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Tracking the spread of emerging pathogens is critical to the design of timely and effective 
public health responses. Policymakers face the challenge of allocating finite resources 
for testing and surveillance across locations, with the goal of maximizing the informa-
tion obtained about the underlying trends in prevalence and incidence. We model this 
decision-making process as an iterative node classification problem on an undirected 
and unweighted graph, in which nodes represent locations and edges represent move-
ment of infectious agents among them. To begin, a single node is randomly selected 
for testing and determined to be either infected or uninfected. Test feedback is then 
used to update estimates of the probability of unobserved nodes being infected and to 
inform the selection of nodes for testing at the next iterations, until certain test budget 
is exhausted. Using this framework, we evaluate and compare the performance of previ-
ously developed active learning policies for node selection, including Node Entropy and 
Bayesian Active Learning by Disagreement. We explore the performance of these policies 
under different outbreak scenarios using simulated outbreaks on both synthetic and 
empirical networks. Further, we propose a policy that considers the distance-weighted 
average entropy of infection predictions among neighbors of each candidate node. Our 
proposed policy outperforms existing ones in most outbreak scenarios given small test 
budgets, highlighting the need to consider an exploration–exploitation trade-off in policy 
design. Our findings could inform the design of cost-effective surveillance strategies for 
emerging and endemic pathogens and reduce uncertainties associated with early risk 
assessments in resource-constrained situations.

disease surveillance | active learning | network dynamics | epidemiology | public health

 Infectious disease surveillance is necessary for managing infectious disease outbreaks, enabling 
public health authorities to monitor and respond to ongoing disease spread. Notable exam-
ples in the past decade include the 2014–2016 West African and 2018–2020 Kivu Ebola 
virus epidemics, and the COVID-19 pandemic, for which the early detection and continued 
tracking of the virus’ spread helped to inform the design of interventions including targeted 
vaccination ( 1       – 5 ), case isolation ( 6       – 10 ), and social distancing ( 11     – 14 ). Without timely and 
accurate surveillance data, the effectiveness of these interventions would likely have been 
compromised. For example, travel restrictions targeted at countries where new variants of 
SARS-CoV-2 were first observed were rendered largely ineffective by delays in case detection 
and insufficient pathogen sequencing ( 15 ,  16 ). Similarly, the lack of baseline testing prior 
to the 2015–2016 Zika virus epidemic in the Americas likely contributed to the delay in 
the identification of the scale of disease spread, thereby allowing the virus to disseminate to 
new locations before a coordinated response was initiated ( 17 ,  18 ).

 Well-documented examples of effective disease surveillance have been limited largely 
to within-country initiatives [e.g., the Real-time Assessment of Community Transmission 
(REACT) in the United Kingdom ( 19 ) and the National Notifiable Diseases Surveillance 
System (NNDSS) in the United States ( 20 )], while globally coordinated programs remain 
rare ( 21 ). This can lead to disproportionate or inequitable distributions of testing resources 
within and between regions or countries, with some locations able to conduct large-scale 
mass testing for sustained periods of time, while others manage only sparse or sporadic 
testing ( 22 ,  23 ). One study showed that the intensity of viral genomic sequencing during 
the COVID-19 pandemic was positively associated with Research & Development 
expenditures at a country level ( 24 ). This likely allowed the virus to continue proliferating 
undetected in locations with insufficient testing, potentially prolonging local outbreaks.

 Previous research on infectious disease surveillance has focused primarily on developing 
models to identify sentinel sites or subpopulations, with the objective of classifying nodes 
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in networks that could serve as observational units for monitoring 
disease spread ( 25   – 27 ). Since the COVID-19 pandemic, there has 
been growing interest in the design of optimal control measures to 
contain transmission ( 28 ), with some studies examining the 
cost-effectiveness of different strategies for testing and isolation 
( 29     – 32 ); one recent study also explored the impact of different air 
travel regulations on the likelihood of a local epidemic escalating 
into a global pandemic ( 33 ). However, the effectiveness of these 
interventions depends ultimately on the capacity of local authorities 
to conduct surveillance and to collectively provide i) timely data of 
where the disease has been detected ( 34   – 36 ), and ii) an accurate 
assessment of overall disease distribution (both presence and absence 
of infections) at any stage of an outbreak—a challenge which, to 
the best of our knowledge, has received little attention to date.

 This study attempts to address this problem; specifically, we 
consider how testing should be performed across a mobility net-
work, with the objective of providing accurate estimates of where 
a disease is present, given a fixed budget of testing resources. We 
hypothesize that the design of an appropriate policy for this task 
can be formulated as a node classification problem with active 
learning (AL), where the objective is to select nodes in a partially 
observed graph for labeling in a manner that maximizes the per-
formance of a model predicting the label of unobserved nodes, 
while minimizing the amount of labeled data required ( 37 ). This 
motivates the development of an adaptive test deployment frame-
work, which we use to evaluate and compare the performance of 
previously developed AL policies for infectious disease surveil-
lance. We further propose a policy that takes into consideration 
graph-based uncertainties, named Selection by Local Entropy 
(LE), which we show outperforms similar existing policies in most 
outbreak scenarios and on networks with a diverse range of struc-
tural properties, including those commonly found in empirical 
human mobility networks, especially when test budgets are small. 

