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ABSTRACT

Stroke is a major cause of death and disability worldwide,
with the majority of cases resulting from ischemic events
due to arterial occlusion. Current therapeutic approaches
focus on rapid reperfusion through intravenous
thrombolysis and intravascular thrombectomy. Although
these interventions can mitigate long-term disability,
reperfusion itself may induce neuronal injury. The exact
mechanisms underlying neuronal damage following
cerebral ischemia have yet to be reported. Recent
research suggests that ferroptosis may play a significant
role in post-ischemic neuronal death, which can be
targeted to prevent neuronal loss. This review explores the
three essential hallmarks of ferroptosis: the presence of
redox-active iron, the peroxidation of polyunsaturated fatty
acid-containing phospholipids, and the loss of lipid
peroxide repair capacity. The involvement of ferroptosis in
neuronal injury following ischemic stroke is also explored,
along with an overview of ferroptosis-associated changes
in different ischemic stroke animal models. Furthermore,
recent therapeutic interventions targeting the ferroptosis
pathway, as well as the opportunities, difficulties, and
future directions of ferroptosis-targeted therapies in
ischemic stroke, are discussed.
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INTRODUCTION

Stroke is the second leading cause of death and third leading
cause of disability among adults worldwide (Campbell &
Khatri, 2020), affecting approximately 15 million people each
year (GBD 2019 Stroke Collaborators, 2021). Strokes are
classified as ischemic or hemorrhagic, with ischemic stroke
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resulting from the obstruction of cerebral blood vessels,
restricting blood flow to the brain. Ischemic stroke accounts for
approximately 71% of all strokes globally (Campbell et al.,
2019). Given the restrictions of obtaining brain tissue from
ischemic stroke patients, various experimental models,
including cell lines, tissue cultures, and animal models, have
been developed to study ischemic neuronal injury. These
models allow differentiation based on the size of the ischemic
region (focal or global), duration of ischemic event (transient
or permanent), degree of blood flow decline, and extent of
oxygen and glucose deficiency (Lipton, 1999). In addition, the
complex architecture of the cerebral vasculature leads to
differences in the incidence and severity of ischemic events
across brain regions, influencing susceptibility to ischemic
stroke (Tuo etal.,, 2022b). Clarifying the pathological
mechanisms underlying ischemic stroke is essential for
developing preventative strategies and identifying effective
therapeutic targets.

Ferroptosis is a distinct form of regulated cell death,
mediated by iron-dependent lipid peroxidation and
characterized by the accumulation of toxic lipid reactive
oxygen species (ROS) (Fearnhead etal., 2017). Unlike the
three main types of programmed cell death, namely apoptosis,
necroptosis, and pyroptosis, no specific regulatory genes or
proteins have been identified for ferroptosis. Additionally, it
does not involve the formation of proactive signaling
complexes such as apoptosomes, necrosomes, or
inflammasomes, which are critical for the initiation of
apoptosis, necroptosis, and pyroptosis, respectively (Berndt
etal.,, 2024). The discovery of ferroptosis emerged from
research conducted by the Stockwell laboratory in 2012,
where small molecule compounds erastin and RSL3 were
identified during anti-cancer drug screening. Notably, the
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morphological features of cell death induced by these
compounds were distinct from any previously recognized form
of cell death. Furthermore, it was observed that the lethality of
erastin and RSL3 could be inhibited by iron chelators,
indicating that their effects were contingent upon iron
availability. Consequently, this mode of cell death was defined
as ferroptosis, with subsequent investigations identifying lipid
peroxide accumulation as a critical executor of this process
(Dixon et al., 2012). The initiation and execution of ferroptosis
are intricately linked to iron metabolism, lipid metabolism, and
lipid peroxidation. Ferroptosis has also been implicated in
various diseases, particularly neurological disorders (Luogian
etal., 2022; Tang etal., 2023; Tuo etal., 2022a; Yan et al.,
2021). Thus, ferroptosis represents a highly adaptable form of
cell death, regulated by many functional metabolites and
proteins (Dixon & Pratt, 2023).

Lipids and their intermediates are important components of
brain structure and function. Lipid abundance in the brain is
second only to adipose tissue, accounting for 50% of dry
weight (Yoon et al., 2022). However, unlike adipose tissue, the
brain primarily utilizes acylated lipids for the synthesis of
phospholipids, which are integral components of cellular
membranes (Manni et al., 2018). Given the high oxygen and
energy demands of the brain, it is extremely sensitive to
ischemic and hypoxic conditions (Lee et al., 2000; Li et al.,
2023; Yan etal., 2020). Experimental models of cerebral
ischemia have demonstrated a marked increase in iron
accumulation within brain tissue (Tuo et al., 2017), along with
elevated levels of arachidonic acid (AA) released from
phospholipids and disrupted lipid metabolism (Tuo et al.,
2022a). These models have also revealed a decline in lipid
peroxidation repair ability, largely due to excessive
consumption of glutathione peroxidase 4 (GPx4), a critical
antioxidant enzyme (Tuo etal, 2021a). Ultimately, the
convergence of these factors —elevated iron levels, lipid
dysregulation, and impaired lipid peroxide detoxification—may
trigger ferroptosis in neurons following ischemic stroke
(Figure 1).

Ferroptosis-specific inhibitors, such as ferrostatin-1 and
liproxstatin-1, have exhibited efficacy in reversing neuronal
damage in animal models of ischemic stroke (Fang etal,
2021; Li et al., 2021, 2024; Liang et al., 2022; Liu et al., 2023;
Tuo et al., 2017; Yang et al., 2021). Furthermore, inhibition of
acyl-CoA synthetase long-chain family member 4 (ACSL4), a
key enzyme in lipid metabolism, has been shown to improve
neurological outcomes in mouse models of ischemic stroke
(Chen etal, 2021b; Cui etal., 2021; Tuo etal., 2022a).
Selenium-containing compounds have been reported to
reduce cerebral infarct volume by enhancing GPx4 expression
and inhibiting ferroptosis (Alim et al., 2019; Tuo et al., 2021a).
These findings suggest that ferroptosis may be a critical
signaling pathway driving neuronal death following ischemic
stroke.

