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ABSTRACT

Maternal sleep deprivation (MSD) has emerged as a
significant public health concern, yet its effects on offspring
metabolism remain poorly understood. This study
investigated the metabolomic implications of MSD on
offspring cognitive development, with a particular focus on
alterations in glutamate metabolism. Pregnant rats were
subjected to sleep deprivation during late gestation.
Plasma and brain samples from their offspring were
collected at different postnatal days (P1, P7, P14, and
P56) and analyzed using untargeted metabolomics with
liquid chromatography-mass spectrometry. Metabolomic
analysis revealed significant differences in various amino
acids, including L-glutamate, L-phenylalanine, L-tyrosine,
and L-tryptophan, which are crucial for cognitive function.
Subsequent differential analysis and partial least squares
discriminant analysis (sPLS-DA) demonstrated a gradual
reduction in these metabolic differences in the brain as the
offspring underwent growth and development. KEGG
pathway analysis revealed differential regulation of several
pathways, including alanine, aspartate, and glutamate
metabolism, glutathione metabolism, arginine biosynthesis,
aminoacyl-tRNA biosynthesis, histidine metabolism, and
taurine  and hypotaurine metabolism, at different
developmental stages. Mantel and Spearman analyses
indicated that the observed changes in metabolites in MSD
progeny may be related to various gut microbes,
Ruminococcus_1,  Ruminococcaceae_UCG-005, and
Eubacterium_coprostanoligenes_group. Biochemical
assays further demonstrated developmental changes in
the L-glutamate metabolic pathway. Collectively, these
findings suggest that MSD not only affects maternal well-
being but also has enduring metabolic consequences for
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offspring, particularly impacting pathways linked to
cognitive function. This highlights the importance of
addressing maternal sleep health to mitigate potential
long-term consequences for offspring.
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INTRODUCTION

Maternal sleep deprivation (MSD) has become an increasingly
prevalent concern, with a substantial proportion of expectant
mothers experiencing inadequate rest. According to the
National Sleep Foundation, between 46% and 78% of
pregnant women suffer from sleep disorders (Smyka et al.,
2020). The implications of sleep deprivation during pregnancy
extend beyond maternal discomfort, influencing both maternal
and fetal health. MSD during pregnancy can trigger a series of
changes in neuroendocrine and immune responses,
potentially disrupting uteroplacental circulation and impairing
fetal brain development. These physiological changes can
increase the susceptibility of offspring to emotional disorders
in adulthood, such as anxiety and depression (Pires et al.,
2010). Furthermore, MSD during pregnancy can alter the
developmental trajectory of offspring, manifesting as
disruptions in the sleep-wake cycle, increased risk of
hypertension, dysregulation of the hypothalamic-pituitary-
adrenal axis, compromised renal function, and changes in sex
hormone levels (Alvarenga et al., 2013; Aswathy et al., 2018;
Lima et al., 2014).

A Dbidirectional relationship exists between sleep and
metabolism, whereby sleep disturbances can impact
metabolic function, and metabolic imbalances can affect sleep
patterns (Davies et al., 2014). Sleep deprivation and related
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disorders have been closely linked to alterations in glucose
metabolism, insulin resistance, dysregulated appetite
hormones, and increased risk of obesity and type 2 diabetes
(Shigiyama etal., 2018). Adequate sleep is essential for
maintaining the balance of neurotransmitters in the brain,
including that of dopamine, serotonin, and norepinephrine.
Disruptions in sleep can lead to neurotransmitter disruption,
affecting mood, cognition, and appetite regulation (Omond
et al., 2022). Long-term sleep deprivation can have numerous
deleterious effects on the body, including psychological
disorders (such as low mood, depression, and anxiety),
decreased attention and memory, and impaired learning ability
(Banks & Dinges, 2007; Rasch & Born, 2013). Furthermore,
sleep disturbances during pregnancy can lead to a variety of
metabolic disorders, including disruptions in sugar metabolism
and hormone levels (O'Keeffe & St-Onge, 2013; Parry et al.,
2006)

Although extensive research has demonstrated the impact
of sleep on maternal health during pregnancy, the relationship
between maternal sleep disturbances and fetal health remains
inadequately explored. Preliminary studies suggest that
conditions such as obstructive sleep apnea, sleep
disturbances, and maternal sleep position may adversely
impact fetal development, potentially leading to changes in
growth patterns, variations in gestational length, and even
fetal death (Warland et al., 2018). In rodent models, MSD has
been shown to impair cognitive development in offspring and
elevate the risk of depression (Peng et al., 2016; Wu et al.,
2014). Additionally, postnatal interventions, such as prolonged
exposure to enriched environments, have been found to
ameliorate the cognitive deficits in offspring resulting from
MSD (Wei etal.,, 2024; Zhang etal., 2023). However, the
precise mechanisms by which MSD affects cognitive
development in offspring remain unclear.