Materials and Methods

Disease Surveillance as a Node Classification Task. We consider the deploy-
ment of a disease surveillance program on a mobility network as a node classi-
fication task, in which the mobility network is represented as an undirected and 
unweighted graph G = (V , E) , with nodes vi ∈ V representing locations, and edges (
vi , vj

)
∈ E representing the existence of movement of infectious agents between 

nodes vi and vj . Assuming that there is an underlying distribution of infections result-
ing from an infectious disease outbreak, the goal of a policymaker (or agent) in this 
classification task is to predict the presence or absence of the disease (or whether 
disease prevalence is above or below a certain threshold) at any unobserved node, 
given the knowledge of the infection status of a subset of nodes in the network.

To generate an underlying disease distribution across the mobility network, 
we simulate an infectious disease outbreak by modeling its spread as a stochastic 
Susceptible-Infected (SI) process on graphs, such that transmission can occur only 
between an infected node and an uninfected node if there is an edge between 
them. We assume that the outbreak originates from a single, randomly selected 
node and terminates when a certain proportion (10%, 30%, or 50%) of nodes 
become infected (Fig. 1A, red compartment; see also column 3 in Table 2 and 
SI Appendix, S.1 for further details). Importantly, we assume that the timescale 
over which transmission occurs is sufficiently longer than the timescale over which 
testing resources are deployed, such that the resulting disease distribution at the 
end of the simulated outbreak can be considered as static over the course of the 
surveillance program (Fig. 1A, blue compartment). To indicate the underlying 
disease distribution, we assign each node vi in the mobility network a binary label 
yi ∈ {0, 1} to represent its infection status, where yi = 1 if the node is infected 
(disease presence) and yi = 0 if uninfected (disease absence).

Provided that the infection status of a subset of nodes is observed, the infection 
status of remaining unobserved nodes can then be inferred probabilistically by 
considering their connections to the observed nodes; we refer to the model that 
performs this inference as a surrogate model (orange box in Fig. 1A). Here, we 

adopt an approach known as Conditional Autoregressive (CAR) model (38), which 
estimates the probability that each node is infected (or its posterior distribution 
under a Bayesian framework) conditional on the infection status of the observed 
nodes alone (i.e., there are no external data informing the probability estimates 
except for the observed infection status; SI Appendix, S.2 for a detailed descrip-
tion of the model). To assess the degree to which the surrogate model is able to 
correctly predict the infection status of remaining unobserved nodes given the 
observed data, we evaluate the Area Under the Receiver Operating Characteristics 
Curve (AUC) by comparing the infection probability estimates (posterior mean 
from the CAR model) with the true underlying infection status, where a higher 
AUC indicates a better predictive performance.

Test Allocation as an Active Learning Task. Given a fixed test budget (i.e., a fixed 
number of tests to be allocated), the predictive performance of the surrogate model 
will vary depending on which nodes are selected for testing [a task known as AL (37)] 
and therefore the observed data that are available for model training. To maximize this 
performance, we consider a number of existing AL policies with a particular focus on 
those that are adaptive, i.e., policies that select nodes for testing in an iterative fashion 
until the test budget is exhausted (37). At each iteration, observed data from previous 
tests are used as input to retrain the surrogate model and to generate infection prob-
ability estimates for remaining unobserved nodes; these estimates are then used to 
guide the selection process at the next iteration, with selection criterion depending 
on the policy of choice (Fig. 1A, blue compartment).

We consider two adaptive AL policies in this study, namely, Node Entropy 
(NE) (39) and Bayesian Active Learning by Disagreement (BALD) (40). Both of 
these policies are uncertainty-based, as they select nodes for testing according 
to where the surrogate model’s predictions are considered to be most uncertain 
(Table 1 for detailed descriptions of both policies and SI Appendix, S.3 for BALD 
specifically). For comparison, we also consider two nonadaptive, graph-based AL 
policies, i.e., unobserved nodes are selected for testing by considering only their 
positions in the network, without using information from previous test iterations 
(Table 1 for more detailed descriptions).

Our Proposed Policy: Selection by Local Entropy (LE). One potential draw-
back of using selection criteria based on uncertainty-based metrics alone (as 
seen in NE and BALD) is that they can lead to a bias toward selecting nodes 
from regions with highly heterogeneous node labels. In the context of infectious 
disease surveillance, this can be interpreted as a preference for “exploitation” in 
an exploration–exploitation trade-off, where exploitation means the selection of 
nodes that lie along the boundaries between infected and uninfected regions 
(i.e., decision boundaries) and therefore have highly uncertain infection status 
predictions despite the availability of data, and “exploration” means the selection 
of nodes from less observed regions of the graph and therefore with uncertain 
infection status predictions that are informed by little data (panel iii in Fig. 1B). 
Previous attempts to account for this trade-off have been made, particularly in 
the context of AL with Graph Neural Network (GNN) models (42), whereby the 
exploration of less observed regions is encouraged by increasing the probability 
that a node is selected according to the number of unlabeled neighbors it has 
(43), or the degree to which the candidate node is representative of its unlabeled 
neighbors in feature space according to their node attributes (44).

