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Abstract

Microtubule-associated protein tau is essential for microtubule assembly and stabilization. 

Hyperphosphorylation of the microtubule-associated protein tau plays an important pathological 

role in the development of Alzheimer’s disease and other tauopathies. In vivo studies using kinase 

inhibitors suggest that reducing tau phosphorylation levels has therapeutic potential; however, such 

approaches showed limited benefits. We sought to develop further our Phosphorylation Targeting 

Chimera (PhosTAC) technology to specifically induce tau dephosphorylation. Herein, we use 

small molecule based PhosTACs to recruit tau to PP2A, a native tau phosphatase. PhosTACs 

induced the formation of a stable ternary complex, leading to rapid, efficient, and sustained tau 

dephosphorylation, which also correlated the enhanced down regulation of tau protein. Mass 

spectrometry data validated that PhosTACs downregulated multiple phosphorylation sites of tau. 

We believe that PhosTAC possess several advantages over current strategies to modulate tau 

phosphorylation and represent a new avenue for disease-modifying therapies for tauopathies.
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Introduction

Tau, encoded by the microtubule-associated protein tau (MAPT) gene, is one of the most 

well-studied proteins in neurodegenerative diseases. MAPT comprises 16 exons, with 

alternative splicing producing 6 main tau isoforms. Each isoform contains 0 to 2 copies 

of 29-residue near-amino-terminal inserts (named as 0N, 1N and 2N), along with 3 or 4 

carboxy-terminal repeat domains (named as 3R or 4R).1 Tau is predominantly expressed 

in neurons, where it plays important roles in microtubule assembly and stabilization via 

its carboxy-terminal repeat domains.2 Tau is soluble and flexible in its natural form, 

characterized as an intrinsically disordered protein. Aggregation of tau into higher-order 

oligomers is a hallmark of many neurodegenerative diseases, including Alzheimer’s disease 

(AD),3 Pick disease (PiD),4 and progressive supranuclear palsy (PSP),4 and thus is thought 

to play a critical role in disease pathogenesis and pathology.5

Tau is heavily regulated by post-translational modifications, most notably phosphorylation. 

Tau hyperphosphorylation is frequently observed in AD brains,6 and correlates with 

tau aggregate formation7 and cognitive decline8. Several mechanisms by which 

hyperphosphorylated tau contributes to tauopathies have been proposed. For example, 

tau phosphorylation reduces its binding affinity for microtubules,2, 9 leading to its 

dissociation and subsequent microtubule disassembly, resulting in axonal transport deficits. 

Specifically, Thr231-phosphorylated tau undergoes a trans-to-cis isomerization, leading to a 

conformational change that reduces its microtubules affinity.10 Also, hyperphosphorylated 

tau was reported to be aggregation-prone, assembling into paired helical filaments (PHF) 

in vitro11, while dephosphorylation has been shown to inhibit tau polymerization and 

restore its ability to stabilize microtubules.12 Tau hyperphosphorylation may also hinder 

its degradation: phosphorylation at Ser262 or Ser356 prevents its recognition by the C-

terminus of HSP70-interacting protein–heat shock protein 90 (CHIP-HSP90) and subsequent 

proteasomal degradation.13 Tau phosphorylation also regulates its cellular localization, with 

hyperphosphorylated tau mislocalizing from axons to the somatodendritic compartment of 

hippocampal neurons.14 Thus, while the dominant mechanisms by which phosphorylated tau 

causes neuronal toxicity remain under active investigation, hyperphosphorylation is widely 

considered to be a potential therapeutic target for tauopathies.
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An imbalance between kinases and phosphatases may underlie tau hyperphosphorylation. 

Many kinases have been shown to phosphorylate tau, such as GSK-315, CDK5 16 AMPK17, 

CK118, MARKs19, PKA20, dyrk-1a21, Fyn22, Abl23, and Syk24. Tau is likewise regulated 

by a variety of phosphatases, such as PP1, PP2A, PP2B, PP2C and PP5.25 Among reported 

phosphatases, PP2A is the major phosphatase and has been shown to be responsible for 

approximately 70% of tau dephosphorylation.25 This suggests an important role of PP2A in 

AD and its potential as a target for tauopathies treatment.

