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Abstract

This study focuses on spastic paraplegia type 50 (SPG50), an adapter protein

complex 4 deficiency syndrome caused by mutations in the adapter protein

complex 4 subunit mu-1 (AP4M1) gene, and on the downstream alterations of

the AP4M1 protein. We applied a battery of heterogeneous computational

resources, encompassing two in-house tools described here for the first time,

to (a) assess the druggability potential of AP4M1, (b) characterize

SPG50-associated mutations and their 3D scenario, (c) identify mutation-

tailored drug candidates for SPG50, and (d) elucidate their mechanisms of

action by means of structural considerations on homology models of the

adapter protein complex 4 core. Altogether, the collected results indicate

R367Q as the mutation with the most promising potential of being corrected

by small-molecule drugs, and the flavonoid rutin as best candidate for this pur-

pose. Rutin shows promise in rescuing the interaction between the AP4M1

and adapter protein complex subunit beta-1 (AP4B1) subunits by means of a

glue-like mode of action. Overall, this approach offers a framework that could

be systematically applied to the investigation of mutation-wise molecular

mechanisms in different hereditary spastic paraplegias, too.
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1 | INTRODUCTION

Rare diseases (RDs) include about 7000 heterogeneous
conditions collectively affecting 10% of the global popula-
tion (Amberger et al., 2015). Unfortunately, there is no
treatment available for 95% of these disorders (Roessler
et al., 2021). This is due to various reasons: developing a
new treatment is expensive, the destination market is
small, and the scientific knowledge about rare conditions

is limited (Sun et al., 2017). It follows that pharmaceuti-
cal companies tend to overlook RDs to focus on more
prevalent illnesses. Because of this, more feasible drug
discovery campaigns are urgently needed to support RD
patients and their families.

Hereditary spastic paraplegias (HSPs) are rare neuro-
degenerative disorders with either autosomal dominant,
autosomal recessive, X-linked recessive, or mitochondrial
inheritance (Meyyazhagan & Orlacchio, 2022). HSPs are
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monogenic disorders, and more than 80 gene loci have
been linked to HSP phenotypes. The main features of
HSPs are gradual lower limb spasticity and weakness,
although complex forms of HSP include symptoms such
as visual impairment, epilepsy and intellectual disability
(Meyyazhagan & Orlacchio, 2022).

Adapter protein complex 4 (AP-4)-related HSPs are
ultrarare HSPs caused by bi-allelic loss-of-function muta-
tions to genes encoding for the subunits of the AP-4 com-
plex (Ebrahimi-Fakhari et al., 2020). These genes include
adapter protein complex subunit beta-1 (AP4B1), adapter
protein complex 4 subunit mu-1 (AP4M1), adapter pro-
tein complex subunit epsilon (AP4E1), and adapter
protein complex subunit sigma-1 (AP4S1), which encode
for the AP4B1, AP4M1, AP4E1, and AP4S1 protein sub-
units, respectively (Mattera et al., 2017). It follows that
four types of AP-4-associated spastic paraplegia do exist,
all of them with autosomal recessive inheritance pattern:
spastic paraplegia 47 (SPG47)/AP4B1, spastic paraplegia
50 (SPG50)/AP4M1, spastic paraplegia 51 (SPG51)/
AP4E1, and spastic paraplegia 52 (SPG52)/AP4S1.

In this study, we focus on the SPG50/AP4M1 pair.
SPG50 is characterized by early infantile hypotonia that
gradually progresses to spastic tetraplegia, along with
developmental delay, intellectual disability, and micro-
cephaly (Brent & Deng, 2023; Ebrahimi-Fakhari
et al., 1993). About 60 SPG50 patients worldwide have
been diagnosed so far (https://clinicaltrials.gov/study/
NCT05518188. Accessed November 29, 2023), although
this number is expected to be higher. The only pharmaco-
logical treatment available today for SPG50 is MELPIDA,
an SPG50-targeted gene therapy now in a clinical trial
(NCT06069687) (Chen et al., 2023; Dowling et al., 2024).
Parallelly, a recent paper reported a lead compound
isolated from phenotypic screening able to restore AP-
4-related functions in fibroblasts and pluripotent stem
cell-derived neurons from AP-4-HSP patients (Saffari
et al., 2024).

