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ABSTRACT

Long non-coding RNAs (IncRNAs), which are RNA
molecules longer than 200 nucleotides that do not encode
proteins, are implicated in a variety of biological processes,
including growth and development. Despite research into
the role of IncRNAs in skeletal muscle development, the
regulatory mechanisms governing ovine skeletal muscle
development remain unclear. In this study, we analyzed
the expression profiles of IncRNAs in skeletal muscle from
90-day-old embryos (F90), 1-month-old lambs (L30), and
3-year-old adult sheep (A3Y) using RNA sequencing. In
total, 4 738 IncRNAs were identified, including 997 that
were differentially expressed. Short-time series expression
miner analysis identified eight significant expression
profiles and a subset of INcRNAs potentially involved in
muscle development. Kyoto Encyclopedia of Genes and
Genomes enrichment analysis revealed that the predicted
target genes of these IncRNAs were primarily enriched in
pathways associated with muscle development, such as
the cAMP and Wnt signaling pathways. Notably, the
expression of INcRNA GTL2 was found to decrease during
muscle development. Moreover, GTL2 was highly
expressed during the differentiation of skeletal muscle
satellite cells (SCs) and was shown to modulate ovine
myogenesis by affecting the phosphorylation levels of PKA
and CREB. Additionally, GTL2 was found to regulate both
the proliferation and differentiation of SCs via the PKA-
CREB signaling pathway. Overall, this study provides a
valuable resource and offers novel insights into the
functional roles and regulatory mechanisms of IncRNAs in
ovine skeletal muscle growth and development.
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INTRODUCTION

Mutton is a vital protein source for humans, favored for its high
nutritional value, flavor, and low-calorie content. Skeletal
muscle development is critical for determining both muscle
mass and meat quality. Muscle growth is primarily shaped by
the prenatal increase in fiber number and postnatal expansion
in muscle volume (Costa etal., 2021; Wei etal., 2014).
Myogenesis, the process of muscle formation, is extremely
complex and precisely regulated, involving protein-coding
genes, transcription factors, epigenetic modifiers, and non-
coding RNAs (ncRNAs) (Brun et al., 2022; Cao et al., 2023;
Chen etal.,, 2024; Wang et al., 2022b). Understanding the
molecular mechanisms that regulate skeletal muscle
development is essential for improving the production
performance of livestock.

Long non-coding RNAs (IncRNAs) are a class of RNA
transcripts exceeding 200 bp in length, with the majority
lacking protein-coding potential. However, recent studies have
reported that certain IncRNAs can encode micropeptides
(Barczak etal.,, 2023; Papaioannou etal., 2019), many of
which have been implicated in muscle development (Lin et al.,
2019; Perell6-Amoros et al., 2022). For instance, knockdown
of LEMP (IncRNA encoded micropeptide), a 56 amino acid
micropeptide encoded by MyolncR4, impairs the differentiation
of C2C12 cells, while LEMP knockout in mice results in
defective skeletal muscle development (Wang et al., 2020b).
Moreover, increasing evidence has shown that IncRNAs are
involved in muscle growth and development (Butchart et al.,
2016), adipogenesis (Huang etal., 2019; Ma etal.,, 2023;
Raza etal.,, 2022; Wang etal, 2020a), osteogenic
differentiation (Sun et al., 2021; Wu et al., 2020b; Yu et al.,
2020), and other biological processes (Ning etal., 2024;

Received: 16 August 2024; Accepted: 12 September 2024; Online: 13
September 2024

Foundation items: This work was supported by the National Key R&D
Program of China (2 021YFD1 300 901), Natural Science Foundation of
China (32 172 701), and Modern Wool Sheep Industry System (CARS-39-
01)

#Authors contributed equally to this work

*Corresponding author, E-mail: zhaogianjun@caas.cn


http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:zhaoqianjun@caas.cn

Zhang etal.,, 2023). Recent research has highlighted the
crucial roles of IncRNAs in the regulation of skeletal muscle
growth and development in humans (Miller etal., 2024;
Simionescu-Bankston & Kumar, 2016), mice (Butchart et al.,
2016; Matsumoto et al., 2017; Wang et al., 2022c; Yue et al.,
2023; Zhang et al., 2016; Zhou et al., 2017), zebrafish (Zhou
etal., 2024), and other animals. In mice, IncRNA 2 310
043L19Rik promotes the proliferation and inhibits the
differentiation of myoblasts through silencing miR-125a-5p
expression (Li et al., 2020). Furthermore, Lnc021 enhances
myoblast proliferation in vitro through DHX36 and EIF3B
interaction (Chen etal., 2022). In cattle, Inc23 (Chen et al.,
2021) and IncRNA H19 (Xu etal.,, 2017) participate in the
differentiation of bovine skeletal muscle satellite cells (SCs). In
ovines, Inc-SEMT (Wei et al., 2018), IncRNA CTTN-IT1 (Wu
et al., 2020a), and other IncRNAs participate in the regulation
of muscle growth and development. LncRNAs can also affect
myogenesis by binding with proteins, as seen with IncRNA
IGF2 AS (Song et al., 2020) and Inc403 (Zhang et al., 2020b).

LncRNA GTL2, also known as Meg3, is a maternally
expressed gene located on ovine chromosome 18 (Charlier
et al., 2001; Fleming-Waddell et al., 2009). Previous studies
have shown the IncRNA GTL2 plays an important role in
regulating myoblast differentiation and muscle regeneration
(Dill etal., 2021; Liu etal.,, 2023; Wang etal., 2021). For
instance, the expression of INcRNA GTL2 in muscle tissue is
regulated by DNA methylation (Fan et al., 2022). Moreover,
INcRNA GTL2 can act as a competitive endogenous RNA
(ceRNA) by interacting with microRNAs (miRNAs) to regulate
muscle growth and development. For example, INCRNA-GTL2
promotes bovine skeletal muscle differentiation by interacting
with miRNA-135 (Liu et al., 2019). These findings underscore
the important effects of GTL2 in skeletal muscle development.
However, the exact mechanism by which IncRNA GTL2
influences ovine myogenesis remains largely undetermined,
necessitating further investigation into the functions and
regulatory pathways of IncRNAs in ovine muscle development.