In a recent study, we found that MSD during pregnancy
significantly impairs hippocampal CA1 synaptic transmission
and long-term potentiation (LTP) (Peng et al., 2016). We also
demonstrated that MSD reduces GluA2-containing a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
at hippocampal synapses in offspring, leading to emotional
and cognitive dysfunction (Yu et al., 2018). To further explore
the mechanisms by which MSD affects cognitive development,
we conducted comprehensive metabolomic analyses of brain
and blood samples from offspring at different developmental
stages. This study aims to provide a foundation for future
diagnostic and therapeutic strategies to mitigate the adverse
effects of MSD on offspring, thereby improving long-term
health outcomes.

Sleep deprivation

MATERIALS AND METHODS

Animal and MSD model

Sprague-Dawley rats were obtained from the Animal Care
Center of Chongging Medical University and mated at the
Children’s Hospital of Chongging Medical University. Pregnant
rats were individually housed in ventilated cages with
unrestricted access to food and water, maintained at a
controlled temperature (23-25°C) under a 12/12 h light/dark
cycle (0730h—-1930h). The rats were acclimated to these
conditions by gentle handling for 6 days (5 min/cage/day),
starting on day 15 of pregnancy (Vecsey etal.,, 2013).
Subsequently, the rats were randomly assigned into an MSD
group and a control group. The MSD model was established
during late pregnancy (gestation days 15-21) through gentle
handling for 6 h per day (1200h—1800h) (Peng et al., 2016;
Radhakrishnan et al., 2015), which effectively prevented the
pregnant rats from sleeping. Gentle physical stimuli, such as
tapping the cage or lightly touching the rats, were used to
keep the animals awake. This MSD model was established to
minimize stress on the pregnant rats. All animal experiments
were performed in accordance with the Chongqging Science
and Technology Commission guidelines and approved by the
Animal Ethics Committee of the Children’s Hospital of
Chongqing Medical University (approval number CHCMU-
IACUC20210114017). Every effort was made to alleviate
animal suffering and reduce the number of animals used.

Sample collection and processing
As shown in Figure 1, plasma and brain samples were
collected from offspring at four developmental stages:
postnatal day 1 (P1) for control and MSD groups (Ctrl-P1:
n=10; MSD-P1: n=8), postnatal day 7 (P7) for control and
MSD groups (Ctrl-P7: n=12; MSD-P7: n=8), postnatal day 14
(P14) for control and MSD groups (Ctrl-P14: n=11; MSD-P14:
n=8), and postnatal day 56 (P56) for control and MSD groups
(Ctrl-P56: n=11; MSD-P56: n=8). Plasma was obtained by
collecting arterial blood from decapitated pups into
anticoagulant EP tubes. The samples were centrifuged at
1 000 rpm for 10 min at room temperature, with the resulting
supernatant aspirated and stored at -80°C.

Each brain was bisected; the left hemisphere was placed in
a centrifuge tube and immediately immersed in liquid nitrogen,
while the right hemisphere was dissected into hippocampal
and cortical regions, each placed into separate centrifuge
tubes and immersed in liquid nitrogen. All samples were
subsequently transferred to a —80°C freezer for preservation.

Metabolite extraction
Plasma samples (50 yL) were centrifuged at 14 000 xg for 10
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Figure 1 Animal model and sampling
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Pregnant rats were exposed to MSD for 6 h daily during gestation days 15-21, with prior acclimation to gentle handling procedures. Plasma, brain
tissue, and intestinal content samples were collected from offspring on postnatal days 1, 7, 14, and 56 (P1, P7, P14, and P56, respectively).
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min at 4-8°C, with the resulting supernatant transferred to a
new 1.5 mL microcentrifuge tube. Methanol cooled to -80°C
was added to the supernatant to achieve a final 80% (v/v)
methanol solution. The mixture was vortexed and left at —20°C
for 60 min, then centrifuged at 14 000 xg for 20 min at 4°C.
The final supernatant was transferred to a new 1.5 mL
microcentrifuge tube and freeze-dried to form a precipitate.
Whole-brain tissue samples were weighed and ground in
liquid nitrogen, then mixed with methanol and water (v/v 4:1).
Subsequent procedures were identical to those used for the
plasma samples.