With insights from these previous efforts, we propose here a policy which we 
refer to as Selection by Local Entropy (LE). This policy evaluates the informative-
ness of an unlabeled node by taking into account not only the uncertainty in the 
predicted label of the candidate node itself but also that of surrounding nodes. 
At a given iteration r  , we define the Local Entropy of an unlabeled node vk as a 
linear combination of the entropy of the label prediction for node vk itself, denoted 
by Ωself

k,r
 , and the distance-weighted average entropy of the label predictions for 

surrounding nodes, denoted by Ωsurr
k,r

 , as follows,

With � ∈ [0, 1] , and

[1]Ωk,r = �Ωself
k,r

+ (1 − �)Ωsurr
k,r
,

[2]Ωself
k,r

= H(vk|Dr
),

[3]Ωsurr
k,r

=

∑dmax
d=1

∑
vi∈V (d,vk )

H
�
vi�Dr

�
∕d

∑dmax
d=1

∑
vi∈V (d,vk )

1∕d
,

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
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where H(vk|Dr
) is the entropy of the label prediction for node vk , conditional on the 

currently observed data  D
r
= {

(
v1, y1

)
,
(
v2, y2

)
, ⋯ ,

(
vn, yn

)
} (SI  Appendix, 

S.4 for the formula to calculate the entropy of label prediction in the case of binary 
classification).

Key insights that motivate the definition of Local Entropy can be summarized 
as follows:

1.	 The information that can be gained from the observation of a node is likely 
to be greater if it is in close proximity to other unlabeled nodes with highly 
uncertain label predictions [see panel (i) in Fig. 1B].

2.	 The influence that a new observation has on the label predictions for sur-
rounding nodes decays with increasing hopping distance d . This, together 
with insight (1), motivates the definition of Ωsurr

k,r
 for a given candidate node vk , 

A

B

Fig. 1.   Disease surveillance on a static graph as a node classification task with active learning. (A) A schematic illustration of the simulation of infectious disease 
spread on an undirected and unweighted graph (Left-hand side, red compartment), followed by the implementation of a disease surveillance program under an 
adaptive test deployment framework assuming a static disease distribution (Right-hand side, blue compartment). The flow of information/data from one component 
of the framework to another is represented as arrows. The eye symbol indicates when the underlying disease distribution is queried, thereby revealing the true 
infection status of a selected node. (B) Key concepts behind our proposed policy named Selection by Local Entropy. i) An example showcasing the decreasing 
influence of an observed node on the estimated infection probability of remaining unobserved nodes in a graph with a chain-like structure. The violin plot shows 
the posterior distribution of the infection probabilities for the remaining unobserved nodes at different d-hop distances from the observed node on the far-left 
(node 0); the posterior mean of the probability of each node being infected is indicated by a white horizontal line. The black dashed line indicates an infection 
probability of 0.5 (i.e., most uncertain). ii) An illustration of the concept of local d-hop neighborhoods, represented by black dashed concentric circles, centered 
around a candidate node (green triangle). The green shading indicates the distance weight which decreases with increasing d-hop distance from the candidate 
node following an inverse relationship. iii) An example showcasing the trade-off between exploration and exploitation, with Selection by Local Entropy preferring 
the selection of the candidate node in the unexplored region (orange triangle) over candidate nodes lying along decision boundaries (green triangles). iv) An 
example illustrating the effect of normalization by the sum of distance weights over all d-hop neighborhoods (see definition of Local Entropy), resulting in an 
equal preference for candidate nodes that lie in the peripheral (green triangle) and central (orange triangle) region of a graph.

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
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as the sum of the entropies of the label predictions for all surrounding nodes, 
with the contribution from nodes in each d-hop neighborhood [denoted by 
V (d, vk ) ] weighted by the inverse of their hopping distance, 1∕d (Eq. 3). This 
summation extends up to a maximum d-hop distance dmax , beyond which 
the influence of a new observation on the label predictions for unobserved 
nodes is assumed to be negligible. Altogether, Ωsurr

k,r
 serves as a proxy measure 

of the total impact that an observation of a candidate node vk is likely to have 
on the label predictions for surrounding nodes [see panel (ii) in Fig. 1B].

3.	 This sum, as described in ref. 2, is normalized by the sum of the distance weights 
( 1∕d ) across all d-hop neighborhoods (up to a hopping distance of dmax ); this 
prevents a bias where centrally located nodes would have larger values of Ωsurr

k,r
 , 

simply due to having more connections. As a result of this normalization, there 
is an equal preference for nodes in both the peripheral regions (with low cen-
trality) and central regions (with high centrality) of a network, assuming that 
both regions are equally unexplored [panel (iv) in Fig. 1B]

4.	 The balance between exploration and exploitation (see above) can be fine-
tuned by specifying different values of � . In the case where � = 1 , we recover 
the uncertainty-based policy NE which performs node selection based on 
node entropy alone.

Note that we set dmax to the graph diameter dG (i.e., the largest geodesic dis-
tance between any pair of nodes), in all our following experiments. We also set 
� = 0 in all subsequent considerations of our proposed policy LE (i.e., maximal 
exploration).

Policy Evaluation under Different Network Structures and Outbreak 
Scenarios. We conduct three sets of experiments as summarized in Table 2, with 
each experiment considering a different graph and outbreak scenario. Specifically, 
we consider synthetic graphs generated by different generative models (column 
2 in Table 2) and therefore with different degree distributions and varying levels 
of community structure and structural disorder. We also consider two empirical 

Table 2.   Summary of all experiments conducted in this study
Experiment Graph(s) Outbreak scenario(s)

  Preliminary
﻿(only uncertainty-based 
policies are considered)﻿

 Aperiodic lattice graph (with square tiling)  50 random outbreak realizations, 
with each outbreak terminating 
when at least 30% of the nodes 
become infected (  I∕N = 0.3   ).