This review aims to provide a comprehensive summary of
the role and molecular mechanisms of ferroptosis in ischemic
neuronal injury, evaluate the changes in ferroptosis observed
in different ischemic stroke models, and discuss recent
therapeutic interventions targeting ferroptosis. The insights
gathered may pave the way for novel approaches to
understanding the pathological mechanisms of ischemic
stroke and developing targeted pharmacological treatments.
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MOLECULAR MECHANISMS OF FERROPTOSIS AND ITS
ROLE IN ISCHEMIC STROKE

Iron deposition

Iron plays a central role in ferroptosis, particularly through its
involvement in lipid peroxidation. Free iron or iron-containing
lipoxygenase (LOX) is responsible for oxidizing
polyunsaturated fatty acid-containing phospholipids (PL-
PUFAs), leading to the generation of lipid ROS and further
inducing lipid peroxidation (Figure 2). This process is pivotal in
ferroptotic cell death (Jiao et al., 2022; Yan et al., 2021, 2024).
Thus, the availability of sufficient free iron and PL-PUFAs
within cells is an essential prerequisite for the initiation of
ferroptosis, and both iron transport mechanisms and
intracellular iron storage can affect ferroptosis sensitivity.

Clinical research has demonstrated that elevated levels of
ferritin, the protein responsible for iron storage, in plasma and
cerebrospinal fluid are associated with early neurological
deterioration following ischemic stroke. Increased systemic
iron storage exacerbates stroke progression, leading to poorer
clinical outcomes (Carbonell & Rama, 2007; Davalos et al.,
2000; Millan etal., 2007). T,-weighted magnetic resonance
imaging (MRI) studies have also revealed increased iron
deposition in the basal ganglia, thalami, and white matter of
children following severe ischemic-anoxic events (Dietrich &
Bradley, 1988). This accumulation may result from disruptions
in axonal iron transportation after anoxic-ischemic injury,
causing iron uptake in regions such as the basal ganglia and
white matter. Furthermore, iron deposition may increase under
direct damage from iron-catalyzed lipid peroxidation
degradation products (Dietrich & Bradley, 1988). Animal
experiments support these findings, indicating that cerebral
ischemia alters brain iron metabolism, leading to iron
deposition, lipid peroxidation, and neuronal death in ischemic
regions (Kondo etal., 1995, 1997; Li etal.,, 2009; Oubidar
etal.,, 1994; Park etal, 2011; Tuo etal., 2017). Ferritin,
serving as a source of iron after ischemic injury (Guo et al.,
2023), significantly increases in parallel with iron deposition
after focal cerebral ischemia/reperfusion, with a strong
correlation observed, especially in necrotic tissue areas (Chi
et al.,, 2000). Various therapeutic interventions targeting iron
metabolism have shown promise in animal models of ischemic
stroke, including iron chelators and transport facilitators,
shown to reduce neuronal injury and improve neurological
function (Oubidar et al., 1994; Park et al., 2011; Prass et al.,
2002; Ryan et al., 2018; Tuo et al., 2017). In summary, iron
plays a critical role in driving neuronal damage in ischemic
stroke, highlighting its potential as a key target for therapeutic
intervention.

The microtubule-associated protein tau is a critical factor in
the pathology of neurodegenerative disorders, such as
Alzheimer’s disease (AD) and various tauopathies (Ballatore
etal., 2007; Chen etal.,, 2023; Ding etal., 2021, 2024;
Kwapong et al., 2024; Lei & Ayton, 2023; Wu et al., 2023).
Recent studies have indicated that tau also plays an important
role in peripheral tissues, regulating insulin secretion by
inhibiting microtubule dissociation in pancreatic B-islet cells
(Mangiafico et al., 2023). Furthermore, tau is implicated in the
transport of amyloid precursor protein (APP) to the neuronal
surface, where APP interacts with ferroportin (Fpn) to facilitate
the export of ferrous iron (Fe?*) from neurons (Duce etal.,
2010). A deficiency in tau disrupts this interaction, resulting in
impaired Fe?" transport and increased iron accumulation (Lei
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Figure 1 Possible ferroptosis signaling pathway after cerebral ischemia

After cerebral ischemia, energy deficiency leads to impaired clearance of excitatory neurotransmitters in synaptic gaps, increasing the concentration
of neurotransmitters such as glutamate, stimulating AMPA receptor activation, and mediating Na* influx. The increase in intracellular Na* leads to
the conversion of prothrombin into active thrombin, thereby inducing the phosphorylation and activation of calcium-dependent cytosolic
phospholipase A2a (cPLA2a). In addition, prothrombin in the blood may enter the brain through blood-brain barrier (BBB) disruption and be
converted into thrombin, mediating cPLA2a activation by increasing cytoplasmic free Ca?*. cPLA2a can cleave arachidonic acid (AA) at the sn-2
position of glycerophospholipids in the cell membrane. Subsequently, AA is converted to AA-CoA under catalysis of acyl-CoA synthetase long-chain
family member 4 (ACSL4) and immediately incorporated into membrane phospholipids by lysophosphatidylcholine acyltransferase 3 (LPCAT3) to
form AA-containing phospholipids (PL-AA). Under the catalysis of arachidonate 15-lipoxygenase (ALOX15) and Fenton reaction, PL-AA undergoes
oxidation to produce biologically active lipid peroxides, which ultimately participate in ferroptosis. Glutathione peroxidase 4 (GPx4) can reduce lipid
hydroperoxides (L-OOH) to lipid alcohols (L-OH). High concentrations of extracellular glutamate inhibit cysteine uptake, thereby limiting the
biosynthesis of glutathione (GSH). GPx4 is inactivated due to a lack of necessary substrates, further leading to the accumulation of toxic lipid
peroxides and ferroptosis. In addition, the decrease in soluble tau protein after cerebral ischemia inhibits the transport of amyloid precursor protein
(APP) to the surface of neuronal membranes, blocking the interaction between APP and ferroportin (Fpn), and prevents the neuronal transfer of
Fe?*, leading to toxic intracellular accumulation of Fe?* and ultimately ferroptosis. (Created with BioRender.com). GCL: glutamate-cysteine ligase.
GSS: glutathione synthetase. GSSG: Oxidized glutathione. GPCR: G protein-coupled receptor. ER: Endoplasmic reticulum.

etal., 2012). In the context of transient focal cerebral etal., 2011). Mitochondrial ferritin (FtMt), a critical
ischemia, soluble tau protein levels are significantly mitochondrial iron storage protein, plays a vital role in
decreased, contributing to iron accumulation and subsequent maintaining iron homeostasis and redox balance (Wang et al.,
ferroptotic neuronal death (Tuo et al., 2017). 2022; Wu et al., 2019). Experimental evidence suggests that

Hepcidin, a peptide hormone, plays a crucial role in FtMt levels are up-regulated in ischemic brain regions,
regulating iron homeostasis (Ganz, 2011). Animal studies potentially serving a protective function. Mice lacking FtMt
have shown that hepcidin expression increases markedly in experience more severe brain damage and neurological
the ischemic cortex, hippocampus, and striatum following deficits after ischemic injury, as FtMt deletion promotes the
cerebral ischemia. Hepcidin knockout models have hepcidin-mediated reduction of Fpn, resulting in elevated
demonstrated that the absence of this hormone prevents the levels of both total and chelatable iron. Conversely, FtMt
increase in L-ferritin and decrease in Fpn typically observed overexpression has been shown to attenuate brain damage
after cerebral ischemia/reperfusion, suggesting that hepcidin and neurological deficits after cerebral ischemia/reperfusion

may be a key regulator of post-ischemic iron deposition (Ding (Wang etal., 2021). These findings suggest that FtMt may
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also be a major regulator of iron deposition after cerebral
ischemia. These observations provide further insights into how
iron accumulates during cerebral ischemia/reperfusion injury.