Liquid chromatography-mass spectrometry (LC-MS)

Mass spectrometry was performed using the Sciex TripleTOF
6600 system (AB SCIEX, USA) equipped with an electrospray
ionization (ESI) source in both positive and negative ionization
modes. The ESI source conditions were as follows: nebulizer
(Gas 1), 50 psi; heater (Gas 2), 45 psi; curtain gas flow, 30
psi; source temperature, 550°C; ion spray voltage floating,
+5500 V (+) and -4 500 V (-).

The mass spectrometer was coupled with a Shimadzu high-
performance liquid chromatograph (HPLC) (ExionLC™ AD,
USA). Separations were performed using an ACQUITY UPLC
HSS T3 column (100 mm x 2.1 mm, 1.8 ym, Waters, USA)
and ACQUITY UPLC BEH amide column (100 mm x 2.1 mm,
1.7 um, Waters, USA). The T3 column was operated at a flow
rate of 0.3 mL/min with water containing 0.1% formic acid (A)
and acetonitrile (B) as mobile phases. The amide column was
operated at a flow rate of 0.2 mL/min with a gradient elution of
15 mmol/L ammonium formate (A) and acetonitrile (B). A 5 pL
sample volume was injected for each analysis. To minimize
the potential impact of fluctuations in instrument detection
signals, samples were kept in an automatic injector at 4°C and
analyzed in random order. Quality control (QC) samples were
inserted at regular intervals throughout the analysis to monitor
and assess system stability and data reliability.

Biochemical assays

Concentrations of glutamate, glutathione, and cysteine in
blood, hippocampal, and cortical samples were detected using
a Glutamate measurement kit (Sangon, China), Reduced
glutathione (GSH) assay kit (Jiancheng, China), and Cysteine
(Cys) content test kit (Jiancheng, China), respectively.

Metabolite data processing and annotation

The MS-derived raw data were subjected to data
preprocessing using Compound Discoverer (v.3.0) (Thermo
Fisher Scientific, USA), including peak extraction, peak
alignment, peak calibration, and normalization. Metabolite
structural identification was performed using accurate mass
matching (<25 ppm) and tandem mass spectrometry (MS/MS)
spectral matching. Annotation of LC-MS-based untargeted
metabolomic data was performed using MetDNA2
(http://metdna.zhulab.cn/) (Shen et al., 2019).

Statistical analysis

Supervised partial least squares discriminant analysis (sPLS-
DA) was performed using R (v.4.2.2) and the mixOmics
(v.6.22.0) and MASS (v.7.3.60) packages. The sPLS-DA
model was implemented with variable importance in projection
(VIP)>1 and P<0.05. Volcano plot analysis was conducted
with a significance threshold of P<0.05 using the ggrepel
(v.0.9.4) and ggplot2 (v.3.4.4) packages, while heatmap
visualization was performed using the pheatmap (v.1.0.12)
package in R.

Spearman rank correlation coefficients were determined
using the Mantel test in ggcorrplot (v.0.1.4.1) to investigate the
correlations between gut microbiota and blood/brain
metabolites. Gut microbiota sequencing data were obtained
from our previous research (Yao etal., 2022). Data analysis
was carried out using GraphPad Prism (v.8.0), applying
Student t-tests to assess significance, which was determined
at P<0.05.

Receiver operating characteristic (ROC) analysis was
utilized to predict biomarkers in MSD offspring. Average ROC
curves were constructed using outcomes from bootstrap
resampling, and the area under the curve (AUC) was
determined for mean ROC curves. Metabolites with an AUC
value greater than 0.5 were considered potential biomarkers
for MSD offspring.

Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) enrichment analyses were performed to
determine changes in biological pathways and functions
caused by differential metabolites. Enrichment analyses
were performed using the Genomes (KEGG) database
and MetaboAnalyst (v.3.0) (http://www.metaboanalyst.ca/
MetaboAnalyst/).