 Synthetic graphs  Periodic lattice graph (with square tiling) (graph-based policies are 
not considered)﻿

 50 random outbreak realizations 
for each termination condition 
(  I∕N = 0.1, 0.3, 0.5    ); this amounts 
to a total of 150 random 
outbreak realization for each 
graph.

 A random graph generated by the Barabási–Albert model ( 45 ), 
with each node having a minimum of two connections (  m = 2   )

 A random graph generated by the stochastic block model ( 46 ), 
with low-modularity settings (SI Appendix, S.5 )

 A random graph generated by the stochastic block model ( 46 ), 
with high-modularity settings (SI Appendix, S.5 )

 Empirical human mobility 
networks

 Graphs derived from aggregated mobility data collected from 
mobile phone users in Italy at the provincial level during March 
to May, 2020 ( 47 ), with thinning thresholds 
﻿T
thinning

= 10% , 15% , 20%    (SI Appendix, S.6 )

﻿

 Graphs derived from global air traffic data collected at the 
country level during January to March, 2020 ( 48 ), with thinning 
thresholds  T

thinning
= 2.5% , 5% , 7.5%    (SI Appendix, S.7 )

Table 1.   Summary of policies considered in this study
Allocation policy Policy type Brief description

 Least Confidence (LC) ( 39 )      -       Uncertainty based 
   -   Adaptive    

 Select the unlabeled node with predicted infection probability (posterior 
mean) that is closest to 0.5, indicating the least confidence in label 
prediction.

 Node Entropy (NE) ( 39 )  Select the unlabeled node with the highest entropy in its label prediction 
according to the surrogate model. It can be shown that NE always selects 
the same node as the policy LC at any iteration (SI Appendix, S.4 ); as a 
result, only NE is considered hereafter.

 Bayesian Active Learning by 
Disagreement (BALD) ( 40 )

 Select the unlabeled node with the highest mutual information between 
label prediction and posterior from the surrogate model.

  Local Entropy (LE)
﻿(our proposed policy)﻿

 Select the unlabeled node with the highest Local Entropy, as defined by  
Eqs.  1 – 3 , with � = 0 (maximal exploration).

 Degree Centrality (DC)      -       Graph based 
   -  Nonadaptive    

 Select the unlabeled node with the highest degree centrality (most  
connections).

 PageRank Centrality (PC)  Select the unlabeled node with the highest PageRank centrality ( 41 ).

 Reactive-Infected (RI)      -       Benchmark 
   -   Adaptive    

 Select at random an unlabeled node among immediate neighbors of nodes 
that are known to be infected from previous observations, if available; 
otherwise, sample randomly from remaining unlabeled nodes.

 Random (RAND)      -       Benchmark 
   -  Nonadaptive    

 Select an unlabeled node at random.

Abbreviation for each policy is shown in brackets following the policy name. For all policies, random tie-breaking is performed if and when there are multiple candidate nodes given equal 
preference according to a selection criterion.

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
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human mobility datasets (row 3 in Table 2), from which we derive two unweighted 
and undirected graphs following a procedure known as graph thinning, where 
only mobility flows above a certain thinning threshold are preserved (SI Appendix, 
S.6 and S.7 for details).

To explore the impact of different stages of outbreak progression on policy per-
formance, we simulate outbreaks with different termination conditions, as measured 
by the proportion of nodes that are infected (column 3 in Table 2). For each random 
outbreak realization on a given network, 25 different nodes are randomly selected 
as the initial labeled node, with nodes of either infection status being equally likely 
to be selected; at the beginning of each experiment, the infection status of the 
same initial labeled node is made available to all agents (with each agent being 
assigned one of the policies being considered). This is done to account for any 
variability in policy performance resulting from different initial observations, as well 
as stochasticity from the Markov chain Monte Carlo (MCMC) inference process and 
from random tie-breaking whenever two or more candidate nodes are given equal 
preference by a policy according to its selection criterion.

Measuring Policy Performance and Test Budget Specifications. Following 
the selection of an initial labeled node for a simulated outbreak, as described 
above, we assess the performance of a given agent (policymaker) at each test 
iteration by evaluating the AUC, based on a comparison between the current 
label predictions from the surrogate model (given the available data) and the true 
infection status of remaining unobserved nodes. The performance of an agent at 
a given test iteration r  can therefore be interpreted as the performance of its des-
ignated policy for a given test budget r  , assuming no further test deployments.

In each experiment, which considers simulated outbreaks at a specific stage of 
progression on a given graph, we compare the performance of different policies 
over a range of test budgets. The maximum test budget is determined by the 
median number of test iterations required by the Reactive-Infected (RI) policy 
to identify all infected nodes across all relevant outbreak realizations. Since RI 
mimics a “contact tracing” approach (Table 1 for a more detailed description of 
RI), this maximum represents the average minimum number of tests required to 
identify all infected nodes in a given outbreak scenario. It is therefore only when 
considering test budgets below this maximum that the objective of accurately 
predicting the presence or absence of a disease of interest across a mobility net-
work—without complete identification of all infected nodes—may be considered 
relevant to public health decisions. In all following experiments, we compare the 
performance of the different policies only at test iterations up to this maximum; 
full results are presented in SI Appendix, Figs. S1 and S2.