The SPG50 causative gene, AP4M1, encodes for the
AP-4 subunit mu-1 (AP4M1), the medium subunit of
the AP-4 assembly. AP4M1 participates in the formation
of the AP-4 complex together with two large subunits
(AP-4 subunits beta-1 and epsilon-1, AP4B1 and AP4E1,
respectively) and a small subunit (AP-4 subunit sigma-1,
AP4S1). The AP-4 complex is a heterotetrameric protein
assembly mediating vesicular trafficking of transmem-
brane proteins from the trans-Golgi network toward
peripheral membrane compartments within eukaryotic
cells (Mattera et al., 2020). AP-4 is organized into differ-
ent structural domains (Figure 1a): a core domain
(responsible for cargo recognition and membrane recruit-
ment), a hinge domain, and an ear domain (involved in
the interaction with accessory and/or regulatory proteins)

(Park & Guo, 2014). Based on its similarity to other
adapter protein complexes (namely, AP-1 and AP-2),
AP-4 is expected to adopt two alternative conformations:
a closed/inactive state and an open/active one
(Canagarajah et al., 2013). The latter is able to interact
with target membranes and cargo proteins. Given the
homology with the other AP complexes, the tetrameriza-
tion process is supposed to follow a stepwise assembly,
where two hemicomplexes are formed separately
(AP4B1-AP4M1 and AP4E1-AP4S1) and later interact
with each other to form the full multimer (Gulbranson
et al., 2019; Mattera et al., 2022; Wan et al., 2021).

AP4M1 is a 453-amino acid protein consisting of an
N-terminal domain (1–118 ca.) and a C-terminal mu
homology domain (MHD, 184–453) joined by a flexible
linker (Figure 1b). The AP4M1-MHD plays a pivotal role
in mediating the recognition of tyrosine-based sorting sig-
nals on cargo proteins when the complex adopts its open
conformation (Bonifacino & Dell'Angelica, 1999; Burgos
et al., 2010). On the other hand, the amino-terminal
domain (NTD) is expected to dock in the angular bend of
the AP4B1 subunit to form one hemicomplex, while the
AP4S1 subunit (which displays remarkable structural
similarity with the AP4M1-NTD) docks into the AP4E1
subunit to give rise to the second hemicomplex (Mattera
et al., 2022). Although an experimental structure of the
AP-4 complex has not yet been determined, an attempt at
in silico structural characterization of AP-4 and associ-
ated HSP-causing missense variants has previously been
carried out by Gadbery and colleagues (Gadbery
et al., 2020). In this study, the authors mapped known
AP-4 variants onto a homology model of the complex and
evaluated the conservation across evolution of different

FIGURE 1 The adapter protein complex 4 (AP-4) complex and

adapter protein complex 4 subunit mu-1 (AP4M1). (a) Schematic

illustration of the adapter protein complex 4. It is formed by two

large subunits (AP4B1, in blue, and AP4E1, in green), a medium

subunit (AP4M1, in pink), and a small subunit (AP4S1, gray).

(b) Structural organization of the AP4M1 subunit: This protein

consists of an N-terminal region (NTD, residues 1–118), a linker,
and a C-terminal domain (CTD), also called mu homology domain

(MHD, residues 184–453). AP4B1, adapter protein complex subunit

beta-1; AP4E1, adapter protein complex subunit epsilon; AP4S1,

adapter protein complex subunit sigma-1.
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AP-4 regions. It highlighted the critical role of residues
located at inter-subunit interfaces in stabilizing the AP-4
core and pointed out that both the NTD and carboxy-
terminal domain (CTD) of AP4M1 host pathogenic vari-
ants. Their work, together with prior literature including
publications from our group (Rossi Sebastiano et al., 2022;
Rossi Sebastiano et al., 2022; Rossi Sebastiano et al., 2024),
underlines the importance of computational approaches
relying upon AP-4 a 3D models to investigate variant-
related effects in the context of AP-4-HSPs.

Despite the availability of some structural information
on AP-4 and AP4M1 from homology and crystallographic
experiments, no structure-based, small-molecule drug
repurposing for SPG50 has been attempted so far. Drug
repurposing (i.e., rewiring a therapeutic agent toward a
different indication than the original one) is a promising
strategy (Hechtelt Jonker et al., 2023; Roessler et al., 2021;
Shah et al., 2021). It displays compelling advantages
(namely, time and cost) and exhibits the potential to fill
the therapeutic gap in RD management wherever genetic
treatments are not available yet. Moreover, since SPG50 is
caused either by homozygous or compound heterozygous
mutations in the AP4M1 gene, correcting at least one out
of two variants is expected to suffice to rescue the altered
phenotype (Brent & Deng, 2023).