In the present study, the expression profiles of IncRNAs in
sheep skeletal muscle at three different developmental stages
(90-day-old embryos, 1-month-old lambs, and 3-year-old adult
sheep) were constructed. Several key pathways and predicted
IncRNAs related to ovine muscle growth and development
were identified. Notably, IncRNA GTL2 was found to be highly
expressed in the longissimus dorsi muscle of embryos. Our
findings revealed that INcRNA GTL2 regulated the proliferation
and differentiation of ovine skeletal muscle SCs via the PKA-
CREB pathway. Overall, this study provides novel insights into
the molecular mechanisms underlying ovine skeletal muscle
development and myogenesis.

MATERIALS AND METHODS

Animals and sample preparation

Nine unrelated, healthy Duolang sheep, maintained under the
same feeding conditions, were selected from the Changping
Experimental Base of the Institute of Animal Science, Chinese
Academy of Agricultural Sciences. For the collection of 90-
day-old-embryos (F90), three fetuses were obtained from
three pregnant ewes during induced abortion procedures, and
longissimus dorsi muscle tissues were collected from the
fetuses. For the 1-month-old lambs (L30) and 3-year-old adult
sheep (A3Y), longissimus dorsi muscle samples were
collected after humane euthanasia by carotid artery
exsanguination, with three experimental replicates per group.

1262 www.zoores.ac.cn

All muscle samples were collected into liquid nitrogen and
stored at —80°C for RNA sequencing (RNA-seq). All animal
experiments were conducted in accordance with the
regulations and guidelines formulated by the Institute of
Animal Science, Chinese Academy of Agricultural Sciences
(IASCAAS-2 021-56).

RNA-seq library preparation and sequencing

Total RNA was extracted from the longissimus dorsi muscle
tissue of nine individuals using TRIzol reagent (15596018,
Invitrogen, USA). RNA quality and concentration were
assessed using agarose gel electrophoresis, an Agilent
Bioanalyzer 2100 (Agilent, USA), and a NanoDrop 2000
(Thermo Fisher, USA). Only RNA samples with a
concentration2100 ng/uL, total amount=3 pg, and RNA
integrity number (RIN)=7.0 were retained for further analysis.
The RNA-seq library was constructed using a Ribo-Zero rRNA
Removal Kit (lllumina, USA). The remaining RNA was
fragmented into smaller sequences using fragmentation
buffers. These RNA fragments were then reverse-transcribed
to generate cDNA, followed by second-strand synthesis using
DNA Polymerase | (F530S, Thermo Fisher, USA), RNase H
(EN0202, Thermo Fisher, USA), and dNTPs (R72501, Thermo
Fisher, USA). The synthesized second-strand cDNA was
amplified to construct the sequencing library. The U-labeled
second-strand cDNA was degraded with the USER enzyme
(M5505S, New England Biolabs, USA), and the resulting
polymerase chain reaction (PCR) products were purified using
AMPure XP beads (A63880, Beckman, USA). Finally, library
quality was assessed using the Agilent Bioanalyzer 2100
system. Sequencing was performed on the lllumina HiSeq
2500 v.4 platform (lllumina, USA) in paired-end mode
(125PE). After sequencing, 125 bp/150 bp paired-end reads
were generated for all nine samples.

Identification of IncRNAs and mRNAs

First, the raw reads were filtered using NGSQC Toolkit
(v.2.3.3) (Patel & Jain, 2012) to remove reads with N>10%
and low-quality sequences. High-quality clean reads were
then obtained using FastQC (v.0.10.1) (Brown et al., 2017).
These clean reads were mapped to the ovine reference
genome (Oar v.4.0) using TopHat tool (v.2.1.0) (Trapnell et al.,
2009). Subsequently, all transcript assemblies were merged
into a reference transcriptome using Cufflinks (v.2.2.1)
(Trapnell etal., 2010). To identify candidate IncRNAs,
transcripts shorter than 200 bp were removed, with only those
containing more than two exons retained. Transcripts with
fewer than three read counts were discarded. To filter out
potential coding transcripts, the coding potential of the
remaining transcripts was assessed using the Coding
Potential Calculator (CPC) (Kong et al., 2007), Coding-Non-
Coding Index (CNCI) (Sun etal, 2013), and Pfam Scan
(Pfam) (Finn et al., 2014). Only transcripts that lacked coding
potential in all three tools (CPC, CNCI, and Pfam) were
considered as non-coding RNAs.

In addition, clean reads were mapped to specific positions
on the ovine reference genome (Oar v.4.0) using TopHat tool
(v.2.1.0). The expression levels of all transcriptomes (28 094
mRNAs) from the nine samples were calculated using
StringTie (Pertea etal., 2015) and edgeR (Robinson et al.,
2010).

Differentially expressed (DE) IncRNAs
The expression levels of IncRNAs were quantified using the
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FPKM (Fragments Per Kilobase per Million) metric, calculated
using StringTie and edgeR. The DE IncRNAs were identified
using the R package edgeR in the comparison groups. The
screening criteria for DE IncRNAs were set to |Fold Change|=
1, P<0.05, and false discovery rate (FDR)<0.01.