Main Results

Disease Surveillance on an Aperiodic Regular Lattice Graph. As 
a preliminary experiment to illustrate the differences between the 
uncertainty-based policies considered, we evaluate and compare 
their performance on an aperiodic regular lattice graph with 
square tiling. We observe that our proposed policy LE on average 
performs better than both NE and BALD at small numbers of test 
iterations ( r < 30 ; Fig. 2B). LE and NE show similar performance 
between r = 30 and r = 50 ; at r > 50 , however, NE overtakes LE 
as the best performing policy with an AUC that rapidly approaches 
1, while both LE and BALD struggle to attain a perfect AUC. 
The difference in performance between LE and NE can be 
understood in the context of the exploration–exploitation trade-
off as described above: at small r , LE encourages an even allocation 
of tests across the graph (exploration), while NE favors regions 
with highly heterogeneous disease distributions (exploitation) (see 
columns 2 and 3 in Fig. 2A)—this results in a more rapid increase 
in model performance for LE as r increases. At large r , however, 
the greater preference for exploitation by NE means that almost 
all nodes along the decision boundary are sampled; this results 
in an AUC that rapidly approaches 1. Although LE also shows a 
preferential selection of nodes close to the decision boundary at 
large r , it does so at a much slower rate than does NE.

 BALD on average performs worse than NE and LE across all 
test budgets. This is due to its apparent preferential selection of 

low-degree nodes (either in the corners or along the edges); only 
at  r > 40    (at which point no low-degree nodes remain) does BALD 
exhibit a pattern of test allocation that resembles that of NE. The 
observed underperformance of BALD is consistent with results 
from a previous evaluation of existing AL policies for node 

Test Iteration, r

Node-Entropy 
(NE)

Local-Entropy 
(LE)

Bayesian AL by 
Disagreement 

(BALD)

(Observed) infected / uninfected node/

/ (Unobserved) infected / uninfected node

1 x outbreak                    , 1 run

A
U

C
A

U
C

(seed19450)

50 x outbreaks, each with 25 runs

10

40

100

r

IQR
Median

NE
LE
BALD

A

B

Fig. 2.   Comparison of Selection by Local Entropy (LE) with existing uncertainty-
based policies in the context of simulated outbreaks on an aperiodic lattice 
graph. (A) Test allocation by three selected agents, with each agent assigned a 
different policy (LE, NE, or BALD). Each square panel shows the distribution of 
observed (squares) and unobserved (circles) nodes up to a given test iteration 
( r = 10, 40, 100 ; as indicated by labels on the Left) for a given agent (as indicated 
by labels at the Top). Each node is colored according to its true infection status 
(red if infected and blue if uninfected, with circles that represent unobserved 
nodes having a lower opacity). (B) The top plot shows the performance of the 
three selected agents for a single outbreak realization, as measured by the 
AUC; higher AUC values indicate better performance. The Bottom plot shows 
the performance of LE and the two existing uncertainty-based policies (NE 
and BALD), each summarized across 1,250 agents (50 outbreak realizations, 
each with 25 unique initial labeled nodes); the shaded region represents the 
interquartile range and the solid line represents the median. The Inset in each 
plot shows the same data in the interval 10 ≤ r ≤ 115 on an enlarged scale.

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
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classification ( 49 ), likely explained by the fact that BALD does 
not consider the graph structure in its formulation ( 40 ).  

﻿Disease Surveillance on Synthetic Graphs.     There are three key obser-
vations from our results presented in  Fig. 3 . First, all policies except 
for BALD and RI outperform random allocation (RAND) across all 
outbreak scenarios, especially at large  r    when the performance of ran-
dom allocation appears to only increase slowly with increasing  r . 

Given the preferential selection of low-degree nodes by BALD, as 
mentioned, it is not surprising that BALD only shows comparable 
performance in the periodic lattice graph which has no degree varia-
tion. Second, uncertainty-based policies (NE, BALD, and LE) under-
perform substantially compared to graph-based heuristics (DC and 
PC) on the synthetic graph generated by the Barabási–Albert model 
(hereafter referred to as the BA graph), especially when considering 
outbreaks at early ( I∕N = 0.1 ) or intermediate ( I∕N = 0.3 ) stages, 
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Fig. 3.   Policy evaluation with simulated outbreaks on synthetic graphs. Each panel (A, B, C, and D) corresponds to results from experiments with simulated 
outbreaks on a different synthetic graph (panel A: a periodic regular lattice graph with square tiling; panel B: a random graph generated by the Barabási–Albert 
model, with each node having a minimum of two connections ( m = 2 ); (C): a random graph generated by the stochastic block model at low-modularity settings; 
(D) a random graph generated by the stochastic block model at high-modularity settings). Summary statistics relevant to the structure of each graph [number 
of nodes ( N ), number of edges ( E  ), average node degree ( d

avg
 ), clustering coefficient ( C  ), and degree assortativity ( r

degree
 )] are shown in the Top-Left part of each 

panel. In the Bottom-Left part of each panel are visualizations of three selected disease distributions (with their corresponding seeds shown), each at a different 
stage of outbreak progression as measured by the proportion of nodes infected ( I∕N = 0.1, 0.3, 0.5 ); nodes are colored according to their true infection status (red 
if infected and blue if uninfected). In the Right part of each panel, each column shows results from experiments considering disease distributions at a different 
stage of outbreak progression. The Top plot in each column shows the performance of policies considered in the corresponding experiment, as measured by 
the AUC, with a higher AUC indicating a better performance; the shaded region represents the interquartile range and the solid line represents the median. 
The Bottom plot in each column shows the frequency with which each policy is ranked top according to its AUC at each iteration (or every 2nd or 3rd iteration, 
where indicated), normalized by the difference between the highest and lowest frequencies across different test budgets in the corresponding experiment 
(refer to SI Appendix, Fig. S5 and Tables S1–S4 for the absolute frequencies); a larger circle with a greater opacity indicates a higher frequency of the policy being 
ranked top at a given test iteration. The performance of each policy is only shown up to the median number of test iterations required for all infected nodes to 
be observed among agents assigned to Reactive-Infected (RI) (SI Appendix, Fig. S1 for full results).