Oxidation of AA-containing phospholipids

As the most abundant and widely distributed w-6
polyunsaturated fatty acid in the human body, AA is
predominantly found within cell membrane phospholipids,
including phosphatidylethanolamine (PE), phosphatidylcholine
(PC), and phosphatidylinositol (Pl), which are essential for
preserving membrane structure and function (Tallima & El
Ridi, 2018). However, the structural nature of AA, notably the
presence of four cis-double bonds, renders it highly
susceptible to oxidative degradation, leading to the loss of
normal physiological functions (Tuo etal., 2022b). AA also
plays a key role in the deacylation-reacylation cycle of
membrane phospholipids and is primarily released by calcium-
dependent cytosolic phospholipase A2a (cPLA2a), which
cleaves glycerophospholipids at the sn-2 position (Tuo et al.,
2022b). Free AA can be transformed into arachidonoyl-CoA

(AA-CoA) via ACSL4 and subsequently re-acylated into
membrane  phospholipids  through  the action of
OFeZ+
Ferritin
storage
A\ 4 \
°o— %
v
Fenton reaction
PL-PUFA

Lipoxygenases

lysophosphatidylcholine  acyltransferase 3 (LPCAT3)
(Stockwell etal., 2017). In quiescent cells, the reacetylation
process predominates, with most intracellular AA remaining
esterified within membrane phospholipids. However, in
activated cells, cPLA2a-mediated deacylation predominates,
leading to a significant release of free AA and the synthesis of
biologically active eicosanoids through the LOX and
cyclooxygenase (COX) pathways (Bermudez etal.,, 2021;
Buczynski etal., 2009; Funk, 2001), which participate in
inflammatory responses (Figure 3).

In activated cells, the majority of AA released by cPLA2a
during phospholipid cleavage is rapidly re-acylated into
membrane phospholipids, with only a small fraction utilized for
eicosanoid synthesis (Pérez-Chacon etal., 2009). Multiple
studies have shown that the incorporation of AA into
phospholipids significantly increases under stress conditions
(Balsinde et al., 1992; Fonteh & Chilton, 1992; Nieto et al.,
1991; Reinhold et al., 1989; Tou, 1989), suggesting that this
process replenishes intracellular AA levels (Pérez-Chacén
etal., 2009). Notably, genetic deletion of ACSL4 and
LPCAT3 —key enzymes responsible for esterifying AA into

Lipid peroxidation Ferroptosis

Figure 2 Redox-active iron participates in the lipid peroxidation process

In addition to being stored in the form of ferritin, intracellular free iron can also catalyze the oxidation reaction of polyunsaturated fatty acid-

containing phospholipids (PL-PUFAs) via the Fenton reaction and lipoxygenase activation, thereby producing a large number of lipid peroxides and
further participating in the execution of ferroptosis. (Created with BioRender.com)
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Figure 3 AA participates in the deacylation/reacylation cycle of membrane phospholipids

cPLA2a cleaves glycerophospholipid molecules at the sn-2 position to produce AA. Free AA can be converted to AA-CoA through ACSL4 and
immediately re-acylated into membrane phospholipids through LPCAT3. Conversely, bioactive eicosanoids such as leukotrienes (LTs) and
prostaglandins (PGs) are synthesized through the lipoxygenase (LOX) and cyclooxygenase (COX) pathways, which participate in the inflammatory

response. (Created with BioRender.com).
acyltransferase 3. AA-CoA: arachidonoyl-CoA.
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membrane phospholipids—can effectively prevent ferroptosis,
highlighting the importance of PL-PUFAs in the occurrence of
this form of cell death (Dixon etal., 2015; Doll etal., 2017;
Kagan et al., 2017; Yuan et al., 2016). This also indicates that
free PUFAs do not directly promote ferroptosis but must be
esterified into membrane phospholipids to participate in this
lethal process. Unlike saturated and monounsaturated fatty
acids, PUFAs contain bis-allylic hydrogen atoms that are
highly sensitive to oxidation by free radicals or enzymatic
activity (Gardner, 1989; Gaschler & Stockwell, 2017). Upon
cellular stimulation, PL-PUFA molecules can adopt non-bilayer
arrangements (Van Den Brink-Van Der Laan etal., 2004),
exposing these bis-allylic hydrogen atoms and facilitating
oxidation by free radicals or enzymes.

As a non-heme iron-containing dioxygenase, LOX catalyzes
the oxidation of PL-PUFAs to produce biologically active lipid
peroxides, which ultimately participate in the execution of
ferroptosis (Yang & Stockwell, 2016). It has been proposed
that LOX isoforms should be uniformly named based on their
encoding genes, such as 12/15-lipoxygenase (12/15-LOX)
orthologs from different species standardized under the name
arachidonate 15-lipoxygenase (ALOX15) (Singh & Rao, 2019).
In human ischemic stroke patients, immunofluorescence
analysis of autopsy brain tissues has revealed a significant up-
regulation of 12/15-LOX expression in ischemic regions (Jung
etal., 2015). Additionally, in vitro and in vivo studies have
indicated that both the expression and activity of ALOX15 are
significantly elevated, accompanied by increased lipid
peroxide formation in neurons subjected to oxygen-glucose
deprivation (OGD) and in animal models of ischemic brain
injury (Cui et al., 2010; Han et al., 2015; Jung et al., 2015; Van
Leyen et al., 2006). Inhibiting ALOX15 has been shown to
reduce lipid peroxide levels, improve neurological symptoms,
and reduce infarct volume in ischemic stroke animal models
(Tuo etal., 2017; Van Leyen etal., 2006; Yigitkanli etal.,
2013). Knockout of ALOX15 shows similar protective effects,
while ALOX15 inhibitors exert no further synergistic effects in
ALOX15 knockout models (Van Leyen etal., 2006). In
summary, ALOX15-mediated lipid peroxidation may be a key
link in triggering ischemic brain injury.