Functional enrichment analysis

The functional roles of IncRNAs were inferred based on their
potential regulation of protein-coding genes through dominant
cis and trans mechanisms (Ferrer & Dimitrova, 2024). To
explore the biological functions of the IncRNAs, their putative
target genes were predicted using the LncTar tool
(http://www.cuilab.cn/Inctar) (Li etal., 2015). The predicted
target genes of the DE IncRNAs were subjected to Gene
Ontology (GO, https://biit.cs.ut.ee/gprofiler/gost) and Kyoto
Encyclopedia of Genes and Genomes (KEGG,
http://kobas.cbi.pku.edu.cn/genelist/) functional enrichment
analyses, with GO terms and KEGG pathways considered
significant at P<0.05.

LncRNA-mRNA co-expression network analysis

To understand the co-expression relationships between
IncRNAs and mRNAs (Liao etal., 2011), a network of DE
IncRNAs and their predicted target genes was visualized using
Cytoscape (v.3.7.1) (Shannon etal., 2003) to highlight key
biological interactions involving hub genes. LncRNA-mRNA
pairs were selected based on Pearson correlation coefficients
(PCCs), with pairs showing |PCC=0.99| used to construct the
co-expression network.

Short time-series expression miner (STEM) clustering
analysis

The DE IncRNAs were clustered using STEM (Ernst & Bar-
Joseph, 2006; Ernst et al., 2005) based on FPKM values, and
IncRNAs with similar expression patterns were estimated
using default parameters. The DE IncRNAs were clustered
into distinct expression profiles according to their trends
across time points. P-values were calculated by assessing the
number of genes assigned in each profile using the true
ordering of time points, with only colored profiles considered
significant.

Sheep skeletal muscle SC isolation and culture

Sheep skeletal muscle SCs were isolated following previously
described methods (Wu et al., 2012; Zhao etal., 2018). In
short, hindlimb muscle tissue from fetal sheep was minced
into 1 mm?® pieces and digested with 0.1% type | collagenase
(218 021, Invitrogen, USA) for 1 h at 37°C, followed by
digestion with 0.25% trypsin-EDTA (25 200 072, Invitrogen,
USA) at 37°C for 30 min. After digestion, the cell suspensions
were filtered through a 70 um filter and centrifuge 1000 r/min
for 5 min to collect SCs at room temperature . The isolated
SCs were cultured in Dulbecco’s Modified Eagle
Medium/Nutrient Mixture F-12 (DMEM/F12, 11320033,
Invitrogen, USA) containing 10% horse serum (26050088,
Invitrogen, USA), 20% fetal bovine serum (10099141,
Invitrogen, USA), and 1% penicillin/streptomycin (15070063,
Invitrogen, USA). When the SCs reached approximately 80%
confluence, the growth medium was replaced with DMEM/F12
containing 2% horse serum and 1% penicillin/streptomycin to
induce myoblast differentiation in vitro. The cells were cultured
at 37°C and 5% CO, in growth medium.

Quantitative real-time PCR (qPCR)
Total RNA from longissimus dorsi muscle tissue and SCs was

extracted using TRIzol reagent according to the manufacturer’
s instructions. Total RNA (2 pg) was reverse-transcribed to
synthesize cDNA using HiScript Il All-in-one RT SuperMix
Perfect for qPCR (R333-01, Vazyme, China). Quantitative
real-time PCR (qPCR) was performed using 10 pL of 2xTaq
Pro Universal SYBR gPCR Master Mix (Q712-03, Vazyme,
China), 0.8 L of 20 pmol/L primer, 2 uL of cDNA, and 7.2 pL
of RNase-free water. The qPCR steps were as follows: one
cycle at 95°C for 30 s, followed by 40 cycles at 95°C for 10 s
and 60°C for 30 s. The relative expression levels of genes and
IncRNAs were calculated using the 22*°T method (Bubner &
Baldwin, 2004). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as the reference gene, and all RNA
samples were analyzed in ftriplicate. The primers used for
selected genes are listed in Supplementary Table S1.

Cell transfection

Small interfering RNAs (siRNAs) were transfected into SCs
using Lipofectamine RNAIMAX (13778150, Invitrogen, USA)
according to the manufacturer’s instructions. Both siRNAs and
negative control siRNAs were designed and purchased from
Generay (China). The following siRNA sequences were
obtained: sense 5-GAAAUGUUGUAGAUAUAAATT-3' and
antisense 5-UUUAUAUCUACAACAUUUCTT-3 of
TCONS_00 544 451.

Plasmids were transfected into SCs or 293T cells using
Lipofectamine 3000 reagent (L3000015, Invitrogen, USA)
following the manufacturer’s instructions. The TCONS_00 544
451 sequence was amplified in vitro, then cloned into a
pcDNA3.1(+) vector (Generay, China) to generate
recombinant plasmids, including negative control, over-
expression TCONS_00 544 451, pcDNA3.1(+)-GFP,
pcDNA3.1(+)-GFPmut (start codon ATGGTG mutated to
ATTGTT), 5 UTR-ORF-GFP, and 5 UTR-ORFmut-GFP (start
codon ATG mutated to ATT).

CCK-8 assay

A cell proliferation assay was conducted using the Cell
Counting Kit-8 (CK04, Dojindo, Japan) following the
manufacturer’s protocols. Briefly, SCs were seeded into 96-
well plates. After 24 h, 48 h, 72 h, and 96 h, fresh medium
consisting of 90 yL of growth medium and 10 pL of CCK-8
reagent was added to the wells, followed by incubation at 37°C
for 4 h in a 5% CO, atmosphere. After incubation, optical
density (OD) was determined at 450 nm using a microplate
reader.