RESULTS

Alterations in plasma metabolites in MSD offspring
Untargeted metabolomic analysis of plasma samples from
offspring at different developmental stages (P7, P14, P56) in
both the MSD and control groups revealed significant
alterations (Figure 2A-Il). Data from P1 were excluded from
Figure 2 and Supplementary Table S1 due to varying degrees
of hemolysis during plasma collection. LC-MS profiling
identified a total of 7 533 peaks. At P7, 58 metabolites were
significantly reduced and 64 were significantly elevated. At
P14, 110 metabolites were significantly decreased and 169
were markedly increased. At P56, 294 metabolites were
significantly reduced and 128 were markedly elevated
(Figure 2A—-C). The top 50 differentially expressed metabolites
at each developmental stage were Vvisualized through
hierarchical cluster heatmaps (Supplementary Figure S1). The
sPLS-DA results are depicted in Figure 2D-F.

Differential analysis between the MSD and control groups
identified significant changes in 27 metabolites across all three
developmental time points (P7, P14, and P56) (Figure 2G;
Supplementary Table S1). The VIP scores for these
metabolites are shown in Figure 2H. Most of these metabolites
were amino acids and their derivatives, including L-tryptophan,
L-histidine, L-glutamate, L-carnitine, and L-phenethylamine,
which are closely associated with brain function. L-tryptophan
and L-histidine, essential for neurotransmitter synthesis
(Wurtman, 2011), showed lower concentrations during early
development in MSD-exposed offspring, but higher blood
concentrations in adulthood. L-glutamate, a critical excitatory
neurotransmitter, showed a decreasing, though not statistically
significant (VIP<1), trend, as did its precursor, glutamine.
Previous untargeted LC-MS analyses have demonstrated that
sleep deprivation is associated with elevated blood levels of L-
glutamate (Hu et al., 2021). Betaine, which plays a key role in
methylation (Zhao et al., 2018), and 5-oxoproline, known for
its antioxidant properties (Pederzolli etal., 2007), are both
associated with cognitive function. Pantothenate (vitamin B5)
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is crucial for energy metabolism and serves as a precursor for
coenzyme A (CoA), which is involved in multiple metabolic
pathways. L-carnitine supports energy metabolism via the
transportation of fatty acids (Madsen et al., 2018). Stearidonic
acid, an omega-3 polyunsaturated fatty acid, exhibits potential
neuroprotective benefits. Studies on acute sleep deprivation
have also reported significant increases in tryptophan,
biogenic amines, serotonin, and taurine (Davies et al., 2014),
which may directly impact offspring development during
pregnancy.

Alterations in brain metabolites in MSD offspring

Untargeted metabolomics analysis was conducted on brain
samples from MSD-exposed offspring at different
developmental stages (P1, P7, P14, and P56). This included
variance analysis with volcano plots (Figure 3A-D), sPLS-DA
analysis (Figure 3E—H), and hierarchical clustering analysis of
the top 50 differential metabolites at each time point visualized
using heatmaps (Supplementary Figure S2). LC-MS analysis
identified a total of 7 533 peaks. As shown in Figure 3A-D,
distinct metabolic differences were observed in the brain
samples of MSD-exposed offspring at each developmental
stage. At P1, 600 metabolites were elevated, while 559 were
reduced. At P7, 665 metabolites were increased, with 619
decreased. At P14, 150 metabolites were increased, with 146
decreased. At P56, 37 metabolites were elevated and 16 were
reduced. These findings demonstrate a progressive decline in
the number of differentially abundant metabolites between
MSD and control offspring with age, with the fewest changes
observed at P56. The sPLS-DA results (Figure 3E-H)
corroborated this trend, showing a reduction in metabolic
profile divergence between MSD and control offspring as they

aged. These findings suggest that MSD profoundly impacts
brain development in offspring, with metabolic alterations
normalizing over time. Our previous research demonstrated
cognitive impairments in adult MSD-impacted offspring (Peng
et al., 2016), indicating that these deficits may originate during
development, thus highlighting the importance of early-life
interventions and potential for restoration in the adult brain.
Metabolites in brain samples from MSD and control
offspring were analyzed at four developmental stages (P1, P7,
P14, and P56), with a total of 36 metabolites found to exhibit
significant changes across all stages (Figure 3l;
Supplementary Table S2). The VIP scores of these
metabolites are shown in Figure 3J. In contrast to the plasma
results, L-glutamate levels were elevated in the brains of MSD
offspring. Glutathione levels increased during the neonatal
and early childhood stages but were lower than those of the
control group in adolescence and adulthood. Reduced
glutathione biosynthesis can lead to increased cytoplasmic
glutamate and miniature excitatory postsynaptic current
(mEPSC) frequency, suggesting that glutathione may serve as
a physiological reservoir for glutamate neurotransmission
(Sedlak et al.,, 2019). Phospholipid derivatives, such as sn-
glycero-3-phosphoethanolamine, choline phosphate,
ethanolamine phosphate, and inositol, are essential for cell
membrane structure and function (Feng et al., 2020; Hadinoto