The phospholipase A2 (PLA2) superfamily currently
includes six major families of isoenzymes: secretory PLA2
(sPLA2), cytosolic PLA2 (cPLA2), Ca®-independent PLA2
(iPLA2), lipoprotein-associated PLA2 (Lp-PLA2), lysosomal
PLA2 (LPLA2), and adipose tissue-specific PLA2 (AdPLA2)
(Khan & llies, 2023). cPLA2q, a Ca**-sensitive member of the
PLA2 family of enzymes, regulates membrane phospholipid
metabolism by controlling the generation of free AA (Dennis,
1994). In animal models of ischemic stroke, both cPLA2a
expression and activity are significantly increased in ischemic
brain tissue, and inhibition of cPLA2a can significantly reduce
infarct volume after cerebral ischemia (Adibhatla & Hatcher,
2003; Phillis & O'Regan, 2003; Ugidos etal., 2017; Zhang
etal.,, 2012). iPLA2B (encoded by PLA2G6) can cleave the
acyl tails from the glycerol backbone of lipids and release
oxidized fatty acids from phospholipids (Sun etal., 2021).
Even in GPx4-deficient cells, iPLA2B3-mediated detoxification
of lipid peroxides is sufficient to inhibit p53-driven ferroptosis
under ROS-induced stress (Chen et al., 2021a). This suggests
that iPLA2pB acts as a major ferroptosis suppressor in a GPx4-
independent manner. Research has shown that selenoprotein
| (SELENOI) can prevent ferroptosis by maintaining ether lipid
homeostasis (Huang et al., 2024). SELENOI deficiency can

also lead to a significant decrease in ether-linked
phosphatidylethanolamine (ePE) and a significant increase in
ether-linked phosphatidylcholine (ePC). Imbalance between
ePE and ePC leads to the up-regulation of PLA2G2A
(Encoding sPLA2), PLA2G5 (Encoding sPLA2), and ALOX15,
resulting in excessive lipid peroxidation. Knockout of
PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis
phenotype, indicating that they are downstream effectors of
SELENOI (Huang etal., 2024). In mouse ischemic stroke
models, PLA2G2E (encoding sPLA2) expression in the infarct
penumbra area is significantly increased, while PLA2G2E
knockout  significantly —aggravates cerebral ischemia/
reperfusion injury (Nakamura et al., 2023). At the same time,
as observed via immunohistochemical staining, PLA2G2E is
expressed in surviving neurons around the infarct area of
ischemic stroke patients but not in neurons of normal brain
areas (Nakamura et al., 2023). This suggests that PLA2G2E
may be the basis of brain self-repair after ischemic stroke.
Research has shown that Lp-PLA2 can control intracellular
phospholipid metabolism and help combat ferroptosis.
Darapladib, an inhibitor of Lp-PLA2, can synergistically induce
ferroptosis in the presence of a GPx4 inhibitor (Oh etal.,
2023). Clinical studies have also shown that higher levels of
Lp-PLA2 during the acute period of ischemic stroke are
associated with an increased short-term risk of recurrent
vascular events in stroke patients (Lin et al., 2015), as well as
a markedly increased risk of death within one year (Han et al.,
2017).

Thrombin is a Na*-activated serine protease that typically
exists as its inactive form of prothrombin in tissues
(Krishnaswamy, 2013). Prothrombin in plasma can enter the
brain and be converted into thrombin due to blood-brain
barrier (BBB) disruption (Ye et al., 2021). Thrombin facilitates
the activation of cPLA2a by promoting intracellular free Ca?*
or inducing cPLA2a phosphorylation, thereby enhancing the
release of AA (Gluck et al., 2008; Kramer et al., 1993, 1996;
Sergeeva et al., 2002). In animal models, thrombin levels are
significantly elevated in ischemic brain regions where vascular
disruption is severe, compared to non-ischemic areas without
vascular disruption. Immunohistochemical analysis has shown
that approximately 65% of neurons in ischemic areas co-
express thrombin, indicating its association with neuronal
damage. Furthermore, intra-arterial infusion of thrombin during
ischemia has been shown to exacerbate brain injury (Chen
et al.,, 2012). One hour after the onset of cerebral ischemia in
rats, thrombin expression is significantly up-regulated in the
affected brain tissue (Tuo etal.,, 2022a). Notably,
intracerebroventricular administration of hirudin, a specific
thrombin inhibitor, before global cerebral ischemia significantly
increases neuronal survival in the hippocampal CA1 region of
gerbils (Striggow et al., 2000). Additionally, both thrombin
inhibitors and silencing of the thrombin receptor PAR-1 have
been shown to protect neuronal activity after OGD, improve
neurological symptoms, and reduce infarct volume in ischemic
stroke models (Chen et al., 2012; Denorme et al., 2016; Lyden
etal., 2014; Mao et al., 2010; Rajput et al., 2014; Tuo et al.,
2022a). Collectively, this evidence highlights the critical role of
thrombin in mediating neuronal damage following cerebral
ischemia.

Proteomic and lipid metabolomic analyses have revealed a
substantial increase in thrombin levels in ischemic brain tissue
during the early stages of ischemic stroke in model mice. This
elevation triggers cPLA2a activation, leading to an increase in
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the generation of free AA, which then participates in neuronal
ferroptosis through ACSL4-mediated membrane phospholipid
remodeling (Tuo et al., 2022a; Xu et al., 2024). These studies
offer insights into the molecular mechanism by which thrombin
drives neuronal injury after ischemic stroke and suggest that
the thrombin-ACSL4 axis may be a key therapeutic target to
ameliorate ferroptotic neuronal injury during ischemic stroke.
Dabigatran and argatroban, two thrombin inhibitors, have
advanced to phase Il (NCT03961334) and phase IV
(NCT03740958) clinical trials, respectively. Their clinical
application is based on the inhibition of thrombin activity,
preventing the conversion of fibrinogen to fibrin via thrombin-
mediated proteolytic cleavage. This effectively disrupts the
coagulation cascade, reducing blood clot formation during
ischemia. However, in animal models of middle cerebral artery
occlusion (MCAO), where mechanical blockage induces
ischemia without directly engaging the coagulation system
(Tuo etal., 2021b), dabigatran still provides neuroprotection
against ischemia/reperfusion injuries, suggesting that
inhibition of thrombin-mediated ferroptosis may also be
therapeutically beneficial.