Our lab has previously reported the development of Phosphorylation Targeting Chimeras 

(PhosTACs).26 This new class of heterobifunctional molecules recruits a phosphatase to a 

target protein to achieve targeted protein dephosphorylation (Fig. 1A). We have successfully 

shown targeted dephosphorylation of PDCD4 and FOXO3a. Here, we sought to adapt 

this technology to induce the targeted dephosphorylation of tau. We showed that tau 

PhosTACs can efficiently dephosphorylate tau protein, which correlates with the tau down 

regulation. This study presents the first instance of PhosTAC-induced tau dephosphorylation, 

demonstrating PhosTACs’ potential as a possible new modality for the treatment of AD and 

other tauopathies.

Results and Discussion

Design of an inducible 2N3R and 2N4R Tau expressing system and Tau PhosTACs

To study tau hyperphosphorylation, we first engineered a mammalian cell system consisting 

of doxycycline-inducible expression of full-length 2N4R (P301L and S320F, denoted 

as 2N4R**) and 2N3R (S320F, denoted as 2N3R*) tau variants. P301L and S320F 

variants were introduced as they are reported to accelerate AD-type neurofibrillary tangles 

formation.27 Tau proteins were expressed on a single bicistronic vector separated by P2A 

and T2A elements to generate 2N4R** and 2N3R* tau.28 To visualize and quantify tau 

levels, 2N4R** tau was fused with the fluorescent protein mClover and 2N3R* tau fused 

with mRuby2 (expected molecular weight: 70 kDa). Lastly, 2N4R**-mClover tau was 

fused with HaloTag7 (expected molecular weight: 112 kDa), which has a highly specific 

chloroalkane ligand, making it amenable to induced proximity systems such as PhosTAC7 

(Fig. 1B, Fig. 1E).

We used confocal microscopy to confirm induction of both fluorescently tagged tau proteins 

after 24h treatment with 2 μg/mL doxycycline (dox) (Fig. 1C). Protein expression was 

further confirmed via immunoblot, with both tau variants at the correct molecular weight 

(indicated by asterisks) appearing following dox treatment (Fig. 1D). Notably, total tau 

antibodies detected additional bands, which could correspond to tau proteolysis products 

or alternatively post-translationally modified species29. Importantly, we observed robust 

tau phosphorylation at Thr231 (pT231), supporting its use as a model to study targeted 

dephosphorylation. As the expression of 2N4R** was more abundant than 2N3R* in our 

cell line, we focused on 2N4R** isoform to evaluate induced tau dephosphorylation in 

subsequent experiments.

We next tested whether tau phosphorylation can be repressed by kinase inhibitors in our 

system. While inhibitors such as gefitinib (epidermal growth factor receptor inhibitor), 
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wortmannin (phosphoinositide 3-kinase inhibitor), and casein kinase 2 inhibitor showed no 

significant effects on tau phosphorylation, rapamycin, a mTOR kinase inhibitor, dramatically 

reduced tau phosphorylation at Thr231 (Fig. 1D). Rapamycin activity was confirmed by a 

robust decrease in Thr389 phosphorylation of the mTORC1 downstream target S6 Kinase 

(Fig. 1D). This was consistent with a previous study demonstrating rapamycin can modulate 

tau phosphorylation levels.30

Given that PP2A is one of the most abundance phosphatases in mammalian cells31 and, 

importantly, is the major tau phosphatase in the human brain25, we selected PP2A for 

testing in a PhosTAC system. Of note, we have previously demonstrated the ability of PP2A-

targeting PhosTACs to specifically dephosphorylate PDCD4 and FOXO3a.26 As there are 

not yet specific PP2A small molecule ligands available, we engineered a FKBP12F36V-PP2A 

fusion protein to allow recruitment using the FKBP ligand and co-expressed it in cells 

expressing dox-inducible 2N4R**-mClover-HaloTag7 and 2N3R*-mRuby2 tau variants 

(Fig. 1D). In this proof-of-concept system, we can use our previously reported PhosTAC7 

and the inactive PhosTAC7F (Fig. 1E),26 to investigate targeted tau dephosphorylation by 

PP2A.