5-Ethynyl-2’-deoxyuridine (EdU) assay

After 48 h of transfection, SCs were labeled using an EdU
assay kit (C10310-1, RiboBio, China) following the
manufacturer’s protocols. The SCs were incubated with EdU-
containing medium for 2 h, then fixed by 4%
paraformaldehyde (P1110-500, Solarbio, China) for 30 min.
Subsequently, Apollo® staining was performed at room
temperature in the dark for 30 min to label synthetic DNA.
Finally, the SCs were counterstained with 4’,6-diamidino-2-
phenylindole (DAPI, C0065-50mL, Solarbio, China), and
inverted fluorescence images were acquired using a confocal
microscope.

Flow cytometry (FCM)

After 48 h of transfection, SCs were washed in cold
phosphate-buffered saline (PBS) and harvested by digestion
with 0.25% trypsin-EDTA solution. The cells were fixed
overnight in 70% absolute ethanol pre-cooled at —20°C. The
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cell cycle was then assessed using a cell cycle staining kit
(MultiSciences, China) and analyzed by flow cytometry
(Beckman, USA).

Western blotting

Cell samples were lysed using RIPA buffer (R0010, Solarbio,
China) and protein concentration was detected using a BCA
Protein Assay Kit (P0012, Beyotime, China). Protein samples
were separated by sodium dodecyl sulfate—polyacrylamide gel
electrophoresis (SDS-PAGE, PG112, epizyme, China),
transferred to polyvinylidene fluoride (PVDF) membranes
(FFP39, Beyotime, China), and immunoblotted with various
primary antibodies at 4°C overnight, including GFP (1:1 000,
66002-1-lg, Proteintech, China), CDK1 (1:1 000, 65 182-1-Ig,
Proteintech, China), CDK2 (1:1 000, 10122-1-AP, Proteintech,
China), PKA (1:1 000, 4782S, Cell Signaling Technology,
USA), p-PKA (1:1 000, 9621S, Cell Signaling Technology,
USA), CREB (1:1 000, 9197S, Cell Signaling Technology,
USA), p-CREB (1:1 000, 9198S, Cell Signaling Technology,
USA), MyoD (1:1 000, 18943-1-AP, Proteintech, China), MyoG
(1:1 000, ab1835, Abcam, UK), SRF (1:1 000, 5147S, Cell
Signaling Technology, USA), GAPDH (1:4 000, HRP-60004,
Proteintech, China), and B-actin (1:4 000, 66009-1-Ig,
Proteintech, China). After washing with Tris Buffered Saline
with Tween-20 (TBST, HX1893, Huaxingbio, China), the
membranes were incubated with secondary antibodies
(1:5 000, Solarbio, China) for 1 h at room temperature.
Western blotting was performed using a High-Sig ECL Kit
(180-501, TANON, China) for chemiluminescence.

Immunofluorescence

After 24 h of transfection, SCs were induced to fuse and
differentiate with 2% horse serum DMEM/F12. After 3 days of
differentiation, the cells were fixed with 4% paraformaldehyde
for 40 min at room temperature, followed by washing with
PBS. Cell membranes were then permeabilized with 0.5%
Triton X-100 (C0065, Solarbio, China) in PBS for 10 min at
37°C. Blocking was performed with 3% goat serum (C01-03
001, Bioss, China) at 37°Cfor 1 h. The cells were then
incubated overnight with the primary antibody MyHC (1:200,
sc-376157, Santa Cruz Biotechnology, USA) at 4°C. The next
day, the primary antibody was removed, and the cells were
washed with PBS three times (5 min each). The cells were
then incubated with fluorescent secondary antibody (1:100,
A11001, Invitrogen, USA) at 37°Cfor 1 h. Nuclei were
counterstained using DAPI for 5 min at room temperature.
Finally, fluorescence images of SCs were acquired using a
confocal microscope.

Statistical analysis

All graphs were generated using GraphPad Prism v.8.0.
Experimental data are presented as the meanztstandard error
of the mean (SEM). Differences between the negative control
and treatment groups were analyzed using a two-tailed
Student t-test. Statistical significance was indicated as follows:
" P<0.05; ": P<0.01; ™": P<0.001.

RESULTS

Overview of sequencing data

To systematically characterize INCRNA expression and identify
potentially functional IncRNAs involved in ovine longissimus
dorsi muscle development, the expression profiles of IncRNAs
were generated from skeletal muscle samples of 90-day-old

1264 www.zoores.ac.cn

embryos (F90), 1-month-old lambs (L30), and 3-year-old adult
sheep (A3Y) wusing ribosome-depleted, strand-specific
transcriptome sequencing. Each sample yielded more than
10 Gb of raw paired-end reads. The average GC content of
clean reads was 49.08%, and Q30 percentages exceeded 87%
for all samples (Supplementary Table S2). Over 83% of the
clean reads from each sample were aligned to the Ovis aries
reference genome (Oar v.4.0). Principal component analysis
(PCA) of the IncRNA expression profiles (Figure 1A) revealed
clear separation of the nine samples into three distinct groups.
The gPCR results corroborated the transcriptome sequencing
data (Supplementary Figure S1), indicating high reliability of the
dataset for subsequent analysis.

Characterization of mMRNAs and IncRNAs

In total, 4 738 IncRNAs were identified across the three
developmental stages (Figure 1B). Analysis of exon
characteristics indicated that the vast majority of IncRNAs
contained two exons, while most mRNAs contained one exon
(Figure 1C), consistent with previous reports on exon
characteristics (Wei et al., 2023). Length distribution analysis
indicated that most IncRNAs ranged from 200 bp to 1 600 bp
or exceeded 3 000 bp, while most mRNAs were longer than
3 000 bp (Figure 1D). The open reading frames (ORFs) of
IncRNAs were shorter than those of mRNAs, ranging from
0 bp to 200 bp for IncRNAs compared to 0 bp to 1 000 bp for
mRNAs (Figure 1E).

