Skip to main content
. 2024 Dec 11;26:e52107. doi: 10.2196/52107

Table 2.

Performance of various prediction models.

Model Training AUCa Testing AUC Precision Recall F1-score
5-year follow-up

LRb 0.72 0.67 0.01 0.70 0.02

LDAc 0.80 0.81 0.02 0.88 0.04

LGBMd 0.94 0.82 0.02 0.90 0.04

GBMe 0.86 0.82 0.02 0.95 0.05

RFf 0.95 0.81 0.02 0.88 0.04

XGBoostg 0.98 0.80 0.02 0.86 0.04

AdaBoost 0.82 0.81 0.02 0.85 0.04

Voting 0.86 0.82 0.02 0.91 0.05

ANNh,i 0.98 0.97 0.01 0.70 0.03
10-year follow-up

LR 0.68 0.67 0.01 0.73 0.03

LDA 0.78 0.78 0.02 0.85 0.04

LGBM 0.92 0.80 0.02 0.88 0.05

GBM 0.84 0.80 0.02 0.90 0.05

RF 0.94 0.80 0.02 0.85 0.05

XGBoost 0.97 0.78 0.02 0.83 0.05

AdaBoost 0.81 0.80 0.02 0.84 0.05

Voting 0.84 0.80 0.02 0.89 0.05

ANNi 0.98 0.98 0.02 0.79 0.03

aAUC: area under the curve.

bLR: logistic regression.

cLDA: linear discriminant analysis.

dLGBM: light gradient boosting machine.

eGBM: gradient boosting machine.

fRF: random forest.

gXGBoost: extreme gradient boosting.

hANN: artificial neural network.

iBest model based on area under the curve values.