PhosTAC-induced tau dephosphorylation in a PP2A-dependent manner

As ternary complexes are required for bifunctional molecules (such as PROTACs) to execute 

their functions, pull-down assay was performed to exam the formation of a tau-PP2A 

complex. We used HaloTrap, consisting of a high affinity HaloTag nanobody coupled 

to agarose resin, to pulldown HaloTag7-2N4R**-tau from cells treated with PhosTAC7, 

PhosTAC7F, or DMSO. This approach successfully enriched 2N4R**-tau (Fig. 2A, 

identified with double asterisks), 2N3R*-tau (identified with single asterisk), and truncated 

tau isoforms, suggesting the formation of tau self-assemblies in cells. Upon treatment 

with PhosTAC7, both the FKBP12F36V-PP2A A subunit and endogenous PP2A C subunit 

coprecipitated with tau, demonstrating the successful formation of a ternary complex with an 

intact PP2A holoenzyme. No coprecipitation was observed following treatment with DMSO 

vehicle or PhosTAC7F, which possesses a fluorine substitution that abolishes HaloTag7 

binding, demonstrating the PhosTAC dependence of the observed ternary complex.

We next assessed whether PhosTAC7-induced tau-PP2A ternary complex formation 

modulated tau phosphorylation levels. Indeed, starting at 0.25 μM, PhosTAC7 triggered 

robust dephosphorylation at Thr231 and Thr181 (one of the most elevated tau 

phosphorylation sites in AD32), with a maximal dephosphorylation at 24 hours (DPmax_24h) 

of approximately 75%. The inactive PhosTAC7F had minimal effects on tau phosphorylation 

(Fig. 2B), demonstrating that PhosTAC7 acts via complex formation. Importantly, 

PhosTAC7-induced tau dephosphorylation at Thr231 and Thr181 was abolished upon 

cotreatment with okadaic acid (OA), a potent PP2A inhibitor (Fig. 2C). Collectively, 

these data demonstrate PhosTAC7 can induce targeted dephosphorylation of tau via ternary 

complex formation and PP2A phosphatase activity.

To improve upon this proof-of-concept system, we next sought to generate PhosTACs that 

directly bind tau rather than via a fused Halotag domain. To this end, we replaced the 

HaloTag7 chloroalkane warhead with one based on a positron emission tomography (PET) 
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tau tracer, which has proven a valuable clinical tool to specifically detect pathological 

tau in patients,33 and as a warhead for tau-targeting PROTACs.34 PI-2620 (Fig. S1) is 

a newly reported derivative of the T807 PET probe that has been shown to possess 

higher affinity and selectivity for 4R and 3R/4R tau isoforms.35 We thus employed 

PI-2620 as the targeting warhead and coupled it to the FKBPF36V ligand using a range 

of polyethylene glycol (PEG) linkers, yielding a new series of tau-targeting PhosTACs 

(Fig. 3A, Tau2–8 as an example; Fig. S1). As commonly observed during PROTAC 

development,36 we found PEG linker length affected the efficacy of PhosTAC-mediated tau 

dephosphorylation; “Tau2–8” with an 8 PEG linker demonstrated better efficacy compared 

with the 4 PEG linker-based “Tau2–4” and 6 PEG linker-based “Tau2–6” (Fig. 3B). We 

found Tau2–8 induced approximately 50% pThr231 dephosphorylation at 1 μM and 65% 

dephosphorylation at 10 μM, with similar trends for pThr181 dephosphorylation (Fig. 

