

Decision curve analysis
Decision curve analysis (Fig. 7) confirmed the GBC model’s clinical utility within thresholds from 0.1 to 0.9, 
indicating a net benefit for AMI prediction over models that intervene for all or no patients.

Fig. 1. Flowchart of patient selection. MIMIC-IV medical information mort for intensive care, ICU intensive 
care unit.
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Characteristics Sepsis (n = 2103) Non-AMI (n = 1644) AMI (n = 459) P value

Sex n (%) 0.915

 Female 898 (42.70%) 701 (42.64%) 197 (42.92%)

 Male 1205 (57.30%) 943 (57.36%) 262 (57.08%)

Age (years) 72.00 (61.00, 83.00) 72.00 (61.00, 83.00) 72.00 (63.50, 83.00) 0.121

Race, n (%) 0.009

 Black 220 (10.46%) 175 (10.64%) 45 (9.80%)

 White 1335 (63.48%) 1053 (64.05%) 282 (61.44%)

 Unknown 348 (16.55%) 250 (15.21%) 98 (21.35%)

 Other 200 (9.51%) 166 (10.10%) 34 (7.41%)

Hospital expire flag, n (%) 0.571

 Death 1485 (70.61%) 1156 (70.32%) 329 (71.68%)

 Live 618 (29.39%) 488 (29.68%) 130 (28.32%)

Mechanical ventilation, n (%) 0.223

 No 887 (42.18%) 682 (41.48%) 205 (44.66%)

 Yes 1216 (57.82%) 962 (58.52%) 254 (55.34%)

Congestive heart failure, n (%) < 0.001

 No 1061 (50.45%) 882 (53.65%) 179 (39.00%)

 Yes 1042 (49.55%) 762 (46.35%) 280 (61.00%)

Cerebrovascular disease, n (%) 0.049

 No 1784 (84.83%) 1408 (85.64%) 376 (81.92%)

 Yes 319 (15.17%) 236 (14.36%) 83 (18.08%)

Chronic pulmonary disease, n (%) 0.037

 No 1456 (69.23%) 1120 (68.13%) 336 (73.20%)

 Yes 647 (30.77%) 524 (31.87%) 123 (26.80%)

Rheumatic disease, n (%) 0.771

 No 2003 (95.24%) 1567 (95.32%) 436 (94.99%)

 Yes 100 (4.76%) 77 (4.68%) 23 (5.01%)

Liver disease, n (%) < 0.001

 No 1651 (78.51%) 1263 (76.82%) 388 (84.53%)

 Yes 452 (21.49%) 381 (23.18%) 71 (15.47%)

Diabetes, n (%) 0.019

 No 1250 (59.44%) 999 (60.77%) 251 (54.68%)

 Yes 853 (40.56%) 645 (39.23%) 208 (45.32%)

Renal disease, n (%) 0.001

 No 1351 (64.24%) 1085 (66.00%) 266 (57.95%)

 Yes 752 (35.76%) 559 (34.00%) 193 (42.05%)

Hypertension, n (%) 0.357

 No 1078 (51.26%) 834 (50.73%) 244 (53.16%)

 Yes 1025 (48.74%) 810 (49.27%) 215 (46.84%)

Norepinephrine, n (%) 0.027

 No 662 (31.48) 537 (32.66) 125 (27.23)

 Yes 1441 (68.52) 1107 (67.34) 334 (72.77)

Dobutamine, n (%) < 0.001

 No 1948 (92.63%) 1542 (93.80%) 406 (88.45%)

 Yes 155 (7.37%) 102 (6.20%) 53 (11.55%)

Dopamine, n (%) 0.964

 No 1898 (90.25%) 1484 (90.27%) 414 (90.20%)

 Yes 205 (9.75%) 160 (9.73%) 45 (9.80%)