DE IncRNAs during ovine muscle development

A total of 997 DE IncRNAs were identified across the three
developmental stages, with 365, 86, and 14 stage-specific
IncRNAs found in the F90 vs. A3Y, F90 vs. L30, and L30 vs.
A3Y comparisons, respectively (Figure 2A). The numbers of
up-regulated and down-regulated INcRNAs in the three groups
are shown in Figure 2B. Hierarchical clustering revealed that
the expression of IncRNAs displayed strong temporal
specificity across developmental stages (Figure 2C).

To investigate the biological functions of the genes
potentially regulated by the overlapping DE IncRNAs across
the three groups, GO and KEGG analyses were performed for
their cis- and trans-targeted genes (Kopp & Mendell, 2018).
The top 20 significantly enriched GO terms and KEGG
pathways were identified. GO terms were classified into
biological process (BP), cellular component (CC), and
molecular function (MF) categories. As illustrated in Figure 2D,
genes were enriched in BP terms associated with adenylate
cyclase-activating  G-protein-coupled receptor  signaling
pathway, phospholipid metabolic process, and positive
regulation of cytosolic calcium ion concentration. In the CC
category, genes were enriched in terms related to integral
component of membrane, integral component of plasma
membrane, plasma membrane, extracellular region, and cell
surface. In the MF category, genes were enriched in terms
associated with transcriptional activator activity, calcium ion
binding, and RNA polymerase |l transcription factor activity.
These findings suggest that these genes may be involved in
cell fate determination and cellular signal transduction. KEGG
analysis further revealed gene enrichment in the cAMP
signaling pathway, Wnt signaling pathway, fat digestion and
absorption, and insulin secretion (Figure 2E).

STEM analysis
As the transcriptomic data were obtained from ovine skeletal
muscle at three developmental stages, the expression profiles
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of DE IncRNAs were determined by STEM analysis. To
explore the persistent expression changes of IncRNAs, 16
clustering profiles were generated, eight of which were
significant (Supplementary Figure S2). Among these, we
focused on profile 12, which displayed continuous up-
regulation, and profile 3, which exhibited continuous down-
regulation without inflection points. In profile 12, 84 DE
IncRNAs were significantly up-regulated (Figure 3A;
Supplementary Table S3). KEGG enrichment analysis showed
that the predicted target genes of these DE IncRNAs were
associated with carbohydrate digestion, absorption signaling
pathways, and disease-related pathways (Figure 3B). GO
analysis indicated that the predicted target genes were
associated with transmembrane transport, cell periphery,
membrane, and plasma membrane (Figure 3C). The top five
DE IncRNAs from profile 12 (TCONS_00 330 276, TCONS_01
105 309, TCONS_00 783 895, TCONS_00 389 861, and
TCONS_00 838 251) and their predicted target genes,
including TNNC2, MyoM1, ACTN4, and PPP1R3A (Table 1),
are reportedly related to muscle development. In profile 3, 63

DE IncRNAs were significantly down-regulated (Figure 3D;
Supplementary Table S4). KEGG results showed that the
predicted target genes of these DE IncRNAs were enriched in
the calcium, Wnt, and cAMP signaling pathways (Figure 3E).
GO analysis indicated that the predicted target genes were
associated with nervous system development, cell periphery,
synaptic signaling, and passive transmembrane transporter
activity (Figure 3F). The top five DE IncRNAs and
corresponding potentially regulated genes in profile 3 are
shown in Table 2. Notably, TCONS_00 790 974, TCONS_00
774 517, TCONS_00 685 284, TCONS_00 164 122, and
TCONS_01 405 904 showed abundant expression, with their
predicted target genes, such as FOXM7, implicated in
myogenesis.

LncRNA-mRNA network analysis

A network of 2 526 IncRNA-mRNA interactions was identified
between the 76 overlapping DE IncRNAs and 995 potentially
regulated genes. To further explore the roles and regulatory
mechanisms of these INcRNAs, a correlation analysis between
mRNAs and IncRNAs was conducted using PCCs, with
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|PCC|20.99 as the threshold for constructing the interactive
network. As shown in Figure 4 (Supplementary Figure S3), the
network revealed 25 IncRNAs and 77 mRNAs. Notably,
TCONS_00 544 451 was found to regulate a significant
number of genes enriched in pathways related to muscle
development, such as the cAMP, Wnt, and PI3K-Akt signaling
pathways. In the STEM analysis, TCONS_00 544 451 was
significantly enriched in expression profile 0, showing a
marked decrease after birth (Supplementary Figure S2).
Therefore, TCONS_00 544 451 was selected for further
functional verification.

Identification of IncRNA GTL2 as a ncRNA

TCONS_00 544 451 was located on ovine chromosome 18
and overlapped with GTL2. We identified transcript variant
X10 of GTL2 (Figure 5A; Supplementary Table S5) and
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named it INcRNA GTL2 in subsequent research. To confirm
whether the start codon of INcRNA GTL2 is active, a series of
plasmid expression vectors were constructed, including
GFPwt, GFPmut (with the start codon ATGGTG mutated to
ATTGTT), 5’UTR-ORFmut-GFPwt (with the start codon ATG
mutated to ATT), and 5UTR-ORFmut-GFPmut (expressing a
GFPmut ORF fusion at the C-terminus of 5’UTR-ORFmut)
(Figure 5B). Western blot analysis clearly demonstrated a lack
of 5UTR-ORFmut-GFPwt and 5’'UTR-ORFmut-GFPmut fusion
protein expression (Figure 5C). RNA-seq showed that IncRNA
GTL2 was highly expressed in the longissimus dorsi muscle of
F90, with its expression levels gradually decreasing
postnatally (Figure 5D). This trend was validated by qPCR,
which confirmed significantly higher expression of IncRNA
GTL2 in F90 compared to L30 and A3Y (Figure 5E).
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Furthermore, the expression of INcRNA GTL2 increased and
then decreased during the differentiation of ovine SCs
(Figure 5F). Taken together, these results suggest that
INncRNA GTL2 is a ncRNA, with high expression in prenatal

skeletal muscle and during
differentiation.