Nevertheless, drug repurposing cannot be blindly
applied to every rare condition. It is crucial to thoroughly
evaluate the feasibility of drug repurposing campaigns by
addressing each case separately in its own specificity and
complexity. This evaluation step can be enhanced by the
effective combination of computational tools, as
highlighted in a previous report from our group (Rossi
Sebastiano et al., 2024) and demonstrated in a personal-
ized drug repurposing pipeline for infantile ascending
HSP (Rossi Sebastiano et al., 2022).

In this study, we aimed at (a) assessing the druggability
potential of AP4M1, (b) characterizing SPG50-associated
mutations and their 3D surrounding, (c) discovering
small-molecule drug candidates for SPG50, and
(d) elucidating their mechanism of action through struc-
tural considerations based on the AP-4 core as well. To
achieve these goals, we employed a combination of web
servers and standalone software that, to our knowledge,
have never been integrated before. We first implemented a
new platform (named Drug Repurposing Assessment for
RD Targets [DRARDT]) to assess the feasibility of a drug
repurposing program for SPG50. Then, we mapped
SPG50-associated missense mutations to the structure of
AP4M1 by using an in-house web server presented here
for the first time (3DVarPro). Afterward, we performed a
structure-based characterization of a subset of SPG50
variants within the AP-4 core to ultimately isolate those
eligible for targeted drug repurposing. Finally, we hypoth-
esized a molecular mechanism explaining the pathogenic

effect downstream of the targeted variant, R367Q, and a
mechanism of rescue mediated by a potential drug candi-
date isolated from virtual screening.

Overall, this study showcases that molecular modeling
resources can foster research on RD targets and drive small-
molecule drug repurposing initiatives toward patient-
tailored therapies. Although this work focused on a single
case of SPG50, the relevance of our pipeline should be con-
sidered in a broader context, where other RDs and muta-
tions could also benefit from the same approach.

2 | RESULTS

2.1 | SPG50-associated missense
mutations on the AP4M1 3D structure

To gain insight into the spatial distribution of all reported
SPG50-associated missense mutations over the AP4M1
structure, we used our in-house web app 3DVarPro.
3DVarPro was developed through the Streamlit
framework to map all clinical trait-associated missense
mutations retrieved from the ClinVar database onto the
wild-type, 3D structure of a protein of interest automati-
cally retrieved from the Google DeepMind's AlphaFold
database (Varadi et al., 2022). This quick visualization
highlighted that SPG50 missense mutations are evenly
spread across the full-length structure of AP4M1
(Figure 2a). This finding suggests that the whole subunit
is susceptible to functional impairment depending on the
mutation. Indeed, previous evidence suggests that muta-
tions of the NTD (Figure 1b) could affect the correct
docking of this domain in the AP4B1 subunit, while vari-
ants located in the CTD might impair cargo recognition
(Gadbery et al., 2020).

We compared the 3DVarPro map of AP4M1 with the
one generated by the newly released AphaMissense pre-
diction model (Figure 2b, see Section 4) (Cheng
et al., 2023), which confirmed that highly pathogenic mis-
sense variants are homogenously spread throughout the
AP4M1 structure.

Altogether, these observations suggest that different
pathogenic mechanisms may involve AP4M1 and be
responsible for SPG50 insurgence, with each one worth
being investigated.

2.2 | Application of DRARDT to assess
the feasibility of a drug repurposing
program for SPG50

DRARDT is an innovative methodology developed by our
research group. It integrates various types of information
to evaluate the feasibility of drug repurposing programs
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for RD targets. A general scheme of the pipeline is
reported in Figure 3, while technical details can be found
in Section 4.

DRARDT considers four aspects: (1) the available sci-
entific literature about the target, (2) whether disease-
associated mutations affect protein production, (3) the
quality of 3D models at mutation sites, and (4) the possi-
ble disruption of protein–protein interaction (PPI) net-
works upon mutation. Based on the outcome, indexes
ranging from “High” (best outcome), to “Medium” and
“Low” (worst outcome) are assigned.

Literature analysis consisted of collecting all available
publications on the target since 2000. In the case of
AP4M1, only 52 publications were highlighted in the
2000–2024 timespan, therefore a “Low” index was
assigned to the target. The literature analysis allowed us
to identify the pool of SPG50-associated mutations that
were used for the next steps of the investigation. This set
was collected from a work by Ebrahimi-Fakhari et al.
(2020) and included 25 univocal mutations (Figure 2c).
The considered mutations are seven nonsense, seven
frameshift, seven missense, and four variants with
unknown effects at the protein level (Table S1). We chose
to address published mutations instead of larger archives
(e.g., ClinVar) to perform a more clinically relevant

analysis, with precise attribution to patient cases and
phenotypic implications.