SOFA, M (Q1, Q3) 4.00 (3.00, 6.00) 4.00 (3.00, 6.00) 4.00 (3.00, 5.00) 0.173

APS III, M (Q1, Q3) 62.00 (48.00, 78.00) 63.00 (49.00, 78.00) 59.00 (46.00, 75.00) 0.002

LODS, M (Q1, Q3) 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 0.291

OASIS, M (Q1, Q3) 38.00 (32.00, 44.00) 38.00 (32.00, 44.00) 38.00 (32.00, 44.00) 0.235

GCS, M (Q1, Q3) 15.00 (13.00, 15.00) 15.00 (13.00, 15.00) 15.00 (13.50, 15.00) 0.047

CCI, M (Q1, Q3) 6.00 (4.00, 8.00) 6.00 (4.00, 7.00) 7.00 (5.00, 8.00) < 0.001

Urine output (ml) 1082.00 (550.00, 1915.00) 1079.00 (540.00, 1892.00) 1082.00 (587.50, 1985.00) 0.459

Heart rate_mean (beats/min) 89.31 (77.28, 101.33) 90.00 (77.54, 102.24) 86.65 (76.09, 98.70) 0.016

Continued
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Characteristics Sepsis (n = 2103) Non-AMI (n = 1644) AMI (n = 459) P value

SBP_mean (mmHg) 109.48 (102.33, 118.78) 109.37 (102.37, 118.84) 109.68 (102.01, 118.50) 0.812

Respiratory rate_mean (breaths/min) 20.83 (18.05, 24.05) 20.83 (18.11, 24.04) 20.77 (17.81, 24.09) 0.759

Temperature_mean (℃) 36.90 (36.60, 37.30) 36.90 (36.50, 37.30) 36.90 (36.60, 37.20) 0.408

SpO2_mean (%) 97.04 (95.58, 98.40) 97.04 (95.58, 98.42) 97.03 (95.56, 98.29) 0.774

WBC_mean (K/uL) 12.11 (9.22, 15.89) 11.97 (9.18, 15.77) 12.38 (9.46, 16.59) 0.128

RBC_mean (m/uL) 3.14 (2.85, 3.57) 3.16 (2.87, 3.57) 3.10 (2.81, 3.54) 0.050

RDW_mean (%) 15.84 (14.66, 17.52) 15.91 (14.72, 17.60) 15.65 (14.38, 17.29) 0.018

Hemoglobin_mean (g/dL) 9.35 (8.52, 10.49) 9.41 (8.58, 10.52) 9.17 (8.33, 10.41) 0.004

Hematocrit_mean (%) 28.72 (26.42, 32.30) 28.77 (26.50, 32.38) 28.43 (26.10, 32.17) 0.145

MCH_mean (pg) 30.08 (28.62, 31.33) 30.15 (28.65, 31.37) 29.87 (28.55, 31.19) 0.174

MCHC_mean (%) 32.49 (31.55, 33.38) 32.57 (31.58, 33.45) 32.25 (31.41, 33.12) < 0.001

MCV_mean (fl.) 92.00 (88.26, 96.50) 91.90 (88.16, 96.59) 92.51 (88.69, 96.27) 0.428

Platelet_mean (K/uL) 199.33 (132.00, 273.79) 199.25 (130.53, 278.31) 201.11 (137.79, 256.92) 0.392

FER_mean (mmol/L) 1.89 (1.35, 2.73) 1.86 (1.33, 2.70) 1.95 (1.40, 2.77) 0.068

Neutrophils_mean (%) 81.50 (74.80, 86.40) 81.20 (74.41, 86.30) 82.08 (76.16, 86.82) 0.034

Lymphocytes_mean (%) 8.27 (5.25, 12.69) 8.36 (5.30, 12.90) 7.95 (5.07, 12.01) 0.156

Monocytes_mean (%) 5.05 (3.57, 7.20) 5.00 (3.35, 7.00) 5.97 (4.00, 8.00) < 0.001

Toall calcium_mean (mg/dl) 8.21 (7.86, 8.62) 8.19 (7.85, 8.61) 8.28 (7.92, 8.64) 0.030

Chloride_mean (mEq/l) 103.84 (99.92, 107.57) 104.12 (100.25, 107.87) 102.82 (99.03, 105.93) < 0.001

Sodium_mean (mEq/l) 139.36 (136.84, 142.02) 139.39 (136.90, 142.00) 139.30 (136.69, 142.19) 0.895