3B). Cotreatment with the PP2A inhibitor, OA, significantly enhanced phosphorylation 

at Thr231 and Thr181 and prevented Tau2–8-mediated dephosphorylation, confirming an 

on-target mechanism (Fig. 3C). To further demonstrate our tau-targeting PhosTACs act via 

PP2A activity, we introduced a P179R variation in PP2A A subunit, which is reported to 

cause a conformational shift that impairs holoenzyme assembly,37 and expressed it as a 

FKBPF36V fusion in cells expressing inducible mClover-2N4R**/mRuby2–2N3R* tau. In 

this PP2AP179R cell line, both PhosTAC7 and Tau2–8 were unable to induce substantial 

tau dephosphorylation (Fig. 3D). Thus, the developed PhosTACs with the PI-2620 targeting 

warhead successfully promote tau dephosphorylation through induced proximity with the 

active PP2A holoenzyme.

Tau dephosphorylation kinetics mediated by PhosTACs

We next investigated the kinetics of PhosTAC-mediated tau dephosphorylation. Both 

PhosTAC7 and Tau2–8 induced rapid tau dephosphorylation at Thr181 and Thr231, with 

approximately 50% dephosphorylation observed as early as 2 hours after treatment at 1 

μM of PhosTAC7 (Fig. 4A). Maximal dephosphorylation was observed following 24 hours 

of treatment (Fig. 4A), with 75% pT231 dephosphorylation at the end of treatment of 

PhosTAC7 (Fig. 4A). A similar phenomenon was observed with Tau2–8. These results 

indicated that tau PhosTAC can induce rapid dephosphorylation, which is in accordance with 

the rapid enzymatic profiles of phosphatases.38

Bifunctional molecules such as PROTACs utilize an event-driven mechanism that allows 

for sub-stoichiometric, catalytic activity and prolonged cellular activity compared with 

conventional small molecule compounds39. Thus, we next tested the effect of PhosTACs 

on a prolonged period, cells were stimulated with dox for 24 h to induce tau expression, 

followed by wash out dox and treatment with PhosTAC7 or Tau2–8 for another 24 h 

(Fig. 4B top right). Compounds were then removed and replaced with fresh media, and 

cells were cultured for an additional 24 or 48 h without PhosTACs. PhosTAC7 induced 

potent and sustained tau dephosphorylation at Thr181 and Thr231 for as long as 48 h 

post-washout (Fig. 4B). Sustained dephosphorylation was apparent 24 h post-washout of 

Tau2–8, which returned to DMSO levels by 48 h, possibly due to its lower potency 

compared to PhosTAC7. It should be noted that the covalent nature of HaloTag may pose 

limitation on the catalytic effect of PhosTAC and render PhosTAC7 resistant to washout. 
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Although rapamycin was as potent as PhosTAC7 in inducing tau dephosphorylation after 

24 h of incubation (Fig. 1B and 2B), rapamycin-mediated tau dephosphorylation was only 

modest after 24 h washout and did not persist to 48 h (Fig. 4B). As a critical negative 

control, we found neither PhosTAC7 nor Tau2–8 reduced pT389 of S6 kinase compared 

with DMSO, while rapamycin dramatically repressed S6K phosphorylation (Fig. 4B). These 

data suggested that PhosTACs and rapamycin exhibited different kinetics and mechanisms in 

mediating tau dephosphorylation in our current system.

Proteomics approaches validated tau dephosphorylation and enrichment of PP2A 
holoenzymes by PhosTAC

Next, we used a data-independent acquisition mass spectrometry (DIA-MS) based proteomic 

approach40 to validate tau dephosphorylation and identify potential tau interacting proteins. 

We used HaloTrap to pulldown HaloTag7–2N4R**-tau from cells treated with dox for 24 h, 

followed by an additional 24 h treatment with either PhosTAC7 (1 μM), Tau2–8 (10 μM), 

or DMSO. Tau and interacting proteins were eluted from HaloTrap agarose, digested, and 

subjected to mass spectrometric (MS) analysis. We found tau peptides were successfully 

enriched, identified 24 out of 85 possible phosphorylation sites on tau.41 MS analysis 

confirmed PhosTAC7 and Tau2–8 both cause robust tau dephosphorylation at Thr181 and 

Thr231 compared with DMSO (Fig. 5A and 5B). In addition, many canonical AD-related 

tau phosphorylation sites such as Ser202, Ser210, Thr217, Ser356, and Ser40442 were found 

to be reduced by PhosTAC7, and to a lesser extent by Tau2–8 (Fig. 5C, 5D, S2A-E), 

consistent with our findings (Fig. 2 to 4).