Loss of lipid peroxide repair capacity mediated by GPx4
The catalytic oxidation of PL-PUFAs by free iron or iron-
containing LOX is highly toxic and typically kept under strict
control to prevent cellular damage. GPx4, a crucial
selenoenzyme, plays a pivotal role in mitigating this toxicity by
reducing lipid hydroperoxides (L-OOH) to lipid alcohols (L-OH)
in lipid bilayers (Bayir etal., 2020; Yan etal., 2021). As a
necessary selenoprotein for normal mammalian development,
deletion of GPx4 is embryonically lethal (Friedmann Angeli
etal., 2014; Seiler etal.,, 2008). Selenium, as well as
selenium-containing compounds, can inhibit ferroptosis by up-
regulating GPx4 activity or expression (Alim etal., 2019;
Ingold et al., 2018; Tuo et al., 2021a). In addition, glutathione
(GSH), also known as y-L-glutamyl-L-cysteinylglycine, serves
as a substrate for GPx4 in its lipid peroxide reduction reaction,
thereby regulating GPx4 activity (Jiang et al., 2021). As an
essential intracellular antioxidant, reduced GSH plays a vital
role in lipid peroxide repair (Stockwell et al., 2017; Wu et al.,
2018). GSH is synthesized through a two-step, ATP-
dependent process involving the glutamate-cysteine ligase
(GCL) and glutathione synthetase (GSS) enzymes, utilizing
glutamate, cysteine, and glycine as precursors (Figure 4).
During the reduction of L-OOH to L-OH, GPx4 converts
reduced GSH into its oxidized form (GSSG) (Bayir etal.,
2020; Yang & Stockwell, 2016). The availability of cysteine, a
key component for GSH synthesis, directly limits the rate of
GSH production. Consequently, cysteine deprivation can
impair GSH synthesis, leading to a further decrease in GPx4
activity and lipid peroxide accumulation, ultimately resulting in
ferroptosis (Fuijii etal., 2020; Sun etal., 2018; Yu & Long,
2016). The intracellular level of cysteine is largely dependent
on the import of extracellular cystine, the oxidized form of
cysteine, via the Xc~ glutamate-cystine antiporter system,
composed of the light chain subunit SLC7A11 and heavy
chain subunit SLC3A2 (Jiang et al., 2021).

In ischemic brain tissue, the expression levels of SLC7A11
and GPx4 are significantly diminished compared to those
observed in sham-operated rats, indicating a disruption in
antioxidant defense mechanisms (Lan etal.,, 2020). The
selenocysteine-containing Tat-linked SelP peptide (Tat
SelPep) can reduce infarct volume following acute ischemic
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Figure 4 GPx4 counteracts lipid peroxidation

Extracellular cystine is transferred into the cell through the action of
the cell membrane glutamate-cystine antiporter system Xc~, then
converted to cysteine. Synthesis of reduced glutathione (GSH) from
glutamate, cysteine, and glycine is catalyzed by GCL and GSS. GPx4
converts reduced GSH into oxidized glutathione (GSSG), while
reducing lipid hydroperoxides (L-OOH) to lipid alcohols (L-OH),
preventing the accumulation of lipid peroxides and inhibiting
ferroptosis. (Created with BioRender.com). GCL: glutamate-cysteine
ligase. GSS: glutathione synthetase. GPx4: glutathione peroxidase 4.

stroke by up-regulating GPx4 expression through the
activation of transcription factors TFAP2c and Sp1 (Alim et al.,
2019). Similarly, in mouse models of ischemic stroke, GPx4
expression is markedly decreased in affected brain tissue,
while selenium-containing compounds such as
methylselenocysteine or selenocystamine offer
neuroprotection by enhancing GPx4 expression or activity,
thereby minimizing neuronal damage (Tuo et al., 2021a). GSH
levels are also significantly reduced in ischemic brain tissue,
with L-2-oxothiazolidine-4-carboxylic acid (OTC), a precursor
of cysteine, found to reduce neuronal damage by restoring
depleted GSH levels after cerebral ischemia (Liu et al., 2020).
In summary, the loss of lipid peroxide repair capacity mediated
by GPx4 is a key factor triggering neuronal ferroptosis after
ischemic stroke.

ALTERATIONS IN FERROPTOSIS IN ISCHEMIC STROKE
ANIMAL MODELS

Animal models are valuable tools for exploring the molecular
mechanisms, behavioral functions, and therapeutic strategies
to diseases. Cerebral ischemia occurs when the brain
experiences a reduced or interrupted blood supply, leading to
a state of cerebral ischemia and hypoxia (Walter, 2022). This
condition can manifest as either acute or chronic cerebral
ischemia. Acute cerebral ischemia, which is the focus of this
discussion, can be divided into focal and global cerebral
ischemia. Focal ischemia is characterized by the occlusion of
the internal carotid arterial branch (usually the middle cerebral
artery) that supplies blood to the brain, resulting in localized
blood flow interruption to the brain region supplied by the
affected artery. In contrast, global cerebral ischemia involves
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the obstruction of blood flow to the entire brain, typically
caused by the occlusion of multiple major blood vessels,
leading to a complete cessation of cerebral circulation
(Traystman, 2003). These distinct ischemic models present
unique alterations in key ferroptosis regulators (Figure 5),
which vary depending on the type and severity of ischemia.
The complexity of ischemic stroke etiology arises from multiple
influencing factors, including the size of the affected ischemic
area, duration of ischemic events, degree of blood flow
decline, and level of oxygen and glucose deficiency. Each of
these variables can significantly impact the activation of
ferroptotic pathways. While existing animal models of ischemic
stroke offer valuable insights, they come with inherent
limitations (Table 1), and none can fully replicate the clinical
progression and complexity of human ischemic stroke.
Consequently, it is essential for researchers to select the most
appropriate  animal models based on their specific
experimental purposes.

Focal cerebral ischemia
Acute focal cerebral ischemia models can be constructed
using various techniques, with the most common being
intraluminal monofilament occlusion and homologous blood
clot embolization.
Intraluminal monofilament MCAO: This widely used animal
model involves the insertion of a silicon-coated monofilament
into the common carotid artery (CCA) and advancing it
through the internal carotid artery (ICA) to block the middle
cerebral artery (MCA) at the Circle of Willis (Engel etal.,
2011). The duration of cerebral ischemia can be precisely
controlled by adjusting the residence time of the monofilament
in the ICA, usually between 30—-120 minutes. Reperfusion is
achieved by removing the monofilament, while leaving it in
place for 24 hours without reperfusion represents permanent
cerebral ischemia.

Studies have shown that cerebral ischemia/reperfusion

leads to iron deposition and lipid peroxide accumulation in the
brain, while iron chelators and ferroptosis-specific inhibitors
(ferrostatin-1 or liproxstatin-1) can significantly improve
neurological deficits and reduce infarct volume in intraluminal
monofilament MCAO model mice (Tuo etal., 2017, 2022b).
However, ferroptosis-specific inhibitors cannot effectively
reverse ischemic brain injury in mice with permanent MCAO
(Tuo etal., 2022b), indicating that reperfusion may be
necessary for initiating ferroptosis in neurons.