Potassium_mean (mEq/l) 4.09 (3.88, 4.35) 4.08 (3.86, 4.33) 4.14 (3.93, 4.40) < 0.001

Bicarbonate_mean (mEq/L) 23.50 (20.92, 26.10) 23.57 (21.00, 26.23) 23.05 (20.56, 25.53) 0.020

Anion gap_mean (mEq/L) 14.64 (12.78, 17.13) 14.50 (12.62, 17.00) 15.19 (13.25, 17.69) < 0.001

Creatinine_mean (mg/dl) 1.52 (1.01, 2.48) 1.51 (0.99, 2.48) 1.55 (1.03, 2.48) 0.408

Glucose_mean (mg/dl) 132.57 (114.03, 165.12) 131.62 (113.36, 160.69) 139.00 (115.58, 182.75) < 0.001

BUN_mean (mg/dl) 34.08 (22.28, 50.77) 33.65 (22.00, 50.68) 35.26 (23.21, 51.88) 0.193

ALP_mean (IU/L) 100.80 (73.00, 150.25) 101.80 (73.00, 153.54) 99.50 (74.25, 140.23) 0.330

ALT_mean (IU/L) 38.00 (19.50, 97.80) 36.67 (19.00, 91.50) 42.00 (23.06, 124.60) 0.004

AST_mean (IU/L) 53.50 (29.90, 129.67) 52.00 (29.00, 124.09) 60.00 (33.00, 147.83) 0.011

Total bilirubin_mean (mg/dl) 0.72 (0.40, 1.67) 0.75 (0.40, 1.80) 0.65 (0.40, 1.28) 0.007

INR_mean 1.40 (1.23, 1.79) 1.41 (1.23, 1.80) 1.38 (1.20, 1.72) 0.033

PT_mean (s) 15.47 (13.66, 19.29) 15.57 (13.75, 19.39) 15.08 (13.23, 18.73) 0.004

PTT_mean (s) 39.66 (31.44, 54.94) 38.82 (31.36, 52.88) 43.14 (31.98, 60.38) < 0.001

PH_mean 7.37 (7.33, 7.41) 7.37 (7.33, 7.41) 7.37 (7.32, 7.41) 0.436

PO2_mean (mmHg) 96.00 (72.03, 120.96) 98.38 (76.33, 122.60) 86.11 (59.33, 112.41) < 0.001

PCO2_mean (mmHg) 39.71 (35.31, 45.00) 39.67 (35.30, 45.00) 39.88 (35.38, 44.53) 0.861

Lactate_mean (mmol/l) 2.05 (1.43, 2.69) 2.05 (1.41, 2.65) 2.08 (1.50, 2.72) 0.167

Base excess_mean (mEq/L) -1.56 (-4.50, 0.53) -1.51 (-4.50, 0.70) -1.73 (-4.35, 0.33) 0.363

CK/CPK_mean (IU/L) 181.75 (62.83, 564.20) 159.40 (57.46, 512.00) 270.25 (82.25, 747.33) < 0.001

LD/LDH_mean (IU/L) 318.67 (243.12, 473.35) 309.25 (234.23, 447.00) 365.33 (271.30, 547.03) < 0.001