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
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with DC and PC together being ranked top greater than 50% of the 
time, on average, across all test budgets (SI Appendix, Fig. S5 and 
Table S4 ). This observation can be explained by considering the 
infection-assortativity,  rinfection , which in the context of disease distri-
bution, is a measure of the tendency for two connected nodes to share 
the same infection status [as has been repeatedly shown in empirical 
studies that mobility synchronizes epidemics across locations ( 50 ); 
﻿SI Appendix, S.8  for definition of infection-assortativity]. Evaluating 
the average  rinfection    value across all outbreak realizations on each graph 
shows that outbreaks on the BA graph have on average the lowest 
﻿rinfection    at 0.20 [compared to 0.64 for the periodic lattice graph, 0.48 
and 0.63 for the graphs generated by the stochastic block model (SB 
graph) with low and high modularity ( 51 ), respectively]. A low (but 
positive)  rinfection    value indicates a weak tendency for two connected 
locations to share the same infection status, and therefore a low degree 
of homophily in the underlying disease distribution. This results in 
an overall poor predictive performance from the surrogate model, 
which in turn limits the effectiveness of uncertainty-based policies. 
In such cases, it may then be advantageous to consider node centrality 
alone during node selection, especially at small  r    when there are little 
data to inform model predictions. Note also that PC tends to perform 
better than DC—this is not unexpected given that nodes with the 
most connections are not necessarily the most central in a network.        

 Finally, we observe generally favorable performance for LE across 
most of the outbreak scenarios on graphs with a high degree of struc-
tural order (unlike the BA graph, as described), especially at small r . 
At larger r , however, we again observe superior performance for NE, 
with AUCs that rapidly approach 1. This can again be explained by 
the preference for exploitation over exploration by NE, which leads 
to the complete observation of the decision boundary between 
infected and uninfected regions given a sufficient number of tests. 
This is also reflected in the observation that NE is substantially more 
likely to be ranked top at large  r    (Right﻿-panel in SI Appendix, Fig. S5 
and T﻿ables S1–S3 ), compared to LE at small  r    (partly because of the 
limited information available when the number of observed nodes 
is small and therefore smaller distinction in policy performance).  

﻿Disease Surveillance on Empirical Human Mobility Networks.    From 
 Fig. 4 , it is evident that the two graphs derived from empirical 
human mobility data have markedly different structural proper-
ties. Graph A, generated from aggregated mobility data derived 
from mobile phone trajectories in Italy at the provincial level ( 47 ), 
shows distinct community structures that closely resemble the SB 
graphs described in the previous section. In contrast, Graph B, 
generated from the global air traffic data collected at the country 
level ( 48 ), displays structural properties similar to those of the BA 
graph. This is consistent with previous studies showing that the 
global air traffic network has scale-free properties ( 52 ,  53 ) [e.g., 
both have a negative degree assortativity ( Fig. 4B  ), indicating a 
hub-and-spoke rather than hub-and-hub structure ( 54 )].        

   We observe that policy performances on Graphs A and B are 
similar to those from experiments on the SB graphs and BA graph, 
respectively. Most notably for Graph A, LE again shows rapid 
increases in model performance given small numbers of test iter-
ations, only to be surpassed by NE at large  r , as expected; this 
observation is consistent across different stages of outbreak pro-
gression (SI Appendix, Fig. S6 ). For Graph B, graph-based policies 
(DC, PC) outperform uncertainty-based policies especially at 
small  r , again consistent with results from experiments on the BA 
graph. However, the superior performance of these graph-based 
policies extends only to larger values of  r    if the outbreak under 
surveillance is in its early stages (i.e.,  I∕N = 0.1 ); at later stages 
of outbreak progression, the performance of these policies 
decreases with further increases in  r   .

   This counterintuitive observation can be explained by consid-
ering the changes in the distribution of the decision boundary 
between the infected and uninfected regions in the graph during 
a transmission process. At the beginning of an outbreak, nodes 
that are centrally located are more likely to be infected early on 
due to their high degree of connectivity. This implies that most 
of the decision boundary between infected and uninfected regions 
can be found close to the central nodes, thus explaining the supe-
rior performance of graph-based policies which preferentially 
select nodes with high degree of centrality. As the outbreak pro-
gresses, the decision boundary shifts toward the periphery of the 
graph with the already infected central nodes acting as secondary 
hubs of the emerging pathogen. This results in a decrease in the 
performance of graph-based policies, as the central nodes continue 
to be targeted while the peripheral regions of the graph (where 
most heterogeneities in the disease distribution lie) remain largely 
unexplored. Note that a similar drop in the performance of PC 
(columns 2 and 3 in  Fig. 3B  ) at large  r    during later stages of out-
break progression ( I∕N = 0.3    and  I∕N = 0.5 ) can also be 
observed.