In intraluminal monofilament MCAO mice and rats,
SLC7A11 and GPx4 levels in ischemic brain tissue
significantly decrease after reperfusion compared with the
non-ischemic side (Lan etal.,, 2020; Tuo etal., 2021a).
Furthermore, up-regulating GPx4 expression or activity has
been shown to significantly reduce infarct volume (Alim et al.,
2019; Tuo et al., 2021a). In addition, as a reactive substrate of
GPx4, depletion of GSH in ischemic brain tissue can be
mitigated by OTC, a cysteine precursor, reducing neuronal
damage (Liu et al., 2020).

The intraluminal monofilament MCAO model is ideal for
studying the molecular mechanisms of ferroptosis in ischemic
stroke. lts advantages include high reproducibility, precise
control of ischemia/reperfusion time, and focal brain injury
similar to that seen in human ischemic stroke, without
requiring craniotomy (Menzies et al., 1992). However, it does
not fully replicate the thrombotic processes in human strokes
and is unsuitable for studying anticoagulant mechanisms or
thrombolysis effects on brain tissue.

Embolic MCAO: Thrombolytic therapy using recombinant
tissue-type plasminogen activator (r-tPA) remains the primary
treatment for acute ischemic stroke. However, its
effectiveness is constrained by a narrow therapeutic window
and an increased risk of hemorrhagic transformation (Hacke
et al., 2008). Therefore, the development of more accurate
stroke models is essential for studying new thrombolytic
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Figure 5 Alterations in key factors of ferroptosis in different ischemic stroke animal models

Focal cerebral ischemia models constructed by intraluminal monofilament or homologous blood clots (left). Transient global cerebral ischemia
models constructed by 4-VO and 2-VO, respectively (right). (Created with BioRender.com). MCAO: middle cerebral artery occlusion. 4-VO: four-

vessel occlusion. 2-VO: two-vessel occlusion. GSH : glutathione. GPx4: glutathione peroxidase 4. ALOX15: arachidonate 15-lipoxygenase.
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Table 1 Characteristics of ischemic stroke models

Model Advantages Limitations Animals
Focal ischemic stroke
Intraluminal filament MCAO 22 ET UGS oyl 2 O Ve Not suitable for thrombolysis Rats, mice

ischemic penumbra

Embolic MCAO Investigate thrombolytic processes

Global ischemic stroke

4-VO Not strain-dependent; high reproducibility

One-stage surgical procedure; controllable

e recirculation; lower mortality

Poor reproducibility; spontaneous recirculation Rats, rabbits

Two-stage surgical procedure; permanent occlusion

R
of vertebral arteries; high mortality ats

Strain-dependent Gerbils

MCAQO: Middle cerebral artery occlusion. 4-VO: Four-vessel occlusion. 2-VO:

agents and exploring advanced treatment strategies for
ischemic stroke. Although the intraluminal monofilament
MCAO model is widely used to investigate neuronal injury
mechanisms, it cannot fully replicate clinical conditions and is
unsuitable for thrombolytic studies (Jin etal., 2014). The
embolic MCAO model, which employs homologous blood
clots, better simulates the pathophysiology of human ischemic
stroke, making it suitable for preclinical studies of
thrombolysis.

The embolic MCAO model involves advancing a PE-50
catheter from the external carotid artery (ECA) into the ICA
until it reaches the origin of the MCA, where a homologous
blood clot is delivered (Jin et al., 2014). This model has been
used to assess neuroprotective agents, such as the ALOX15-
specific inhibitor ML351, shown to significantly reduce the risk
of hemorrhagic transformation while preserving the
thrombolytic efficacy of r-tPA and improving neurological
deficits in embolic MCAO rats (Cheng etal.,, 2021). The
seleno-organic antioxidant ebselen has also been shown to
mimic GPx activity (Kil et al., 2017; Yamaguchi et al., 1998).
Notably, studies have demonstrated that the combination of
ebselen and r-tPA provides synergistic neuroprotection in
embolic MCAO model rabbits (Lapchak & Zivin, 2003).

In brief, embolic MCAO is an ideal model for evaluating the
neuroprotective effects of ferroptosis-targeting interventions in
ischemic stroke. It closely mimics the human ischemic stroke
process and allows for the study of therapeutic interventions
combined with thrombolytic agents, providing a more realistic
basis for preclinical drug efficacy evaluations. However, one
limitation of this model is its inability to precisely control the
duration of ischemia, resulting in variability in the extent of
injury, which can complicate comparisons of neuroprotective
drug efficacy.

Additional focal cerebral ischemia models: Apart from the
aforementioned focal cerebral ischemia models, two other
commonly employed models for studying ischemic stroke
include the distal MCAO (dMCAO) model and the
photothrombotic stroke model. The dMCAO model, first
described by Robinson etal. (1975) in their study on the
effects of experimental cerebral infarction on catecholamines
and behavior in rats, can induce either permanent or transient
MCAO. Permanent MCAO is typically achieved through
electrocauterization of the artery, while transient MCAO is
achieved through the application of ligatures or microclips,
which can later be removed for reperfusion (Buchan et al.,
1992). This model allows for accurate observation of
successful occlusion and provides flexibility in inducing either
transient or permanent ischemia. A recent study applied the
dMCAO mouse model, established by electrocoagulation, to
explore the potential neuroprotective effects of rosmarinic acid
(RosA) encapsulated in nanoliposomes (RosA-LIP) on
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Two-vessel occlusion.

ischemic stroke, which inhibited ferroptosis by improving
mitochondrial abnormalities, increasing GPx4 levels, and
reducing ACSL4/LPCAT3/LOX-dependent lipid peroxidation
(Jia et al., 2024). However, the invasive nature of this model,
which requires direct brain tissue manipulation and exposure,
makes it less reflective of human disease, as it can induce
intracranial inflammation, alter intracranial pressure, and
compromise BBB function (Sokolowski et al., 2023).

The photothrombotic stroke model involves transcranial
illumination of the brain following systemic administration of
the photosensitive dye Rose Bengal, which results in localized
coagulation of the irradiated brain tissue (Watson et al., 1985).
This model offers several advantages, including precisely
targeting predefined ischemic areas with stereotactic
accuracy, making it ideal for focusing on specific cortical
regions. Studies using this model have shown significant
increases in free iron levels in the ischemic core and
penumbra compared to the non-ischemic side, with ischemic
injury being markedly reduced by the intraperitoneal
administration of a lipid-soluble iron chelator, 2,2’-bipyridyl,
within an hour of stroke onset (Millerot-Serrurot et al., 2008).
However, photothrombotic injury differs from human ischemic
stroke as it typically involves more blood vessels in the
illuminated regions, in contrast to human ischemia, in which
blood flow is typically interrupted in a single terminal artery.
Moreover, photocoagulation also leads to severe vascular
damage and early vasogenic edema, features that are not
typically observed in human ischemic stroke (Labat-Gest &
Tomasi, 2013). These studies suggest that both the dMCAO
and photothrombotic stroke models can be used to study the
mechanisms of neurological damage caused by ferroptosis in
ischemic stroke. However, due to inherent limitations in their
construction, these models deviate from the underlying
pathophysiology of clinical ischemic stroke, which may affect
the translatability of findings to human disease.