cTnT_mean (ng/mL) 0.10 (0.04, 0.33) 0.07 (0.03, 0.22) 0.29 (0.09, 1.19) < 0.001

Table 1. Baseline characteristics of patients with sepsis, with and without AMI. Z: Mann–Whitney test, χ²: chi-
square test; M: median, Q₁: 1st quartile, Q₃: 3rd quartile. AMI acute myocardial infarction, SOFA Sequential 
Organ Failure Assessment, APS III Acute Physiology Score III, LODS Logistic Organ Dysfunction System, 
OASIS Oxford Acute Severity of Illness Scale, GCS Glasgow Coma Scale, CCI Charlson Comorbidity Index, 
SBP systolic blood pressure, SpO2 oxygen saturation, WBC white blood cell, RBC red blood cell, RDW red 
blood cell distribution width, MHC corpuscular hemoglobin, MCHC corpuscular hemoglobin concentration, 
MCV corpuscular volume, FER ferritin, BUN blood urea nitrogen, ALP alkaline phosphatase, ALT glutamic 
pyruvic transaminase, AST glutamic oxaloacetic transaminase, INR international normalized ratio, PT 
prothrombin time, PTT partial thromboplastin time, PH pH-value, PO2 arterial partial pressure of oxygen, 
PCO2 arterial partial pressure of carbon dioxide, CK/CPK creatine kinase, lactate base excess, LD/LDH lactate 
dehydrogenase, cTnT troponin T.
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Fig. 3. Receiver operating characteristic curves of the eleven models. Figure (a) Includes 6 machine models; 
Figure (b) includes five traditional scoring systems. LR logistic regression, KNN k-nearest neighbors, 
RF random forest, GBC gradient boosting classifier, SVC support vector, DT decision tree, APS III acute 
physiology score III, LODS logistic organ dysfunction system, CCI Charlson comorbidity index, SOFA 
sequential organ failure assessment, OASIS Oxford acute severity of illness scale, AUC area under the curve.

 

Fig. 2. Feature selection based on the Boruta algorithm. The horizontal axis represents all variables, and the 
vertical axis represents the Z value of each variable. The box plot shows the Z values of each variable during 
model calculation. The green boxes represent the first 26 important variables, the yellow boxes represent 
tentative attributes, and the red boxes represent unimportant variables.
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Feature importance in the GBC model
The most significant features in the GBC model were cTnT, PO2, monocyte counts, CCI, creatinine, LD/LDH, 
PT, bicarbonate, PTT, and hemoglobin, as shown in Fig. 8.

Discussion
This study is the first to utilize the MIMIC-IV database to establish an ML-based model to explore the prediction 
of AMI in patients with sepsis. We found that the GBC model demonstrated superior predictive performance in 
identifying patients with sepsis and concurrent AMI, achieving an AUC of 0.838, which was significantly higher 
than other ML models (such as logistic regression, support vector machines, etc.) (Fig. 3; Table 2). These results 
suggest that ML, particularly the GBC model, can be used ot effectively identify the risk of AMI in patients 
with sepsis, offering high clinical value. Important features selected by Boruta algorithm include cTnT, PO2, 
monocyte count, CCI, creatinine, LD/LDH, PT, bicarbonate, PTT, and hemoglobin (Fig. 2). These biomarkers 
and clinical characteristics are closely associated with the occurrence of AMI in sepsis, providing key insights for 
early diagnosis and intervention of this condition22,23.

Sepsis and AMI are the leading causes of death in intensive care units (ICUs), and sepsis has been shown to 
exacerbate the occurrence of AMI24. In our study, the mortality rate for patients with sepsis and concurrent AMI 
was 71.7%. A retrospective cohort study conducted in the United States over more than 15 years demonstrated 
that patients with sepsis and AMI had a higher in-hospital mortality rate23. The results of the SHOCK trial 
further confirmed a high mortality risk for patients with sepsis with AMI25. Shah et al. also verified that, among 
patients with sepsis, those with AMI had a significantly higher in-hospital mortality rate than those with demand 

Fig. 4. Recall vs. decision boundary T curves for sepsis patients with acute myocardial infarction (AMI) and 
non-AMI patients for the top performing model, the gradient boosting classifier. At the default classification 
of T = 0.5 (middle dotted line), the recall rate was 0.94 for non-AMI patients and 0.25 for AMI patients. For 
T = 0.77 (right dotted line), the recall rates for non-AMI and AMI patients were both 0.75, representing a large 
improvement in identifying AMI patients, with only a small decrease in the recall rate (19%) for non-AMI 
patients.

 