   The same reasoning can also potentially explain the unexpected 
superior performance of BALD at large  r    during later stages of an 
outbreak on the BA graph ( I∕N = 0.5    in  Fig. 3B  ; see also middle- 
and right-panels in SI Appendix, Fig. S5 and Table S4 ), with most 
heterogeneities in disease distribution lying in the peripheral 
regions that are preferentially sampled by BALD. Whereas during 
the early stages of an outbreak, most heterogeneities in disease 
distribution are likely to be found in the central regions of a net-
work, therefore resulting in the superior performance of 
graph-based policies (DC, PC) which target highly connected 
nodes and RI at small  r    ( I∕N = 0.1    in  Fig. 3 C  and D  ; see also 
﻿Left﻿-panel in SI Appendix, Fig. S5 and Tables S2 and S3 ), albeit 
with only modest top-ranking frequencies given the small number 
of observed nodes. More generally, provided that the number of 
infected nodes is sufficiently small and that they are confined to 
a small, local region of the graph, any policy for which there is a 
high probability of selecting an infected node is likely to perform 
well compared to other policies, especially when given a small 
test budget.   

Discussion

 In this work, we investigated how a finite amount of testing 
resources should be allocated across a network of locations con-
nected by mobility, in order to maximize the information gained 
about the underlying distribution of an infectious disease. We 
formulate this task as a node classification problem with active 
learning, with the objective of providing accurate assessment of 
where the disease is likely to be present or absent given a fixed test 
budget. We proposed a policy that selects nodes for testing accord-
ing to a measure of the distance-weighted average entropy of the 
label predictions in the local neighborhood of a given candidate 
node. We then evaluated and compared the performance of dif-
ferent policies, including our proposed policy, under a range of 
different outbreak scenarios and graph structures.

 Our results show that in general there is not a single policy that 
performs optimally across all outbreak scenarios. Instead, the per-
formance of a given policy depends on both the test budget available 
(relative to the size of the network) and the geometry of the under-
lying disease distribution, which is in turn determined by network 
structure and extent of the outbreak. For example, graph-based 
policies that target central nodes perform better than uncertainty- 
based policies when the underlying disease spread cannot be mod-
eled with a high degree of accuracy and certainty, as is often the case 

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
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during early stages of an outbreak when the etiology is unknown. 
Conversely, uncertainty-based policies are typically more effective 
in highly ordered networks with well-defined community structures. 
In particular, with our proposed policy (Selection by Local Entropy) 
which considers graph-based uncertainties in its selection criterion, 
we were able to show that more frequent exploration results in better 
performance given a small test budget, while targeting regions in the 
network with observed heterogeneous disease distribution (exploita-
tion) is more favorable given a large test budget. Finally, we find that 

following an approach akin to contact tracing (selecting immediate 
neighbors of infected nodes) generally leads to inferior performance 
compared to other policies in terms of characterizing the overall 
disease distribution. A comprehensive assessment of the overall dis-
tribution could potentially allow for a more detailed study of the 
underlying transmission process (e.g., identifying drivers of spread 
by iteratively refitting prediction models of disease progression on 
a network), and provide an opportunity to improve the joint mod-
eling of infectious diseases and sampling more generally.
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Fig. 4.   Policy evaluation with simulated outbreaks on graphs derived from empirical human mobility data. Each panel (A and B) corresponds to results from 
experiments with simulated outbreaks on a graph derived from a different empirical human mobility dataset (panel A: within-country movements from smartphone 
data collected in Italy at the provincial level between March and May 2020 (39), with thinning threshold T

thinning
= 15% ; panel B: between-country human movement 

from air traffic data collected between January and March 2020 (40), with thinning threshold T
thinning

= 5% ). Summary statistics relevant to the structure of each 
graph [number of nodes ( N ), number of edges ( E  ), average node degree ( d

avg
 ), clustering coefficient ( C  ), and degree assortativity ( r

degree
 )] are shown at the top 

of each panel, followed by (left) a visualization of the graph overlaid on a corresponding map (with the size of each node indicating node degree) and (right) 
a visualization of the same graph in a force-directed layout. The 2nd to 4th rows of each panel correspond to the different stages of outbreak progression at 
which the performance of the different policies is evaluated, as measured by the proportion of nodes infected ( I∕N = 0.1, 0.3, 0.5 ). In the left part of each row 
is the visualization of a selected disease distribution (from one of 50) on the corresponding map; tiles are colored according to their true infection status (red 
if infected and blue if uninfected). In the right part of each panel, each column shows results from experiments considering disease distributions at a different 
stage of outbreak progression. The Top plot in each column shows the performance of policies considered in the corresponding experiment, as measured by 
the AUC, with a higher AUC indicating a better performance; the shaded region represents the interquartile range and the solid line represents the median. 
The Bottom plot in each column shows the frequency with which each policy is ranked top according to its AUC at each iteration (or every nth iteration, where 
indicated), normalized by the difference between the highest and lowest frequencies across different test budgets in the corresponding experiment (refer to 
SI Appendix, Fig. S6 and Tables S5 and S6 for the absolute frequencies); a larger circle with a greater opacity indicates a higher frequency of the policy being 
ranked top at a given test iteration. The performance of each policy is only shown up to the median number of test iterations required for all infected nodes to 
be observed among agents assigned to Reactive-Infected (RI) (SI Appendix, Fig. S2 for full results).

http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2412424121#supplementary-materials


PNAS  2024  Vol. 121  No. 52 e2412424121� https://doi.org/10.1073/pnas.2412424121 9 of 10

 It should be noted that, while we are able to obtain insights 
into how different policies are likely to behave under different 
scenarios, a quantitative assessment of their overall performance—
and the extent to which one policy should be recommended over 
another given any outbreak—requires a more detailed and sys-
tematic examination across the various parameter spaces consid-
ered, which is beyond the scope of this work. Such assessments 
are particularly important in comparing the costs and benefits of 
different policies, especially when little is known about the trans-
mission dynamics of the disease or when the underlying mobility 
network is unknown ( 55 ,  56 ); future studies should focus on 
developing appropriate evaluation metrics with consideration of 
relevant public health contexts and under more realistic model 
assumptions (see below).