the early stages of SC

LncRNA GTL2 inhibits proliferation of ovine skeletal
muscle SCs

To better understand the function of IncRNA GTL2, its
expression levels were modulated in ovine skeletal muscle
SCs through RNA interference (RNAi) strategies and
overexpression vector constructs for IncRNA GTL2
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Table 1 Top five DE IncRNAs and their potentially regulated genes in continuously up-regulated profile 12 based on short time-series

expression miner (STEM) analysis

LncRNA F90 (FPKM) L30 (FPKM) A3Y (FPKM) Target gene of INCRNA
TCONS_00 330 276 746.26 3311.85 26624.87 TNNC2, SPINT4, ZNF335, PCIF1, WFDC3
TCONS_00 783 895 482.22 816.04 2801.51 FMO1, SALL4, NOD2, IL7R, TARSL2
TCONS_00 838 251 105.18 254.69 965.04 LPIN2, MYOM?1

TCONS_00 389 861 95.90 340.59 2750.72 ACTN4, MAP4K1, EIF3K, RYR1, RASGRP4
TCONS_01 105 309 42.83 169.98 1076.83 PPP1R3A

Table 2 Top five DE IncRNAs and their potentially regulated genes in continuously down-regulated profile 3 based on short time-series

expression miner (STEM) analysis

LncRNA F90 (FPKM) L30 (FPKM) A3Y (FPKM) Target gene of INcRNA
TCONS_00 790 974 2017.67 391.16 101.99 MAGEL2, SNAP25, NGFR, PDYN, KCNV1
TCONS_00 774 517 85.13 8.21 1.19 FOXM?1, CIITA, TMEM121, EXO1

TCONS_00 685 284 74.02 34.02 17.46 SCNN1B, SPATS2L, KCTD18, FOXM1
TCONS_00 164 122 34.68 17.84 8.01 TGDS, GPR180, SOX21

TCONS_01 405 904 29.06 16.96 8.24 A2ML1, STK32C, ADAMTS13, ASIC3, CCNA1
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Figure 4 Co-expression network of LncRNAs and their potentially regulated genes

Red nodes represent INcRNAs, blue nodes represent their potentially regulated genes.

(Figure 6A, F). The CCK-8 assay demonstrated that IncRNA
GTL2 knockdown significantly increased cell activity compared
to the negative control (Figure 6B). Furthermore, the EdU
assay showed that depletion of IncRNA GTL2 increased the
number of EdU-positive cells (Figure 6C). Flow cytometry
revealed that IncRNA GTL2 knockdown stimulated the
transition from the G1 to S phase of the cell cycle (Figure 6D).
Western blot analysis further confirmed that INcRNA GTL2
knockdown significantly increased the protein levels of cyclin-
dependent kinase 1 (CDK1) and cyclin-dependent kinase 2
(CDK2), known markers of cell proliferation (Figure 6E).
Conversely, overexpression of IncRNA GTL2 suppressed
ovine SC proliferation compared to the empty-pcDNA3.1(+)
group (Figure 6C-J).

LncRNA GTL2 promotes differentiation of ovine skeletal
muscle SCs

Next, the role of IncRNA GTL2 in SC myogenic differentiation
was examined. Knockdown of IncRNA GTL2 down-regulated
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the protein expression of myogenin (MyoG), myogenic
differentiation (MyoD), and serum response factor (SRF)
(Figure 7A). Conversely, western blot analysis showed that
overexpression of INCRNA GTL2 resulted in an increase in
MyoG, MyoD, and SRF protein expression (Figure 7B).
Furthermore, INcRNA GTL2 depletion markedly suppressed
myotube formation during differentiation (Figure 7C), while
overexpression of INcRNA GTL2 promoted myotube formation
(Figure 7D). Together, these findings suggest that IncRNA
GTL2 promotes the differentiation of ovine muscle SC in vitro.

LncRNA GTL2 regulates proliferation and differentiation
of ovine SCs via the PKA-CREB signaling pathway

To explore the regulatory mechanism of IncRNA GTL2 in
myogenesis, we focused on the cAMP signaling pathway, as
indicated by KEGG enrichment analysis of genes potentially
regulated by INncRNA GTL2. Previous studies have shown that
cAMP regulates various cellular processes primarily through
protein kinase A (PKA) and its downstream effectors, such as
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Figure 5 Identification of IncRNA GTL2 as a non-coding RNA

A: Chromosomal location and length of IncRNA GTL2. Blue represents exon of GTL2, and yellow represents INcRNA GTL2. nt: nucleotide. B: GFP

fusion plasmid construction for transfection, showing wild-type GFP gene (GFPwt) with the start codon ATGGTG and mutant GFP gene (GFPmut)
with the start codon ATTGTT; IncRNA GTL2 ORF start codon ATG is mutated to ATT. C: Western blot analysis of GFP protein expression levels in
293T cells. D: RNA-seq analysis of IncRNA GTL2 expression in longissimus dorsi muscle across F90, L30, and A3Y stages. E: LncRNA GTL2
expression in longissimus dorsi muscle across three development stages (F90, L30, and A3Y). F: gqPCR detection of INcRNA GTL2 in SCs during
proliferation (GM) and differentiation (D1, D3, D5, and D7). Results are presented as meanSEM, ™: P<0.01; ™": P<0.001.

the transcription factor cAMP responsive element binding
protein (CREB) (Zhang et al., 2020a). Furthermore, activation
of the cAMP signaling pathway has been shown to promote
myogenic differentiation of C2C12 cells (Marco-Bonilla et al.,
2023). Thus, we hypothesized that IncRNA GTL2 may
regulate ovine myoblast differentiation through the PKA-CREB
signaling pathway.