Models AUC F1 score Recall Precision Accuracy Highest J value Best threshold

LR 0.737 0.70 0.77 0.72 0.72 0.37 0.23

KNN 0.530 0.66 0.76 0.63 0.70 0.12 0.35

RF 0.596 0.66 0.76 0.58 0.55 0.19 0.34

GBC 0.838 0.76 0.79 0.77 0.77 0.53 0.21

SVC 0.729 0.71 0.77 0.73 0.72 0.41 0.20

DT 0.500 0.66 0.76 0.58 0.22 0.00 0.00

SOFA 0.514 0.14 0.25 0.63 0.33 0.06 0.20

APS III 0.500 0.18 0.27 0.62 0.47 0.08 0.18

LODS 0.510 0.15 0.26 0.66 0.32 0.07 0.27

OASIS 0.496 0.14 0.26 0.67 0.45 0.08 0.27

CCI 0.642 0.24 0.27 0.71 0.55 0.23 0.24

Table 2. Model performance metrics. LR logistic regression, KNN k-nearest neighbors, RF random forest, 
GBC gradient boosting classifier, SVC support vector, DT decision tree.
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ischemia (48.3% vs. 28.5%)6. In another large cohort study, Dalager-Pedersen et al. reported that, compared to 
other hospitalized patients, those with community-acquired bacteremia had an increased risk of developing 
AMI and stroke26. Given the high mortality rate associated with sepsis with concurrent AMI, timely prediction 
and intervention are expected to improve clinical outcomes. Unfortunately, it is often difficult for clinicians to 
identify patients with sepsis and concurrent AMI in the ICU. Therefore, establishing and implementing reliable 
predictive models to identify these patients and provide timely, effective interventions to improve their prognosis 
is of significant importance.

There is a pathophysiological link between sepsis and AMI, and patients with both conditions typically have 
a higher mortality rate27. In our study, using the SHAP model for interpretation, we identified five key predictive 
factors: cTnT, PO2, monocyte count, CCI, and creatinine (Fig.  8). In patients with sepsis, an imbalance in 
myocardial oxygen supply and demand occurs, leading to reduced coronary perfusion and increased myocardial 
oxygen consumption. When hypoxia is reversed and oxygen is administered (reperfusion), the excessive 
production of superoxide radicals and other free radicals exacerbates the hypoxia, resulting in myocardial 
cell injury and apoptosis, which increases the risk of AMI28–31. Therefore, cTnT and PO2 serve as effective 
predictive factors. The systemic immune-inflammatory response in sepsis activates monocytes, promoting a 
“cytokine storm” and intensifying the accumulation of lipids and immune cells in the vascular endothelium, 
thereby increasing the risk of AMI32,33. Additionally, patients with sepsis and AMI typically have higher CCI 
scores, which are closely associated with the prognosis of both sepsis and AMI, supporting their use in disease 

Fig. 5. Recall vs. decision boundary curves for AMI patients and non-AMI patients according to all 11 ML 
models. Figure (a) includes 6 machine models; Fig. (b) includes five traditional scoring systems. The gradient 
boosting classifier model performed the best. The metrics are shown in Table 2.
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prognosis evaluation34,35. Moreover, sepsis often leads to renal failure, and elevated creatinine levels indicate 
impaired renal excretion, activating the renin–angiotensin–aldosterone system, which causes vasoconstriction 
and increased blood pressure, further aggravating coronary insufficiency and ultimately raising the risk of 
AMI36. Therefore, factors such as cTnT, PO2, the monocyte count, CCI, and creatinine play crucial roles in 
predicting sepsis complicated by AMI, helping clinicians to identify and intervene earlier to improve prognoses.

The GBC model has demonstrated consistent performance in predicting sepsis-associated kidney injury16, 
diagnosing sepsis37, and predicting the 30-d mortality rate in patients with sepsis38. However, there remains a 
considerable research gap regarding the predictive efficacy, model stability, and clinical utility of the GBC model 
specifically in sepsis complicated by AMI, with insufficient evidence to substantiate its advantage in this area. 
Although the GBC model has shown promise in some clinical applications, it is not always the optimal choice. For 

Fig. 7. Decision curve analyses of the six models.

 

Fig. 6. ROC curve for the gradient boosting classifier. The 2-standard deviation spread representing the testing 
performance for models trained on Nboot bootstrapped samples is also plotted.
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instance, a study by Zhu et al.39, the RF model was most effective in predicting in-hospital mortality for patients 
with sepsis, demonstrating greater net benefit and better threshold probability compared to other models. Misra 
et al.’s study7 further showed that the RF model performed best in the early identification of patients with septic 
shock, achieving a sensitivity of 83.9% and specificity of 88.1%. In terms of predicting adverse cardiovascular 
events, Xiao et al. also reported that the RF model outperformed others and was considered the best predictive 
tool for patients with AMI8. Cai et al. found that the RF model was the top-performing model among six ML 
models for predicting the risk of acute kidney injury in patients with AMI9. These findings suggest that, while 
the GBC model performs well in some applications, the RF model consistently demonstrates stronger predictive 
capabilities across various clinical scenarios. Future studies should consider incorporating additional predictive 
factors to further optimize model stability and predictive accuracy.