Inference about the presence of mutant protein prod-
ucts was made by predicting the probability of nonsense-
mediated mRNA decay (see Section 4). Out of the seven
frameshift variants, four were discarded because their
NMD predictions showed low confidence (i.e., no flagged
premature termination codon was found to exist in the
reading frame). The four unknown (intronic) variants
were excluded as well, and 10 out of the remaining
17 mutations (three frameshift, seven nonsense) were
predicted to lead to NMD. Only missense mutations
passed this selection, accounting for slightly more than
33% of the considered ones (which did not include the
four unknown variants). Thus, the NMD-susceptibility of
SPG50-associated mutations was assigned a “Medium”
index (33 < % < 66).

For the third step of DRARDT (i.e., 3D structural
information at mutation sites), both experimental (PDB
3L81) and computational (AlphaFold database, UniProt
code O00189) 3D structures of AP4M1 were considered.
Given that the AlphaFold structure of AP4M1 encom-
passes the complete amino acid sequence, whereas the
crystal structure is limited to the CTD/MHD, both struc-
tures were independently assessed for score assignment.

FIGURE 2 (a) Location of

hereditary spastic paraplegia-

associated ClinVar missense

variants (in red) on the

AlphaFold structure of adapter

protein complex 4 subunit mu-1

(AP4M1). (b) AlphaFold

structure of AP4M1 colored by

AlphaMissense pathogenicity

score. The displayed color for

each residue is the average

pathogenicity score across all

possible amino acid

substitutions at the given

position. (c) Distribution of

AP4M1 protein variants from

the dataset of Ebrahimi-Fakhari

and colleagues all over the

primary structure of AP4M1.
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This approach acknowledges the non-overlapping nature
of the information provided by each structure, ensuring a
comprehensive evaluation. A detailed explanation of how
the definition of each mutation site was evaluated is
reported in the Section 4 section. In both the experimen-
tal and predicted structure of AP4M1, most residues sur-
rounding (and including) the mutation sites were
assigned a “High” label. This indicates an overall high
structural definition.

Finally, analysis of PPIs and pathways revealed
10 STRING-DB interactors and 1 KEGG cellular pathway
for AP4M1. The considered STRING interactors were
either from directly annotated experiments or from
linked databases. Therefore, a “High” flag was assigned
to AP4M1 for this fourth aspect as well.

In conclusion, despite being a RD target, AP4M1
turned out to be a well-annotated protein based on our
DRARDT evaluation method (Figure 3). As all missense
variants are expected to be translated at the protein level,
we focused on these mutations for the following stages of
this study.

2.3 | Assessment and prioritization of
pathological missense mutations

A key requirement to perform drug repurposing on single
residue variants (SRVs) is that they can be targeted by
small molecule ligands (ligandability). This lays the foun-
dation for druggability (i.e., that such interaction leads to
a desired biological effect) (Di Palma et al., 2023). In
practical terms, the difficulty of identifying a molecule to
correct a specific SRV can vary depending on the SRV's
characteristics, and, in some instances, it may not be pos-
sible. In parallel, it is important to formulate hypotheses
on the mechanisms downstream of any pathogenic vari-
ant to understand whether single mutations can benefit
from pharmacological intervention, thus prioritizing
SRVs eligible for drug repurposing. To address this ques-
tion and suggest possible intervention plans, each mis-
sense variant was analyzed using a pool of in silico tools
enabling the gathering of information about: (1) entity of
pathogenicity of SRVs and (2) evolutionary conservation
of wild-type residues, (3) structural order/disorder of

FIGURE 3 General scheme of Drug Repurposing Assessment for rare diseases (RDs) targets (adapter protein complex 4 subunit mu-1

outcomes for each criterium are highlighted in bold red characters). (1) Number of publications on PubMed featuring the target.

(2) Percentage of RD-related mutations predicted to undergo NMD. (3) Structural features at NMD-negative mutant residues. Both available

experimental and predicted structures are considered, in which the readout is represented by B-factor and pLDDT in a 5 Å-radius area from

the mutant site, respectively. (4) Number of interactors and annotated pathways featuring the target.
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AP4M1 regions including residues undergoing mutation,
(4) exposure to the solvent, and (5) effect of the various
SRVs on the thermodynamics of the protein (i.e., stability
and folding) (Table 1).