To test this, we explored whether IncRNA GTL2 modulates
SC proliferation and differentiation via the PKA-CREB
signaling pathway. Results showed that overexpression of
IncRNA GTL2 significantly reduced the phosphorylation level
of PKA, while knockdown of INcRNA GTL2 did not significantly
affect SC proliferation (Figure 8A, B). Compared to the control
group, both p-CREB and p-PKA expression levels were
decreased in the INcRNA GTL2 knockdown group (Figure 8C).
Conversely, overexpression of INCRNA GTL2 increased the
protein expression levels of p-CREB and p-PKA (Figure 8D).
Collectively, these findings demonstrate that IncRNA GTL2
regulates SC proliferation and differentiation through the PKA-

CREB signaling pathway.

DISCUSSION

Increasing evidence highlights the pivotal role of INcRNAs in
regulating muscle growth and development (Sui et al., 2019;
Wang et al., 2019b; Yu et al., 2021). Although several studies
have explored IncRNA expression profiles in ovine skeletal
muscle, the precise mechanisms by which IncRNAs regulate
skeletal muscle development and growth in sheep remain
unclear. In this study, 4 738 IncRNAs were identified in ovine
skeletal muscle tissue across three key developmental stages
using RNA-seq. Similarly, previous studies on goat skeletal
muscle identified 19 880 mRNAs and 5 966 IncRNAs at two
different developmental stages (Huang etal., 2023). Our
results demonstrated that the predicted targeted genes of
overlapping DE IncRNAs were primarily involved in the cAMP
and Wnt signaling pathways, both of which are well-
established regulators of muscle development and
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Figure 6 LncRNA GTL2 inhibits proliferation of ovine skeletal muscle satellite cells (SCs)

A: Knockdown of IncRNA GTL2 utilizing RNA interference (RNAI). B: CCK-8 assay showing cell vitality of SCs transfected with negative control or
si-IncRNA GTL2. C: EdU assay detecting proliferation of SCs after knockdown of IncRNA GTL2. D: Numbers of cells in Gap 1 phase (G1),
synthesis phase (S), and Gap 2 phase (G2) were calculated by flow cytometry of si-IncRNA GTL2. E: Western blot assay of CDK1 and CDK2 in
SCs transfected with si-IncRNA GTL2. F: Cell transfection efficiency of over-IncRNA GTL2. G: CCK-8 assay showing cell vitality of SCs transfected
with empty-pcDNA3.1(+) or over-IncRNA GTL2. H: EdU assay detecting proliferation of SCs after overexpression of IncRNA GTL2. I: Numbers of
cells in Gap 1 phase (G1), synthesis phase (S), and Gap 2 phase (G2) were calculated by flow cytometry of over-IncRNA GTL2. J: Western blot
assay of CDK1 and CDK2 in SCs transfected with over-IncRNA GTL2. Results are presented as mean+SEM, ": P<0.05; : P<0.01; ™": P<0.001.

myogenesis (Chung et al., 2022; Da Silva et al., 2023; Klemm
etal.,, 2001; Russell etal., 2023), with the Wnt signaling
pathway also shown to influence the expression of myogenic
regulatory factors (MRFs) (Tajbakhsh etal., 1998; Takata
et al., 2007; Von Maltzahn et al., 2012). Additionally, pathways
involved in fat digestion and absorption, insulin secretion, and
ether lipid metabolism were also highly enriched, further
suggesting that these IncRNAs play important roles in a wide
range of biological processes.

STEM analysis is widely used to study dynamic biological
processes (Ernst & Bar-Joseph, 2006). In this study, we
applied STEM analysis to 997 DE IncRNAs involved in sheep
skeletal muscle development at three developmental stages
(F90, L30, and AS3Y). Analysis revealed significant gene
expression changes across eight profiles (15, 12, 11, 13, 0, 3,
4, and 2) (P<0.05). We focused on two significant profiles (12
and 3), which exhibited contrasting expression patterns. In
profile 3, forkhead box M1 (FoxM1), a transcriptional factor
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critical for regulating muscle cell proliferation (Chen et al.,
2018; Wang et al., 2022a), was identified as a potentially
regulated gene of TCONS_00 685 284 and TCONS_00 774
517. CIITA, a major histocompatibility complex (MHC) class I
transactivator that inhibits myogenesis by repressing MyoG in
differentiating myoblasts and reducing myogenin activity in
myotubes (Adhikari et al., 2020; Londhe & Davie, 2011), was
identified as being regulated by TCONS_00 774 517. In profile
12, bioinformatic predictions highlighted a large number of
IncRNAs potentially involved in myogenesis. For example,
myomesin-1 (MYOMT1) was identified as a target gene of
TCONS_00 838 251, with its knockout in human
cardiomyocytes reported to result in myocardial atrophy (Hang
et al.,, 2021). PPP1R3A, the target gene of TCONS_01 105
309, has been linked to reduced muscle glycogen content in
humans and mice (Savage et al., 2008). a-Actinin-4 (ACTN4),
identified as a target gene of TCONS_00 389 861, increases
the expression of muscle-specific proteins via interactions with
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Figure 7 LncRNA GTL2 promotes differentiation of ovine skeletal muscle satellite cells (SCs)

A: Western blot assay of MyoG, MyoD, and SRF in SCs transfected with negative control or I\cRNA GTL2 siRNA. B: Western blot assay of MyoG,
MyoD, and SRF in SCs transfected with empty-pcDNA3.1(+) or over-IncRNA GTL2. C: Representative myotube staining of differentiated SCs
transfected with si-IncRNA GTL2. Cells were stained with DAPI (blue) and MyHC (green) to visualize nuclei and myotubes, respectively. D:
Immunofluorescence after transfection with over-IncRNA GTL2. SCs were differentiated for 3 days in differentiation medium. Results are presented

as mean+SEM, : P<0.05; ™: P<0.01.