Transient global cerebral ischemia

The transient global cerebral ischemia model is frequently
used to study the occurrence of cerebral ischemic injury
during cardiac arrest and resuscitation. The two primary
methods for constructing this model are four-vessel occlusion
(4-VO) and two-vessel occlusion (2-VO) (Tuo et al., 2021b).
The 4-VO model is constructed by permanently blocking
bilateral vertebral arteries through electrocoagulation, followed
by transient occlusion of the bilateral common carotid arteries
(BCCA) with arterial clips (Kim et al., 2023). Research has
demonstrated that 5 minutes of 4-VO can induce substantial
neuronal death in the hippocampal CA1 region (Wang et al.,
2003), accompanied by iron deposition (Kondo et al., 1995).
However, the complexity of this approach—requiring exposure
and permanent occlusion of the bilateral vertebral arteries via


www.zoores.ac.cn

electrocoagulation —demands a highly skilled experimental
operator, limiting its broader promotion and application in
research settings.

The 2-VO model, also known as bilateral common carotid
artery occlusion (BCCAO), is a more feasible alternative. It is
primarily used in Mongolian gerbils, which lack a complete
cerebral Circle of Willis, making them particularly susceptible
to global cerebral ischemia when their BCCA is occluded
(Martinez et al., 2012). However, this method requires careful
control, as occlusion duration must not exceed 20 minutes to
avoid high mortality rates in the experimental animals (Lee
et al., 2019). Research using the 2-VO method has revealed
significant changes in key indicators of ferroptosis, including
enhanced iron deposition, reduced GSH levels, down-
regulated GPx4 expression, and increased lipid peroxide
accumulation in the ischemic hippocampal region, while drug
interventions have been shown to up-regulate GPx4 or reduce
lipid peroxides (Guan etal., 2019; Gupta & Sharma, 2006).
However, this model is limited by its reliance on Mongolian
gerbils, which lack a complete Circle of Willis, making them
difficult to source in large quantities for experimental use.

TARGETING FERROPTOSIS IN
TREATMENT

ISCHEMIC STROKE

The neuroprotective potential of ferroptosis-specific inhibitors
in experimental ischemic stroke models has been widely
studied (Fang et al., 2021; Li et al., 2021, 2024, Liang et al.,
2022; Liu etal., 2023; Tuo etal., 2017; Yang etal., 2021),
leading to a renewed focus on iron as an therapeutic target.
Notably, the phase Il clinical trial “Thrombolysis and
Deferoxamine in Middle Cerebral Artery Occlusion (TANDEM-
1) (ClinicalTrials.gov  Identifier: NCT00777140) was
conducted to evaluate the safety, tolerability, and therapeutic
efficacy of the iron chelator deferoxamine mesylate (DFO) in
ischemic stroke patients. In 2021, the study reported no
significant difference in adverse effects between the placebo
and DFO-treated groups, suggesting that DFO is safe for
clinical use. Additionally, a higher proportion of DFO-treated
patients showed improved outcomes based on the National
Institutes of Health Stroke Scale (NIHSS) evaluation at day 90

of treatment (Millan etal., 2021). Despite these promising
findings, direct chelation of iron can interfere with normal
function of the body, potentially triggering undesirable side
effects. An alternative strategy involves the regulation of iron
homeostasis, which may offer a safer therapeutic option.
Animal studies have demonstrated that proteins involved in
iron regulation, such as ceruloplasmin or APP, can alleviate
brain injury in ischemic stroke model mice, providing
protection comparable to iron chelation without the associated
risks (Tuo et al., 2017).

ALOX15 plays a critical role in catalyzing the oxidation of
PL-PUFAs, generating biologically active lipid peroxides that
participate in the execution of ferroptosis. Conversely, GPx4
acts as a key protective enzyme, effectively mitigating the
toxic effects of PL-PUFA oxidation and inhibiting ferroptosis
(Ingold et al., 2018). Consequently, targeting ALOX15 to block
the production of toxic substances that induce ferroptosis or
enhancing GPx4 expression or activity to accelerate lipid
peroxide metabolism represent promising therapeutic
strategies for the development of ferroptosis-targeting drugs
(Table 2). Currently, the intraluminal monofilament MCAO
model is most often employed in ischemic stroke research
involving ferroptosis-targeting drugs, with no reported
application of the embolic MCAO model. Notably, in the 2-VO
method, carvacrol —a natural monoterpenoid phenol —has
been shown to protect hippocampal neurons from
ischemia/reperfusion injury in gerbils by up-regulating GPx4
expression (Guan et al., 2019). However, further studies are
needed to determine whether these strategies can be
advanced to clinical trials.

DISCUSSION

The development of effective treatments for ischemic stroke
remains a major challenge in both clinical and research
settings. Despite considerable efforts from basic and clinical
researchers to develop novel therapeutic agents, few drugs,
apart from r-tPA, have demonstrated clear efficacy in clinical
practice. However, recent advancements in understanding the
mechanisms of cell death forms have provided new insights
into neuronal death after ischemic stroke, especially through

Table 2 Summary of ferroptosis-stimulating agents with therapeutic potential in ischemic stroke animal models

Mechanism of

Compound Pharmacological activity

Ischemic stroke
Reference

action animal model
Liproxstatin-1 Inh|b|t‘|ng .I|p|d Reduced infarct volume and improved behavioral Intralumlngl filament Li et al., 2021: Tuo et al., 2017
peroxidation outcomes MCAO (mice)

Inhibiting lipid

Ferrostatin-1 o
peroxidation

outcomes

Ceruloplasmin Regulating iron

Reduced infarct volume and improved behavioral

Inhibiting loss of neurons in ischemic brain areas,
reducing infarct volume, and improving behavioral

Fang et al., 2021; Li et al., 2024;
Liang et al., 2022; Liu et al., 2023;
Tuo et al., 2017; Yang et al., 2021

Intraluminal filament
MCAO (mice, rats)

Intraluminal filament Tuo etal., 2017

homeostasis MCAO (mice)
outcomes

Inhibiting Reduced infarct volume and improved behavioral Intraluminal filament . .
ML351 ALOXA15 outcomes MCAO (mice) Liu et al., 2017; Tuo et al., 2017
oTc Increasing GSH Reduced infarct volume and improved behavioral Intralumln:all filament Liu et al., 2020

levels outcomes MCAO (mice)
Tat SelPep Driving .GPX4 Reduced infarct volume Intralumlnfal filament Alim et al., 2019

expression MCAO (mice)
Selenocystamine/ Increasmg GPx4 Reduced infarct volume and improved behavioral Intraluminal filament