DIA-MS data further validated PhosTAC-mediated ternary complex formation between tau 

and a functional PP2A holoenzyme. Enhanced ternary complex formation was observed 

with PhosTACs treatments, with PhosTAC7 showed significant enrichment of PP2A A 

(PPP2R1A) and C (PPP2CA) subunits (Fig. 5D). Of note, the PP2A B subunit, B55α 
(PPP2R2A), was significantly enriched by both PhosTACs (Fig. 5E and S2F), indicating that 

B55 might be the major regulatory unit for PhosTACs mediated tau dephosphorylation. 

This is consistent with an earlier report demonstrating that PP2A/B55α regulates tau 

phosphorylation.43 In accordance with its role as cytoskeleton regulator,44 DIA-MS analysis 

of HaloTrap pulldowns also identified several structural proteins as tau interactors. In 

fact, one of the well-known tau interacting proteins, tubulin, was enriched in PhosTAC-

treated samples relative to DMSO (Fig. 5F), suggesting that PhosTAC-mediated tau 

dephosphorylation may enhance its interaction with tubulin.

PhosTAC-induced dephosphorylation correlates with accelerated tau degradation

Given that phosphorylation of tau has been reported to hinder its degradation,13 we next 

investigated the effect of PhosTACs on tau degradation, which could be monitored by flow 

cytometry via measuring the fused florescent proteins in our design (Figure 1B). After 

induction with dox for 24 hours, dox was removed and cells were treated with 1 μM 

PhosTAC7 for 1 to 3 days. Although we did not observe a significantly accelerated down 

regulation of tau protein expression with treatment of Tau2–8, which may correlate with its 

lower potency in tau dephosphorylation, PhosTAC7 treatment enhanced tau degradation. As 

measured by mClover mean fluorescence intensity by flow cytometry, PhosTAC7 induced a 
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34% reduction relative to DMSO observed at prolonged day 3 treatment (Fig. 6A, S3A–D, 

Table S1). To probe which degradation pathway may be contributing to reduced tau levels, 

we treated cells with MG132, a proteasome inhibitor, Bafilomycin A1 (BafA1), an inhibitor 

of autophagosome-lysosome fusion, or OA as a control. While BafA1 and OA had minimal 

effects, MG132 dramatically increased tau levels, suggesting tau is generally degraded via 

the proteasome in our system (Fig. 6B, Table S2).

Conclusion

Despite nearly a century of investigation and an estimated 416 million patients globally45, 

developing successful disease-modifying therapies for AD remains a critical challenge. Tau 

aggregation in neurons is thought to be a primary driver of AD. Accordingly, extensive 

efforts have been placed on developing therapeutics that remove or disaggregate these 

pathological structures.34a

Tau hyperphosphorylation promotes its aggregation in mouse models of AD,46 thus 

strategies aimed at specifically reducing tau phosphorylation may disfavor its aggregation 

and provide therapeutic benefit. Attempts to ameliorate pathology in mouse models of 

tauopathies using kinase inhibitors have been mostly unsuccessful.47 This may be due 

to the fact that tau phosphorylation is controlled by several kinases, including GSK-315, 

CDK516, and AMPK.17 Therefore, inhibition of a single kinase in vivo may be insufficient 

to significantly attenuate tau hyperphosphorylation,48 whereas combined kinase inhibition 

comes at the expense of increased off-target activity and toxicity. Thus, targeted tau 

dephosphorylation provides a new and significant modality, with possible more specificity 

and less side effects.