etal., 2013; Kim etal., 2013; White etal, 2021).
Abnormalities in  membrane function can  disrupt
neurotransmitter release and reuptake, impact neuronal

development and connectivity, and influence synaptic
plasticity (Wheal et al., 1998). Our previous study showed that
MSD increases AMPA receptor internalization (Yu etal,
2018), decreases LTP, and reduces neuronal generation
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Figure 2 Untargeted metabolomic analysis of plasma samples from offspring at different developmental stages
A-C: Volcano plot of differential metabolites between MSD and control offspring at P7 (A), P14 (B), and P56 (C). D-F: sPLS-DA of metabolomes

between MSD and control offspring at P7 (D), P14 (E), and P56 (F). G:

Venn diagram of overlapping differential metabolites between MSD and

control offspring at different time points in plasma. H: VIP scores of 27 common differential metabolites identified in the Venn diagram.
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(Peng et al., 2016), all of which impair learning and cognitive
functions in offspring. These findings support the notion that
disturbances in cell membrane function can profoundly affect
synaptic transmission and cognitive development. Additionally,
metabolites involved in antioxidant and redox processes,
including gamma-L-glutamyl-L-cysteine, 5-L-glutamyl-taurine,
cystathionine, and glutathione, displayed significant changes,
indicating perturbation of antioxidant defense mechanisms in
offspring (Wurtman, 2008).

Dysregulation of glutamate and cognitive-related protein
metabolism

To investigate the impact of MSD on metabolite profiles and
developmental outcomes in offspring, sPLS-DA (Figure 4A, B)
and pathway analysis (Figure 4C) were conducted on blood
samples collected at various developmental stages. The
results identified significant changes in pathways involved in
amino acid metabolism and RNA transcription (false discovery
rate (FDR)<0.1, Supplementary Table S3). Over time, MSD
offspring exhibited notable abnormalities in several metabolic
pathways, including D-glutamine and D-glutamate
metabolism, arginine biosynthesis, histidine metabolism, and
phenylalanine metabolism (FDR<0.1, Supplementary Table

Petroff, 2002; Sutanto et al., 2022), indicating that disruptions
in these pathways may contribute to the cognitive
developmental consequences observed in MSD-exposed
offspring.

The sPLS-DA results of brain samples (Figure 4D, E)
revealed that metabolic profiles in P14 MSD-exposed offspring
were more closely aligned with those of earlier developmental
stages (P1 and P7) than with control counterparts. Further
examination of brain metabolite pathways demonstrated that
MSD exerts a profound and enduring impact on brain
metabolism in offspring. Key metabolic pathways affected
included alanine, aspartate, and glutamate metabolism,
glutathione metabolism, arginine biosynthesis, and aminoacyl-
tRNA biosynthesis (Figure 4F; Supplementary Table S4).
Consistent with the plasma results, MSD significantly
disrupted the metabolism of amino acids essential for
cognitive function in offspring, corroborating previous research
on the metabolic effects of sleep deprivation (Yoon etal.,
2019). Changes in taurine and hypotaurine metabolism were
observed at P1, P7, and P14. Acute sleep deprivation has
been shown to markedly increase taurine levels, potentially
contributing to its antidepressant effects (Davies et al., 2014).
This suggests that metabolic changes associated with

S3). These pathways are closely associated with insufficient sleep during pregnancy may be transmitted to the
neurotransmission and cognitive function (He etal., 2024; fetus and persist during growth and development.
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Figure 3 Untargeted metabolomic analysis of brain samples from offspring at different developmental stages

