Table 2.
Performance of various prediction models.
Model | Training AUCa | Testing AUC | Precision | Recall | F1-score | |||||
5-year follow-up | ||||||||||
|
LRb | 0.72 | 0.67 | 0.01 | 0.70 | 0.02 | ||||
|
LDAc | 0.80 | 0.81 | 0.02 | 0.88 | 0.04 | ||||
|
LGBMd | 0.94 | 0.82 | 0.02 | 0.90 | 0.04 | ||||
|
GBMe | 0.86 | 0.82 | 0.02 | 0.95 | 0.05 | ||||
|
RFf | 0.95 | 0.81 | 0.02 | 0.88 | 0.04 | ||||
|
XGBoostg | 0.98 | 0.80 | 0.02 | 0.86 | 0.04 | ||||
|
AdaBoost | 0.82 | 0.81 | 0.02 | 0.85 | 0.04 | ||||
|
Voting | 0.86 | 0.82 | 0.02 | 0.91 | 0.05 | ||||
|
ANNh,i | 0.98 | 0.97 | 0.01 | 0.70 | 0.03 | ||||
10-year follow-up | ||||||||||
|
LR | 0.68 | 0.67 | 0.01 | 0.73 | 0.03 | ||||
|
LDA | 0.78 | 0.78 | 0.02 | 0.85 | 0.04 | ||||
|
LGBM | 0.92 | 0.80 | 0.02 | 0.88 | 0.05 | ||||
|
GBM | 0.84 | 0.80 | 0.02 | 0.90 | 0.05 | ||||
|
RF | 0.94 | 0.80 | 0.02 | 0.85 | 0.05 | ||||
|
XGBoost | 0.97 | 0.78 | 0.02 | 0.83 | 0.05 | ||||
|
AdaBoost | 0.81 | 0.80 | 0.02 | 0.84 | 0.05 | ||||
|
Voting | 0.84 | 0.80 | 0.02 | 0.89 | 0.05 | ||||
|
ANNi | 0.98 | 0.98 | 0.02 | 0.79 | 0.03 |
aAUC: area under the curve.
bLR: logistic regression.
cLDA: linear discriminant analysis.
dLGBM: light gradient boosting machine.
eGBM: gradient boosting machine.
fRF: random forest.
gXGBoost: extreme gradient boosting.
hANN: artificial neural network.
iBest model based on area under the curve values.