MEF2 (An etal., 2014; Chakraborty etal., 2006). These
findings suggest that the identified IncRNAs contribute to
skeletal muscle development in sheep.

In this study, genes potentially regulated by ovine INcCRNAs
were predicted using the LncTar tool. Based on IncRNA-
mRNA interaction network analysis, we identified 76
overlapping DE IncRNAs with potentially regulated genes
involved in muscle development, suggesting that these
IncRNAs play vital roles in ovine muscle growth. For instance,
NEKS, a gene potentially regulated by TCONS_01 396 701,
promotes myogenic differentiation through up-regulation of
caspase activity (Shimizu & Sawasaki, 2013). Similarly,
P2RX3, potentially regulated by TCONS 00 790 974, is
implicated in neuromuscular junction development in mice
(Carré etal., 2022; Hui etal., 2021). Among the down-
regulated IncRNAs, GTL2 was identified as a key regulator,
interacting with 17 potentially regulated genes in the network.
LncRNA GTL2 was highly expressed in embryonic stages,
with peak expression observed on the third day of SC
differentiation. Notably, KCNH7 (also known as EGR3), a
gene potentially regulated by IncRNA GTL2, has been
reported to promote the differentiation of normal intrafusal
muscle fibers (Belengeanu etal.,, 2014; Fernandes &
Tourtellotte, 2015). KEGG pathway analysis further revealed
that all genes potentially regulated by IncRNA GTL2 were
enriched in the Wnt and cAMP signaling pathways, both of
which participate in myogenesis and skeletal muscle
development. These findings enhance our understanding of
IncRNA GTL2 functions and suggest that it may regulate
muscle development through multiple signaling pathways.

Fan etal. (2022) reported that the expression of IncRNA
GTL2 is regulated by DNA methylation in muscle tissue,
suggesting potential involvement in ovine skeletal muscle
development and growth. LncRNA GTL2 has also been
reported to regulate muscle development through the ceRNA
mechanism, where IncRNAs compete with miRNAs to
promote the expression of target genes (Mi et al., 2023; Wang
etal, 2019a; Yao etal., 2023). Our results showed that
IncRNA GTL2 decreased the proliferation of ovine SCs while

enhancing their differentiation. This is consistent with previous
studies reporting that IncRNA GTL2 promotes the
differentiation of skeletal muscle SCs in pigs (Cheng etal.,
2020; Liu etal, 2023) and cattle (Liu etal., 2019).
Furthermore, our results indicated that IncRNA GTL2
participated in myogenesis via the PKA-CREB signaling
pathway. Specifically, I'\cRNA GTL2 inhibited the proliferation
of SCs and promoted their differentiation by affecting the
protein expression levels of phospho-PKA and phospho-
CREB. Previous studies have shown that activation of PKA
expression can reverse the inhibitory effects of isoprenaline on
C2C12 cell differentiation and myoblast fusion (Chen et al.,
2019). Additionally, CREB depletion has been reported to
accelerate the proliferation of smooth muscle cells (Klemm
etal., 2001). Inhibition of adenosine triphosphate (ATP)
release leads to reduced myotube fusion and decreased
expression of p-CREB during C2C12 differentiation (Marco-
Bonilla et al., 2023). In addition, p-CREB is highly expressed
in Pax7-expressing SCs and nascent myofibers during muscle
regeneration (Stewart etal., 2011). In conclusion, these
findings suggest that IncRNA GTL2 may have a profound
effect on myogenesis by regulating the PKA-CREB signaling
pathway.

In conclusion, we systematically characterized the IncRNA
expression profiles of sheep skeletal muscle across different
developmental stages and constructed a comprehensive
IncRNA-mRNA network for the identified DE IncRNAs. Several
IncRNAs with potential roles in muscle development were
discovered. Functional analyses revealed that key signaling
pathways, including the cAMP and Wnt signaling pathways,
were involved in sheep muscle development. Mechanistically,
IncRNA GTL2 was identified as a critical regulator of ovine
skeletal muscle development, acting through the modulation of
the PKA-CREB signaling pathway. This study not only
provides a valuable resource for understanding IncRNAs in
sheep muscle but also offers new insights into the molecular
mechanisms driving muscle development in sheep, laying the
groundwork for future studies in muscle biology and livestock
production.
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Figure 8 LncRNA GTL2 regulates proliferation and differentiation of ovine SCs via the PKA-CREB signaling pathway

A: Western blot assay of PKA, p-PKA, CREB, and p-CREB in proliferating SCs transfected with negative control or IncRNA GTL2 siRNA. B:
Western blot assay of PKA, p-PKA, CREB, and p-CREB in proliferating SCs transfected with empty-pcDNA3.1(+) or over-IncRNA GTL2. C: Western
blot assay of PKA, p-PKA, CREB, and p-CREB in differentiating SCs transfected with negative control or IncRNA GTL2 siRNA. D: Western blot
assay of PKA, p-PKA, CREB, and p-CREB in differentiating SCs transfected with empty-pcDNA3.1(+) or over-IncRNA GTL2. SCs were
differentiated for 3 days in differentiation medium. Results are presented as mean+SEM, ": P<0.05.
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