A-D: Volcano plot of differential metabolites between MSD and control offspring at P1 (A), P7 (B), P14 (C), and P56 (D). E-H: sPLS-DA of
metabolomes between MSD and control offspring at P1 (E), P7 (F), P14 (G), and P56 (H). I: Venn diagram of differential metabolites between MSD
and control groups at different time points in the brain. J: VIP scores of 36 common differential metabolites identified in the Venn diagram.
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Metabolite biomarker and correlation analyses of gut
microbiota
To further explore the connection between glutamate

metabolism and gut microbiota, Mantel tests were conducted
to assess correlations between gut microbiota and plasma
(27) and brain (36) metabolites showing long-term changes
(Figure 5A). Significant correlations were detected between
plasma metabolites and gut microbes Ruminococcus 1,
Ruminococcaceae_UCG-005, and Eubacterium_coprostano
ligenes_group, as well as between brain metabolites and
Ruminococcus_1 (Mantel P<0.05, Figure 5A). Both
Ruminococcus_1 and Ruminococcaceae_UCG-005 belong to
the family Ruminococcaceae, which is involved in the
production of short-chain fatty acids, particularly butyrate (Liu
etal.,, 2019). Ruminococcaceae abundance decreases with
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age (Biagi etal., 2016), although Ruminococcaceae_UCG-
005 taxa can be enhanced through physical activity (Tabone
et al., 2021). Eubacterium_coprostanoligenes_group is known
to mediate the effects of a high-fat diet on dyslipidemia
through cholic acid metabolism (Wei et al., 2021), with oral
administration shown to significantly reduce cholesterol levels
(Li et al., 1995).

Spearman correlation analysis indicated that Lactobacillus
and Oscillibacter were significantly correlated with various
plasma metabolites, particularly those involved in amino acid
metabolism, such as L-tyrosine, L-citrulline, L-tryptophan, L-
kynurenine, L-phenylalanine, and L-histidine (Figure 5B, C).
Oscillibacter, a member of the Ruminococcaceae family, has
been reported to reduce blood triglyceride levels and
marginally impact body mass index and waist-to-hip ratio (Liu
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Figure 4 sPLS-DA and pathway analysis of MSD and control offspring

A-B: sPLS-DA plots of metabolomes in control (A) and MSD plasma (B) across all developmental stages. C: Graphical representation of pathway
analysis of plasma samples (FDR<0.05). D, E: sPLS-DA plots of metabolomes in control (D) and MSD brain (E) across all developmental stages. F:
Graphical representation of pathway analysis of brain samples (FDR<0.05).
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etal.,, 2022). Similarly, Lactobacillus is directly involved in
tryptophan metabolism, producing a wide range of tryptophan-
derived metabolites (Montgomery etal., 2022), and its
abundance decreases when tryptophan intake is strictly
limited (Zapata etal, 2018). In conditions like chronic
intermittent hypoxia, as observed in obstructive sleep apnea,
an increase in Lactobacillus species occurs alongside a
decrease in tryptophan levels (Wang etal., 2022). In brain
metabolites, positive correlations were observed between
Ruminococcus_1, Ruminococcaceae_UCG-005, and L-
glutamate, a crucial neurotransmitter in the central nervous
system (Figure 4C). The Ruminococcaceae family has been
implicated in the synthesis of both glutamate and gamma
aminobutyric acid (GABA) (Radjabzadeh etal, 2022).
Extensive correlations were identified between various
members of the Ruminococcaceae family, including
Ruminococcus_1, Ruminococcaceae_UCG-005, and
Oscillibacter, and different metabolites. Previous studies have

indicated that Ruminococcus_1 and Ruminococcaceae_UCG-
005 show an increasing trend in sleep-deprived mothers and
their offspring, correlating positively with neuroinflammatory
factors IL-18 and TNF-a (Yao etal., 2022). These findings
suggest that the Ruminococcaceae family may be a promising
target for future research aimed at ameliorating the impact of
sleep deprivation on offspring.

The shared differential metabolites identified in both brain
and plasma across different growth stages included L-
glutamate, L-phenylalanine, L-tryptophan, L-tyrosine, and
inosine monophosphate (Figure 5D). Changes in the levels of
these four amino acid metabolites between the MSD and
control groups at different periods are shown in Figure 5E, F.
ROC analysis and the corresponding AUC values are shown
in Supplementary Figures S3, S4 and Figure 5G-J. The AUC
values for L-glutamate in the brain were 0.99, 0.82, 0.90, and
0.57, suggesting that L-glutamate is a highly sensitive
biomarker for detecting the effects of MSD in the brain
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Figure 5 Analysis of relationship between metabolites and gut microbiota

A: Mantel analysis of correlation between common differential metabolites in plasma and brain with gut microbiota. B, C: Spearman analysis of

correlation between identified gut microbiota from Mantel test and common differential metabolites in plasma (B) and brain samples (C).