Sepsis is a severe life-threatening condition that often leads to multiple organ failure and, in particular, 
cardiovascular dysfunction, which significantly impacts patient morbidity and mortality3. Sepsis-induced 
cardiomyopathy and septic cardiogenic shock are key cardiac complications contributing to poor outcomes, 
especially in the ICU, where predicting these complications is crucial for improving prognosis40. Although 
previous studies have explored various predictive factors, including biomarkers, hemodynamic parameters, and 
clinical indicators, the dynamic and heterogeneous nature of sepsis still poses challenges for accurate prediction41. 
In recent years, ML models, especially those incorporating feature selection methods42, have shown potential 
for improving mortality prediction accuracy in the ICU setting. By identifying robust predictive factors such 
as organ dysfunction (PT, INR, creatinine, etc.)43, hemodynamic instability, and inflammatory markers (cTnT, 
WBC, PCT, IL-6, TNF-α, etc.)44, ML methods can help provide more information for individual-level mortality 
prediction and analyzing regional mortality differences, supporting targeted quality improvement initiatives. 
Furthermore, precise risk stratification not only helps predict the risk of AMI in patients with sepsis but also 
improves clinical strategies. Early identification of patients with high risk, particularly in regions with high sepsis 
mortality, may significantly improve outcomes45. Imaging data, especially functional connectivity data, have also 
recently been recognized as important for predicting cardiac events (such as AMI) triggered by sepsis. Since 
these cardiac events often accompany subtle physiological changes that traditional clinical assessment methods 
may miss, imaging techniques provide additional biomarkers to monitor cardiovascular changes during sepsis. 
Combining clinical features with imaging data enhances the predictive ability of ML models, offering more 
precise tools for the early detection of sepsis-related cardiac events46. Moreover, deep learning models based on 
attention mechanisms have shown great potential for real-time monitoring of clinical events, particularly during 
critical moments like when patients have elevated cardiac biomarkers and “cytokine storms,” which typically 
require urgent intervention47. By focusing on key moments in a patient’s clinical trajectory, attention-based 
models may significantly improve the prediction of sepsis-related cardiac events, especially in detecting early 
signs of deterioration that traditional monitoring methods may overlook. In the future, integrating traditional 
ML methods with imaging technologies to develop more efficient and interpretable predictive models will help 
improve outcomes for patients.

This study had several limitations. First, its retrospective and observational nature may have introduced 
unavoidable selection bias. Second, the data from MIMIC-IV are sourced from a single center in the United 

Fig. 8. Feature importance derived from the gradient boosting classifier model. SHAP revealed the top 10 
features that had the greatest impact on the GBC model predictions.
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States, which may limit the generalizability of the predictive model to other populations. Therefore, further 
research with larger sample sizes and external validation from multiple centers is needed to apply and validate 
the model. Third, our study primarily focused on clinical features, but incorporating imaging data could further 
enhance the predictive power of the ML model.

Conclusions
In conclusion, this study provides evidence to support the application of ML in predicting AMI in patients with 
sepsis. By identifying key clinical predictive factors and integrating them into an ML framework, we developed 
a GBC predictive model that may assist clinicians in identifying patients with high risk of AMI earlier and more 
accurately. This could lead to earlier intervention strategies and more personalized treatment plans, thereby 
improving patient outcomes. Our research also highlights the broader implications of sepsis-related mortality 
and the potential of attention-based deep learning models to enhance predictive accuracy. In the future, 
integrating multimodal data, including clinical, hemodynamic, and imaging data, into a unified ML framework 
may represent the next frontier in improving the prediction and management of sepsis-related complications. 
Further validation and refinement of these models in different clinical settings are crucial to establishing their 
practical applications and optimizing patient care outcomes.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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