Our recently described PhosTAC technology builds upon the framework of PROTACs 

and targeted protein degradation, an attractive therapeutic modality designed to eliminate 

pathological proteins by co-opting cellular degradation systems. Early work by Zheng 

et al.49 and Yamazone et al.50 utilized peptide based bifunctional molecules to achieve 

dephosphorylation of tau and AKT, representing exploratory and pioneering work in 

targeted protein dephosphorylation. In our system, small-molecule based PhosTACs recruit 

cellular phosphatases to phosphorylated substrates, resulting in ternary complex formation 

and dephosphorylation by induced proximity. Owing to their event-driven mechanism, 

PhosTACs display favorable kinetic profiles and sustained cellular effects. Importantly, 

unlike kinase and phosphatase inhibitors, PhosTACs offer the advantage of being able to 

tune the phosphorylation status of a single protein of interest.

In this proof-of-concept study, we applied our PhosTAC technology to target tau. We found 

that recruitment of PP2A, a primary native tau phosphatase, to tau using genetically-encoded 

tags and chemical recruiting elements resulted in ternary complex formation and robust 

dephosphorylation. Notably, tau dephosphorylation was sustained, lasting up to 24–48 hours 

post-PhosTAC removal. In addition, we used MS to identify the PhosTAC-induced tau 

interactome, which may provide insights into the cellular processes affected by forced tau 

dephosphorylation. Importantly, PhosTAC treatment enhanced tau degradation, which is in 

accordance with PhosTAC-induced dephosphorylation of the degradation hindering pS356 
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(Fig. S2),13 highlighting the potential for this strategy. While our current study for proof-of-

concept is based on a synthetic system, future efforts will focus on targeting endogenous tau 

and phosphatases using of specific ligands for PP2A and other phosphatases, we believe the 

data described herein lay an important foundation for the development of targeted therapies 

for tauopathies.
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Figure 1. 
Design of Tau-targeting Phosphorylation TArgeting Chimeras (PhosTACs) A, scheme of 

PhosTAC action mechanism. B, Design of inducible tau expression construct. C, fluorescent 

microscopy image of tau-expressing Hela cells after doxycycline induction. D, validation 

of tau expression and tau phosphorylation in Hela cells. Tau-expressing Hela cells were 

treated with or without doxycycline for 24h. Induced cells were then treated with gefitinib 

(200 nM), wortmannin (1 uM), CK2i (1 uM), and rapamycin (500 nM), respectively for 

another 24 h. Cell lysates were collected and analyzed by WB using indicated antibodies. E, 

structures of PhosTAC7 and PhosTAC7F.
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Figure 2. 
PhosTAC7 dephosphorylates Tau in a PP2A-dependent manner. A. PhosTAC induced stable 

ternary complex with tau and PP2A A subunit and C subunit. Tau/FKBP12(F36V)-PP2A 

A HeLa cells were treated with doxycycline (dox) for 24 h and then incubated with 

PhosTACs (1μM, 24h) and lysed for HaloTrap pulldown and Western blot using indicated 

antibodies. B. PhosTAC7 but not the inactive PhosTAC7F induced tau dephosphorylation. 

Tau/FKBP12(F36V)-PP2A A HeLa cells were treated with dox for 24 h, followed by 

treatment with indicated concentrations of PhosTAC7, PhosTAC7F, DMSO, or rapamycin 
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(0.5μM) for 24 h. Cell lysates were collected and analyzed by western blot using indicated 

antibodies. Data were quantified from the phosphorylated or total 2N4R** tau species with 

two replicates and summarized as mean and standard deviation. C. PhosTAC7 induced tau 

dephosphorylation via PP2A. Tau/FKBP12(F36V)-PP2A A HeLa cells (dox-induction for 

24 h) were treated with indicated concentrations of PhosTAC7, PhosTAC7F, or PhosTAC7 – 

OA (20 nM, 24 h) cotreatment. Cell lysates were collected 24 h after treatment and analyzed 

by western blot using indicated antibodies.
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Figure 3. 
Tau2–8 dephosphorylates Tau. A. Structures of Tau2–8. B. Tau2–8 induced Tau 

dephosphorylation. Tau/FKBP12(F36V)-PP2A A HeLa cells were treated with dox for 

24 h, followed by treatment with indicated concentrations of Tau2–4, Tau2–6 or Tau2–8. 