The pathogenicity of the selected set of protein variants
was predicted using both the MutPred2 and E-SNPs&GO
web servers, while the conservation of wild-type residues
was examined through the ConSurf-DB (Figure 4a,b)
(Ben Chorin et al., 2020; Manfredi et al., 2022; Pejaver
et al., 2020). Predicting the pathogenicity of patient-related
mutations might seem redundant. However, this approach
can be insightful. Pathogenicity predictors offer scores that
ideally reflect the severity of protein missense mutations.
This is crucial when clinical information is unavailable or
insufficient, as it often happens with RDs. Moreover, AI-
based tools in this study are trained on neutral versus
pathogenic mutations from online archives and analyze
target protein sequences in isolation. Comparing their out-
put with clinical data reveals their reliability, particularly
(A) for patient-observed mutations and (B) for mutations
affecting proteins in multimeric assemblies, such as the
AP4M1 subunit.

Collectively, pathogenicity and conservation analyses
revealed that the most pathogenic variants are E193K
and Y284S, for which a consensus was reached, and the
relative wild-type residues are the most conserved too.
C319R and C319Y immediately followed according to all
three web servers. The most cryptic results were those
regarding G307A. Overall, although being associated with
SPG50, G307A was predicted to be the most benign
according to both servers and, despite the low confidence,
the least conserved as well. R227H was also labeled as

probably not pathogenic, with a medium conservation
score associated with the wild-type residue. Although the
predictions obtained for all SRVs showed overall coher-
ence, the R367Q variant stood out for quite different
computed pathogenicity scores by E-SNPs&GO and
MutPred2, though generally marked with a low pathoge-
nicity likelihood. By means of ConSurf, we found out that
R367 was assigned a medium-to-high conservation score,
thus partially supporting the related pathogenic effect
reported in the patient.

Notably, ConSurf also highlighted a specific conserva-
tion pattern across the AP4M1-CTD (Figure 4b), with the
structural portion corresponding to the β-sandwich sub-
domain B (Burgos et al., 2010) being generally more vari-
able than the rest of the CTD, suggesting that mutations
occurring in this region might generally have less severe
effects.

Subsequently, we sought to evaluate the structural
profile of wild-type residues at mutant sites to discrimi-
nate between mutations occurring at structured sites, and
mutations falling in intrinsically disordered regions
(IDRs). Since IDRs have widely been implicated in
protein–protein interactions and in the mediation of con-
formational transitions (Latysheva et al., 2015), this step
was necessary to understand whether our mutations
could affect the binding capability and/or flexibility of
our target. To this aim, we used the AIUPred web server
(Erd}os & Doszt�anyi, 2024). This tool provides a residue-
based score indicating the probability of each residue
being inserted in structured versus disordered regions
(Figure S1). We found out that all the missense variants
from our dataset, but R367Q, fall in regions of AP4M1

TABLE 1 List of selected tools for the evaluation of “ligandable” SPG50-associated missense mutations.

Tested
aspect Tools Description Link

Pathogenicity MutPred2 Web app to classify amino acid substitutions as benign or pathogenic http://mutpred.mutdb.org/

E-SNP&GO ML method to call benign versus pathogenic amino acid substitutions https://esnpsandgo.biocomp.
unibo.it/

Conservation ConSurf Web server that infers the evolutionary conservation of either amino or
nucleic acid positions in protein/RNA/DNA molecules

https://consurf.tau.ac.il/
consurf_index.php

Disorder IUPred2A Web interface that generates energy estimation-based predictions for
ordered and disordered protein residues (IUPred2) and for disordered
binding regions (ANCHOR2)

https://iupred2a.elte.hu/

Solvent
accessibility

FreeSASA Command line tool to retrieve the solvent-accessible surface area or
residues within a protein (PDB) structure

https://freesasa.github.io/

Stability DynaMut2 Web interface and command line tool for the assessment of changes in
protein stability and flexibility upon missense mutations

https://biosig.lab.uq.edu.au/
dynamut2/

SimBaNI Multilinear regression model to predict protein stability changes upon
missense mutation

–

INPS-3D Web server for the prediction of the impact of missense mutations on
protein stability

https://inps.biocomp.unibo.
it/inpsSuite/default/index3D
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with more structured profiles. This finding suggests that,
while R367Q is expected to affect the capacity of AP4M1
to interact with other proteins, the remaining SRVs
might rather impair the correct folding, thus leading to a
loss of structural integrity.