. expression and . Tuo et al., 2021a

Methylselenocysteine outcomes MCAO (mice)

activity

Carvacrol .
expression

Increasing GPx4 Reduced neuronal death in hippocampus
CA1 region and ameliorated cognitive impairment

2-VO model (gerbils) Guan et al., 2019

ALOX15: Arachidonate 15-lipoxygenase. OTC: L-2-oxothiazolidine-4-carboxylic acid. Tat SelPep: Tat-linked SelP Peptide. GSH: Glutathione. GPx4:

Glutathione peroxidase 4.
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the concept of ferroptosis. This emerging cell death pathway
offers a promising new direction to combat ischemic stroke.
The brain, with its rich phospholipid content and substantial
energy and oxygen demands, is especially vulnerable to
disruptions in phospholipid metabolism during ischemia and
hypoxia. These conditions can lead to the accumulation of
lipid peroxides, which drives ferroptotic cell death. The brain
also contains extremely complex signaling pathways, requiring
the involvement of multiple pathways to effectively respond to
abnormal stimuli. However, the majority of studies have not
yet investigated the interactions between different cell death
pathways.

There are inherent connections between various cell death
signaling pathways, which become particularly relevant in the
context of ischemic stroke. Recent studies have found that
receptor-interacting serine/threonine-protein kinase 1 (RIPK1)
plays a crucial role in mediating both cell apoptosis and
necroptosis following ischemic events (Naito etal., 2020).
RIPK1 mediates apoptosis when sufficient ATP is available
but shifts toward mediating necroptosis under ATP deficient
conditions (Degterev etal.,, 2019). Ferroptosis has also
emerged as an autophagy-dependent form of cell death,
where knockout or knockdown of autophagy-related genes
Atg5 and Atg7 can limit erastin-induced ferroptosis by
reducing intracellular iron levels and lipid peroxidation (Zhou
et al., 2020). Recent findings also suggest that neuronal cells
first undergo ferroptosis and necroptosis, followed by further
apoptosis after cerebral ischemia/reperfusion (Du et al., 2024).
Interestingly, ferroptosis-specific inhibitors can prevent the
occurrence of necroptosis, while necroptosis-specific inhibitors
also inhibit the expression of proteins involved in the activation
of ferroptosis. Iron appears to act as a key mediator between
these pathways, as iron chelators can inhibit both ferroptosis
and necroptosis in neuronal cells during cerebral
ischemia/reperfusion.  Excessive iron disrupts redox
homeostasis, leading to necroptosis activation and increased
sensitivity to ferroptosis. Furthermore, cerebral ischemia can
significantly reduce Fpn expression in ischemic brain tissue
(Ding etal,, 2011). Fpn knockout mice exhibit hallmark
characteristics of ferroptosis in the hippocampus, including
mitochondrial shrinkage in hippocampal neurons,
accumulation of lipid peroxides, reduced expression of GPx4,
and increased mRNA levels of ferroptosis-related genes
PTGS2 and IREB2 (Bao et al., 2021). Overexpression of Fpn
not only effectively reduces the protein levels of cleaved
caspase 3 and apoptosis signaling, but also significantly
inhibits the expression of ferroptosis-related genes PTGS2
and IREB2 (Bao et al., 2020). This suggests that Fpn may be
a key factor mediating the interaction between neuronal
ferroptosis and apoptosis during cerebral ischemia/
reperfusion. Given these complex interactions, it is essential to
conduct further in-depth research on the similarities,
differences, and connections between different forms of cell
death, to further explore more effective and easily convertible
intervention targets, and to enhance our understanding of the
molecular mechanisms of neuronal injury after ischemic
stroke.

The function of the mitochondrial respiratory chain is
critically reliant on oxygen and glucose. During cerebral
ischemia, the deprivation of these key resources in brain
tissue results in mitochondrial dysfunction, which, in turn,
triggers various forms of cell death, including apoptosis,
necroptosis, pyroptosis, autophagy, and ferroptosis (Bock &
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Tait, 2020). Mitochondrial shrinkage and increased membrane
density are specific morphological features of ferroptosis
(Dixon et al., 2012), highlighting mitochondria as a potential
focal point for identifying key intervention targets.

Animal models serve as an indispensable bridge between
basic research and clinical drug development (Fluri et al.,
2015). Both focal and global cerebral ischemia models exhibit
similar neuropathologies observed in ischemic stroke patients
(Bacigaluppi et al., 2010), providing valuable platforms for
mechanistic and therapeutic investigations of ferroptosis in
ischemic stroke. However, ischemic stroke in humans is a
highly heterogeneous condition with complex
pathophysiological processes (Kuriakose & Xiao, 2020), and
as reviewed here, no single animal model can fully replicate
the clinical progression and variability of human ischemic
stroke. As a result, researchers must carefully select
appropriate animal models that align with the specific
objectives of their studies. In addition, the majority of current
research is conducted on young animals without any
comorbidities, which contrasts with the typical human ischemic
stroke population—elderly people often burdened with various
cerebrovascular risk factors (Candelario-Jalil & Paul, 2021).
Therefore, selecting the most suitable ischemic stroke model
and optimizing the research design of preclinical trials may
increase the translational potential of drug candidates.

In the present era, advancements in intravenous
thrombolysis and thrombectomy have significantly improved
the success rates of reperfusing ischemic brain tissue,
presenting new opportunities for neuroprotective agents to
prevent reperfusion injuries. Multiple clinical trials have shown
that neuroprotective agents with antioxidant properties, such
as edaravone (ClinicalTrials.gov Identifier: NCT02430350) and
butylphthalide (ClinicalTrials.gov Identifier: NCT03539445),
combined with reperfusion therapy, can effectively ameliorate
deleterious  consequences  post-reperfusion, including
reperfusion injury and BBB disruption. Patients receiving these
combined treatments have shown marked improvements in
functional outcomes following acute ischemic stroke
(Lochhead et al., 2024; Savitz et al., 2019; Wang et al., 2023;
Xu et al., 2021). Theoretically, antioxidants have the capacity
to inhibit phospholipid peroxidation and may function as
potential ferroptosis inhibitors. However, whether these
antioxidants exert neuroprotective effects by blocking
ferroptosis needs  further  experimental verification.
Nevertheless, the promising potential of ferroptosis inhibition
as a therapeutic strategy for ischemic stroke should be further
investigated clinically.
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