Cell lysates were collected 24 h after treatment and analyzed by WB using indicated 

antibodies. Data were quantified from the phosphorylated or total 2N4R** Tau species with 

two replicates and summarized as mean ± sd. C. Tau2–8 induced tau dephosphorylation 

via PP2A. Tau/FKBP12(F36V)-PP2A A HeLa cells were treated with dox for 24 h, 
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followed by treatment with indicated concentrations of Tau2–8 with or without OA (20 

nM) cotreatment. Cell lysates were collected 18 h after treatment and analyzed by WB using 

indicated antibodies. D. PP2A Pro179 is critical for PhosTAC-mediated dephosphorylation. 

Tau/FKBP12(F36V)-PP2A A (P179R) HeLa cells were treated with dox for 24 h, followed 

by treatment with indicated concentrations of PhosTAC7, PhosTAC7F, or Tau2–8. Cell 

lysates were collected 24 h after treatment and analyzed by WB using indicated antibodies.
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Figure 4. 
Rapid and long-lasting effects of Tau-PhosTACs. A. PhosTACs induced rapid tau 

dephosphorylation. Doxycycline induced Tau/FKBP12(F36V)-PP2A A HeLa cells (dox-

induction for 24 h) were treated with PhosTAC7 (1μM) or Tau2–8 (1 μM). Cell lysates 

were collected after treatment of indicated time and analyzed by WB using indicated 

antibodies. Data were quantified from two biological samples and summarized as mean and 

standard deviation. B. PhosTACs induced long-lasting tau dephosphorylation. Flow chart of 

experiment design was shown at top right panel. Doxycycline induced Tau/FKBP12(F36V)-
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PP2A A HeLa cells were treated with PhosTAC7 (0.5μM), Tau2–8 (10 μM) or rapamycin 

(0.5 μM) for 24h, the media were then changed to remove any treatment. Cell lysates were 

collected after indicated time and analyzed by WB using indicated antibodies. Data were 

quantified from two biological samples and summarized as mean and standard deviation.
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Figure 5. 
Proteomic approaches validated tau dephosphorylation and PP2A enrichment by PhosTACs. 

A-C. Validation of tau dephosphorylation on tau pT181, pT231, and pS202 by PhosTACs. 

HaloTag fusion tau and its interactome were pulled down by HaloTrap after PhosTAC7 

or Tau2–8 treatment. The eluted tau and interacting proteins were analyzed by mass 

spectrometry. Data were collected from three biological samples for each condition. 

D. Heatmap of tau phosphorylation level of 24 sites measured by mass spectrometry. 

E. Heatmap of enrichment level for PP2A C subunit (PPP2CA), PP2A B55 subunit 

(PPP2R2A), PP2A A subunit (PPP2R1A) and Halotag7 (tau) proteins. F. Heatmap of 

enrichment level for tubulin beta chain (TUBB), tubulin alpha-1B chain (TUBA1B), tubulin 

beta-2A chain (TUBB2A) and tubulin beta-4B chain (TUBB4B) proteins.
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Figure 6. 
The biological effects on Tau protein expression by PhosTAC. A. PhosTAC 

induced dephosphorylation correlated with accelerated tau protein down regulation. Tau/

FKBP12(F36V)-PP2A A HeLa cells were treated with dox for 24 h, after which dox was 

removed and cells were treated with DMSO or PhosTAC7 (1μM) for the indicated times. 

Tau levels were assessed by mClover mean fluorescence intensity by flow cytometry. Data 

were quantified from two biological samples and summarized as mean ± standard deviation. 

B. PhosTAC-mediated tau degradation correlated with phosphatase and proteasome activity. 

Doxycycline induced Tau/FKBP12(F36V)-PP2A A HeLa cells were treated with DMSO, 

PhosTAC7 (1μM), PhosTAC7F (1μM) for 2 days, then treated with OA (10 nM), MG132 

(10 μM) or Bafilomycin A1 (500 nM) for 24h. Tau protein levels was monitored by 

measuring mClover fluorescence intensity with flow cytometry. Data were quantified from 

two biological samples and summarized as mean and standard deviation, t tests were 

performed with Prism 9.
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