Parallelly, we investigated solvent exposure of wild-
type residues at mutant sites, as disease-related SRVs
were shown to occur more frequently at buried residues
(Savojardo et al., 2021). For this task, FreeSASA, a com-
mand line tool for calculating solvent-accessible surface
area, was used (Mitternacht, 2016). We took the relative
solvent accessibility (RSA) as a measure of solvent expo-
sure and, based on literature suggestions (Savojardo
et al., 2021), we clustered our SRVs into two groups:
those falling in solvent-exposed protein regions (RSA
>20%), and those located in buried portions (RSA <20%).
All mutations but three (R227H, G307A, and R367Q)
were found to affect buried amino acids, which turned
out to be coherent with the pathogenicity scores obtained

before. This finding strengthens the hypothesis that
E193, Y284, and C319 might play a key role in ensuring
the proper folding of AP4M1.

The following step was focused on calculating the pro-
tein destabilization caused by each SRV. The more destabi-
lizing a mutation is, the more it is likely to impact the
proper folding of the target protein. This can result in a
non-functional product that may either be degraded or
accumulated within cells, thus causing toxicity. Based on
the previous findings, we expected a greater contribution
to thermodynamic destabilization from mutations falling
in structured and buried regions of AP4M1. To address
this aspect, we used a consensus approach based on three
different tools (DynaMut2, SimBaNI model, and INPS-3D)
(Caldararu et al., 2021; Rodrigues et al., 2021; Savojardo
et al., 2016). All three tools provide a value of destabiliza-
tion (expressed in kcal/mol as free energy variation)
caused by missense mutations on a given protein. Based
on previously published data, we fixed a cutoff of

FIGURE 4 Pathogenicity

and evolutionary conservation

assessment of spastic paraplegia

type 50-associated missense

mutations. (a) Probability of

pathogenicity for each missense

variants predicted by the

MutPred2 and E-SNP&GO web

servers. The dotted red lines

indicate the threshold provided

by each web server to

distinguish benign from

pathogenic mutations. The

values indicate the

pathogenicity probability.

(b) Evolutionary conservation of

analyzed residues from 3L81

based on ConSurf. The region

corresponding to the β-sandwich
subdomain B generally appears

to be less conserved than

subdomain A.
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�1.5 kcal/mol to call highly destabilizing mutations
(Bromberg & Rost, 2009; Gerasimavicius et al., 2020;
Potapov et al., 2009; Seifi & Walter, 2018). From this anal-
ysis, Y284S and C319R were univocally elected as the most
destabilizing mutations, with a destabilization exceeding
the cutoff we fixed based on at least one tool (Figure 5).
On the other hand, the impact of R367Q on protein stabil-
ity was weaker, as previously postulated.

Table 2 summarizes the data collected so far to priori-
tize mutations eligible for the drug repurposing step. Vari-
ants positively selected during this stepwise evaluation
encompass R227H, G307A, and R367Q. These three muta-
tions met ligandability criteria, as they all were solvent-
exposed and not excessively structure-destabilizing, and
showed medium-to-high conservation scores and relatively
low pathogenicity. We interpret the apparent paradox that
some SPG50-related mutations are predicted with low
pathogenicity as a result of how prediction tools work, as
anticipated at the beginning of this paragraph. Being from
SPG50 patients, these mutations are actually pathogenic
but the AP4M1 structural destabilization does not seem to
be the only possible pathogenic mechanism taking place.
Therefore, being these SRVs solvent-exposed, we conclude
that their pathogenic potential is due to impaired protein–
protein interactions, which hardly emerge when the
sequence of AP4M1 only is considered. It is relevant to
underline that our analysis revealed how results from
pathogenicity predictors must be critically assessed by
means of complementary approaches, whenever possible.

2.4 | Mutation-related effects on
inter-subunit interactions in the AP-4 core

Once that our SPG50-associated SRVs were prioritized
based on the properties listed in the previous section, we
examined their putative roles within the AP-4 core.