 Although we observe consistent results across experiments on 
both synthetic graphs and empirically derived networks, it is impor-
tant to interpret these findings in the context of the assumptions 
made, particularly regarding their generalizability to real-world sce-
narios. A key limitation of our approach is the assumption that the 
underlying mobility network can be represented as an undirected 
and unweighted graph. In reality, mobility networks are highly het-
erogeneous with mobility fluxes that vary across both regions (e.g., 
air traffic among European countries versus African countries) and 
directions (e.g., net inflow of air passengers arriving at tourist des-
tinations during holiday seasons). This limitation is also relevant to 
infectious diseases with alternative modes of transmission (e.g., sex-
ually transmitted diseases, vector-borne diseases), for which the 
network capturing the spatial correlation in disease distribution may 
involve factors other than human movement and cannot be ade-
quately described by an undirected and unweighted graph. For 
example, in the case of a vector-borne disease, edges in the corre-
sponding network might represent the absence of geographic barriers 
that prevent vector movement, with edge weights indicating the 
environmental suitability for vector survival both at the origin/des-
tination location and during transit, which could be time-varying 
especially for climate-sensitive infectious diseases such as dengue 
( 57     – 60 ) and malaria ( 61   – 63 ). Future extensions should consider 
alternative surrogate models that are able to incorporate these effects 
when generating label predictions, e.g., GNNs, Gaussian Processes 
on graphs ( 64 ,  65 ), and spatial mechanistic models that explicitly 
model the movement of infectious individuals.

 Another limitation of this study is the assumption of static 
disease distributions. This implies that the timescale over which 
transmission events between locations occur is sufficiently longer 
than the timescale of test deployment, such that the underlying 
disease distribution can be treated as static. While this is unlikely 
to be a realistic assumption for most disease outbreaks—except 
for some endemic diseases that are more slowly changing in their 
prevalence, such as HIV/AIDS ( 66 ) and Tuberculosis (TB) ( 67 )—
it nevertheless allowed us to gain theoretical insights into the var-
ious factors one must consider when designing disease surveillance 
strategies given different network structures and outbreak scenar-
ios. To address this limitation, future work should consider the 
correlation in infection status not only between nodes but also 
across time, given either prior assumptions of the underlying trans-
mission dynamics or information from historical transmission 
events that are inferred to have occurred given the data. In this 
dynamic setting, it might also be advisable to consider testing 
multiple locations at once [similar to batch AL ( 68 )], as opposed 
to only a single location per iteration as presented in our work. 
Further, future work should also consider the incorporation of 
external time-series data (e.g., frequency of patients with specific 
symptoms, rate of hospitalization) and other data types (e.g., path-
ogen genomic data, wastewater data) that are independent of 

surveillance efforts and explore how such data can be used to 
inform test allocation. Finally, we assume here an idealized imple-
mentation of disease surveillance, with i) no observational noise 
(i.e., the true infection status of a selected node is always revealed 
upon testing), and ii) that each node has equal access to testing 
resources (i.e., there are no restrictions on which nodes can be 
selected for testing). However, in practice, i) the infection status 
of a location could be misclassified due to measurement error or 
low prevalence, and ii) test deployment at certain locations may 
be hindered by logistical challenges and limitations in local infra-
structures ( 24 ). Future studies should consider more realistic 
assumptions of how testing resources are deployed and their 
impact on the design of appropriate allocation strategies (e.g., 
multiple tests might be required at a given location depending on 
test sensitivity and estimated prevalence).

 Our findings are relevant to infectious disease surveillance in 
resource-constrained settings and in situations where practical 
challenges render the complete detection of all infected popula-
tions unfeasible or cost-inefficient. We propose a flexible and 
principled approach to evaluating the design and execution of 
adaptive surveillance strategies with the overall aim of maximizing 
the information gained from each round of testing. More gener-
ally, our adaptive test deployment framework can be extended to 
consider transmission processes with greater complexities (e.g., 
SEIR models, spatially explicit semimechanistic models, alterna-
tive transmission pathways) and more realistic mobility networks 
(e.g., as directed and weighted graphs, with time-varying edge 
weights and node attributes) that are derived from empirical data, 
and with additional constraints to account for imperfect testing 
(e.g., observational noise and delay in test feedback, presence of 
nodes that are inaccessible to surveillance efforts). Applications of 
our model in real-world contexts could provide the opportunity 
for more cost-effective and rapid identification and monitoring 
of pathogens while reducing the uncertainties associated with early 
risk assessments of infectious diseases.    

Data, Materials, and Software Availability. Simulated data and code data 
have been deposited in Zenodo (69).
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