71 P<0.001;

"1 P<0.05;

: P<0.0001. D: Venn diagram showcasing common differential metabolites in both brain and plasma. E, F: Comparative analysis of

concentrations of five common differential metabolites in plasma (E) and brain samples (F) between MSD and control groups. G—-J: Dots, with colors
corresponding to AUCs depicted in Supplementary Figures S3, S4, signify areas under the ROC curves for metabolites exhibiting biomarker
potential for MSD-exposed offspring. Ctrl: Control group. MSD: Maternal sleep deprivation group.
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(Figure 5G; Supplementary Figure S4).

Disruption of glutamate metabolism in MSD offspring
Biochemical assays revealed a significant elevation in
glutamate levels at various developmental stages in the
hippocampus and cortex of MSD offspring (Figure 6B, C),
while no notable differences were detected in the plasma
(Figure B6A). In contrast, plasma glutathione levels showed an
initial rise during the early stage (P7), followed by a marked
decline in the later stages (P14, P56) (Figure 6D), with no
significant differences observed in the cortex (Figure 6E) or
hippocampus (Figure 6F). Cysteine levels also showed a
consistent upward trend during development (Figure 6G-I).
Glutamate combines with cysteine and glycine under the
catalytic action of glutamate-cysteine ligase (GCL) to form vy-
glutamylcysteine, which is further modified by glutathione
synthetase, incorporating an additional glutamate molecule to
produce glutathione (Wu etal, 2004) (Figure 7).
Consequently, the observed increases in glutamate and
cysteine levels during early development led to a rise in
glutathione production, while the subsequent reduction in
glutathione levels during later stages may have resulted from
a negative feedback regulation mechanism.

DISCUSSION

Untargeted metabolomic analysis of blood and brain samples
from MSD-exposed offspring revealed significant differences
compared to the control group. The disparity in brain
metabolites between MSD-exposed offspring and controls
gradually diminished over time, suggesting a possible

normalization or compensatory mechanism as the brain
adjusts its metabolic processes during development.
Specifically, 27 blood metabolites and 36 brain metabolites
displayed significant differences across various stages
(Supplementary Tables S1, S2). Plasma samples from P1
were excluded due to hemolysis, likely caused by the
susceptibility of neonatal vasculature and mechanical stresses
of the collection procedure, which exacerbated red blood cell
fragility. Pathway analysis identified key alterations in several
metabolic pathways critical to development, including alanine,
aspartate, and glutamate metabolism, glutathione metabolism,
arginine biosynthesis, aminoacyl-tRNA biosynthesis and
histidine metabolism. These pathways, which have been
previously associated with the impact of sleep deprivation on
metabolism (Davies etal., 2014), highlight the extensive
effects of MSD. These findings suggest that MSD not only
affects the mother but also has cascading effects on the
offspring, impacting their physiological and cognitive functions
throughout growth.

L-glutamate, a critical amino acid and neurotransmitter in
the central nervous system, is essential for physiological
processes such as cognition, learning, and memory
(Chakraborty et al., 2023; Mdller, 2023). Prior studies have
shown that MSD elevates microglial activation in offspring,
creating an inflammatory environment that triggers significant
glutamate release (Piani et al., 1992; Zhao et al., 2014). This
release is facilitated through gap junction hemichannels
composed of connexin proteins, which are up-regulated in
response to brain injury and inflammation (Yawata etal.,
2008). Glutamate plays a pivotal role in multiple metabolic

2 Glu-plasma 3 Glu-cortex 5 Glu-hippocampus
3 04 E 10 . g 5 wewe
E Dorl § - gace 5 O Crrl
2 0s CIMsD g 08 - Cmsd 2 " 1 MSD
© «© - i
5 § o 5"
2 02 T a =
3 3 5
— s 04 [}
c b 5 o8
% ot '.(.45; 0.2 3
£ 2 5 a1 ﬂ
g0 4 Y y g oty J y y g P7 P14 P56
g P7 P14 P56 g P1 P7 P14 P56 8
O [&]
g GSH-plasma 5 GSH-cortex 3 GSH-hippocampus
£ 2 =
=] % Q800 g 1600
A [ - oo 5 o cul £ =1V
Z 40 : CIMSD 1 sw QMo o I MsD
0
8 8 @ 1000
O 4o o -
o O 400 [~
‘5 200 5 S
® ® £ 500
E=4 £ 200 <
§ 100 |§'| € 8
2] =
s , : : s 8
° R P P8 N h Pz Pl PS8 ' P7T P14 P56
Z Cys-pl g C rti 5 Cys-hippocampus
E ys-plasma £ ys-cortex S
g os £ 25 Ei1sq .
2 e = Ctrl - = Ctrl 2 = ctrl
2 o cIMsD 2 20 - 1 MSD % 1 MSD
£ O T S
% % o % 1.0
o l 5 s
5 S 1o 2
< 5 Sas
flmm A Rl ﬂﬂ :
s =4 c
g e I*I ' ) g oo P1 7 P14 P56 £
§ R P Bos 3 8 P1 P7 P14 P56