As anticipated in the Introduction, no experimental
structure of the AP-4 heterotetramer is available. How-
ever, crystal structures of the core domain of the AP-1
and AP-2 complexes have been deposited on the RCSB
Protein Data Bank over the years. Therefore, we selected
two AP-2 crystals, 6QH5 and 2XA7, to serve as templates
for modeling the closed and open states of AP-4 core,
respectively (Figure 6a). The selection of templates
aligned with the rationale provided by Gadbery and col-
leagues (Gadbery et al., 2020). The two homology models
of the AP-4 core domain were built using the SWISS-
MODEL server (more details are discussed in Section 4),
and inter-subunit binding affinity values were calculated
in both states. The strongest interactions were highlighted
for the AP4B1-AP4M1 and AP4E1-AP4S1 hemicomplexes in
both conformations (Figure 6b). This finding is in line with
the hypothesized assembly model (Mattera et al., 2022),
where these two hemicomplexes are stabilized separately
first, and then combined in the final tetrameric structure.

According to our AP-4 models, R227, G307, and R367
are all involved in inter-subunit contacts in the closed
AP-4 conformation (Figure 6c). In particular, R367 was
found to establish an ionic bond with residue E467 from
AP4B1. Remarkably, this bond was associated with a
high interaction energy (Table S2). The fact that these
three mutations occur at protein–protein interfaces might
justify the lower pathogenicity detected by MutPred2 and
E-SNPs&GO, which took into account the AP4M1
sequence rather than the AP-4 tetramer.

At this point, we wondered whether the correspond-
ing SPG50-associated mutations could impair the integ-
rity of the AP-4 core. To this aim, we adopted two
different approaches. In the first one, we exploited the
Protein Design application integrated within the MOE
suite. We submitted our mutations to the alanine scan-
ning tool (Figure 7a), which aims at determining how
specific residues impact on protein properties (including

FIGURE 5 Effect of the

different missense mutations on

adapter protein complex

4 subunit mu-1 (AP4M1)

stability based on three

different tools: DynaMut2

(blue), SimBaNI regression

model (yellow), and INPS-3D

server (magenta). The cutoff at

�1.5 kcal/mol is displayed as a

red line.
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stability and affinity) by mutating them to alanine, which
side chain is “inert” (nonpolar and with minimal steric
hinderance). Parallelly, we exploited the residue scanning
tool to specifically assess the effect of our missense muta-
tions on stability and affinity of the AP-4 core homology
model (Figure 7b). Both analyses highlighted that
R227H, G307A, and R367Q all affect the integrity of the
closed AP-4 core rather than that of the open core. This is
consistent with prior observations, as all wild-type resi-
dues are involved in inter-subunit bonds in the closed
AP-4 state.

As for the second approach, we compared the interac-
tions established by the considered AP4M1 residues
(i.e., positions 227, 307, and 367) in wild-type and mutant
core models (Figure S2). Results suggest that R227H, in
the closed conformation, leads to the loss of a hydrogen
bond with residue Y322 on the AP4B1 subunit while, in
the open AP-4 state, this mutation disrupts the ionic
bond with residue E263 from AP4M1. In the latter case,
the disruption of this ionic contact seems to increase the
distance between the α-helix containing E263 and the
β-sheet region formed by the remaining interacting resi-
dues. As regards G307A, this variant is characterized by
the loss of a hydrogen bond with Q366 on the AP4E1 sub-
unit in the closed core, while in the open state no signifi-
cant changes emerge. Finally, R367Q in the closed core is
responsible for the loss of a salt bridge with the E467 resi-
due of AP4B1 (Figure 7c), while one less hydrogen bond
with residue N329 of AP4M1 was found in the open
conformation.

The greatest impact on stability and affinity was
highlighted for R367Q in the closed AP-4 core, and we
hypothesized that this arginine could be an interface hot
spot residue (David & Sternberg, 2015). Hot spots at
protein–protein interfaces are key residues that address
the majority of the interaction between two protein
entities, and their mutation to an inert amino acid
(e.g., alanine) leads to a ≥2 kcal/mol reduction in binding
free energy (Clackson & Wells, 1995; David &
Sternberg, 2015; Keskin et al., 2005). The impact of such
a mutation on the integrity of the tetramer is further
justified by the fact that the adapter protein complex
4 might follow a step-wise assembly model, where the
AP4B1-AP4M1 hemicomplex represents one of the two
building blocks the final assembly starts from. Therefore,
the integrity of this first hemicomplex is paramount to
ensure the stability of the whole complex as well, as dis-
cussed above. Furthermore, R367 belongs to an electro-
positive protein patch that, based on homology with AP-1
and AP-2, could be involved in the interaction with
negatively charged phosphoinositides on membranes to
mediate the complex recruitment to target organelles
(Figure S3) (Canagarajah et al., 2013; Collins et al., 2002).T
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This electropositive patch on AP4M1, which includes R367,
is coplanar to a bigger one on the AP4E1 subunit when the
AP-4 complex is in the open state (i.e., the conformation
allowing membrane binding and cargo recognition). This is
coherent with the highlighted interaction modality between
homologous subunits in AP-2 and membranes to mediate
the recruitment of the complex and cargo loading at target
organelles (Canagarajah et al., 2013).