Figure 6 Biochemical assessment of glutamate, glutathione, and cysteine levels

A-C: Glutamate concentrations in plasma (A), cortex (B), and hippocampus (C). D-F: Glutathione concentrations in plasma (D), cortex (E), and
hippocampus (F). G-I: Cysteine concentrations in plasma (G), cortex (H), and hippocampus (I). Glu: Glutamate; GSH: Glutathione; Cys: Cysteine.
Ctrl: Control group. MSD: Maternal sleep deprivation group. ": P<0.05; ™: P<0.001.
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pathways and is closely associated with various differentially
expressed metabolites identified in MSD-exposed offspring. It
is synthesized via transamination, where an amino group is
transferred to a-ketoglutarate, a process catalyzed by
glutamate dehydrogenase. This enzyme also facilitates the
reversible conversion of glutamate to a-ketoglutarate, a key
intermediate of the tricarboxylic acid (TCA) cycle that
participates in various key metabolic pathways (Figure 7)
(Xiao et al., 2016) and is involved in ammonia and NAD(P)H
interconversion (Tapiero et al., 2002; Xiao et al., 2016). Sleep
deprivation has been shown to increase glutamate levels while
reducing glutamine (Hu etal., 2021), thereby disrupting the
highly active glutamate-glutamine cycle, which is essential for
neurotransmitter balance, nitrogen regulation, and energy
metabolism in the brain (Ramadan etal., 2013). Moreover,
glutamate serves as a precursor for the synthesis of GABA, an
inhibitory neurotransmitter in the central nervous system. The
balance between glutamate and GABA neurotransmission is
essential for proper brain function and sleep regulation
(Petroff, 2002).

Our previous research showed that AMPA glutamate
receptors undergo endocytosis, and inhibiting this process can
improve cognition in MSD offspring (Yu etal., 2018). Given
this, we focused on changes in glutamate, proposing that
sustained elevation of glutamate levels may induce a negative
feedback mechanism, leading to the down-regulation of AMPA
receptors on the postsynaptic membrane. This hypothesis is
supported by evidence showing that prolonged exposure to
high glutamate concentrations can diminish glutamate
receptor functionality, potentially due to compensatory
mechanisms aimed at preventing excitotoxicity and preserving
synaptic stability. Persistently high levels of glutamate have
been linked to various neurological conditions, including drug
addiction, neurodegenerative disorders, and brain injury
(Kogan & Aghajanian, 1995; Yadav etal.,, 2023). The
compensatory reduction in AMPA receptor expression in
response to sustained high glutamate levels may serve as a
protective adaptation to mitigate the risk of excitotoxic
damage.

Emerging research has suggested that prenatal sleep
deprivation can markedly impair hippocampal neurogenesis

and cognitive development in offspring (Zhao etal., 2008,
2014). Notably, studies have shown that intermittent sleep
deprivation during pregnancy can increase proinflammatory
markers while decreasing anti-inflammatory markers in the
hippocampus of young animals, leading to reduced
hippocampal neurogenesis, impaired spatial learning,
compromised memory function, and diminished pleasure
sensation (Zhao etal., 2014). One potential explanation for
these observations is the dysregulation of microglial activation,
which plays a crucial role in mediating inflammatory responses
(Zhao et al., 2015). Activated microglia are known to release
glutamate and adenosine triphosphate (ATP) (llles etal.,
2020), which may account for the elevated glutamate levels
observed in MSD-exposed offspring in the present study.
Therefore, a key area of study should focus on determining
whether MSD disrupts glutamate metabolism by activating
microglial cells in offspring, thereby contributing to cognitive
impairment. Future studies should also investigate whether
modulating glutamate metabolism can alleviate synaptic and
cognitive deficits in MSD-impacted offspring.
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