2.5 | Binding pocket search

In the previous section, we predicted an impact on the stability
of the AP-4 core downstream of R227H, G307A, and R367Q

owing to the weakening of PPIs. Therefore, we envisioned a
potential therapeutic mechanism by any molecule able to
restore the correct affinity between the AP-4 subunits. It fol-
lows that the next step of the study was to look for a pocket at
the PPIs containing these mutations, aiming at finding com-
pounds capable of “bridging” the subunits back together again.

A pocket search was performed using two commercial
tools to reach a consensus (SiteMap (Halgren, 2007),
MOE-SiteFinder), as well as two free web servers
(DoGSiteScorer, FPocketWeb) (Kochnev & Durrant, 2022;
Volkamer et al., 2012) to further test the outcome of the
two previous algorithms (data not shown). Most solid
results, in terms of scores, were obtained for the closed
R67Q mutant AP-4 core, where a pocket including Q367

FIGURE 6 Homology models of the adapter protein complex 4 (AP-4) core. (a) Closed and open AP-4 cores generated from 6QH5 and

2XA7 crystals of the AP-2 core, respectively (blue: AP4B1; green: AP4E1; pink: AP4M1; gray: AP4S1). (b) Inter-subunit total binding affinity

(GBVI) values indicate a stronger association (i.e., more negative values) within the AP4B1-AP4M1 and AP4E1-AP4S1 hemicomplexes

overall, both in the closed and open conformations (blue: Closed AP-4 core; magenta: Open AP-4 core). (c) Interactions established by wild-

type R227, G307, and R367 at protein–protein interfaces in the closed AP-4 core (yellow dotted lines represent hydrogen bonds, while salt

bridges are displayed in magenta). AP4B1, adapter protein complex subunit beta-1; AP4E1, adapter protein complex subunit epsilon;

AP4M1, adapter protein complex 4 subunit mu-1; AP4S1, adapter protein complex subunit sigma-1.
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and at the interface between AP4B1 and AP4M1 was
robustly highlighted (Figure 8). Of note, unbiased search
with SiteMap first highlighted a larger binding cavity
(Figure 8a), while a search focused on Q367 with MOE-
SiteFinder identified a smaller site (Figure 8b), almost
entirely comprised within the first one (Figure 8c). On the
other hand, inconsistent data emerged both for the closed
R227H-AP-4 and G307A-AP-4 mutants. According to these
and previous results, we focused drug repurposing efforts
on the R367Q variant only.

2.6 | Drug repurposing for R367Q

The idea behind drug repurposing of the SPG50-associ-
ated, R367Q variant was to rescue the loss of affinity

between subunits AP4B1 and AP4M1 at the critical spot
where Q367 falls. Therefore, we wanted to look for com-
pounds with putative glue mode of action (MoA) to restore
the interaction between these two subunits (Figure 9a).
To do this, we performed a virtual screening of a library
of compounds from the DrugBank database (Knox
et al., 2024). Molecule selection was based on the drug
group (approved and nutraceutical), as well as on chemi-
cal considerations (see Section 4).

Virtual screening was first performed using the open-
source AutoDock-Vina software (Trott & Olson, 2010).
From this initial experiment, the flavonoid rutin turned
out to favorably bind to our target with an affinity of
�7.89 kcal/mol (see Section 4), while being a natural
product, previously reported to be a dietary antioxidant
with a neuroprotective effect (Habtemariam, 2016; Sun

FIGURE 7 Single residue variants-based interaction energy profile (positive values: Loss of stability and/or affinity). (a) Alanine

scanning results from MOE show that the most serious impact on protein stability and affinity is highlighted downstream of R367Q in the

closed adapter protein complex 4 (AP-4) core model, as the associated energy variations are increased. (b) Residue scanning analysis shows a

similar impact on both stability and affinity with respect to alanine scanning with respect to R367Q in the closed AP-4. A stabilizing effect

emerged for R227H in the closed tetramer, although no clear explanation from direct visualization did emerge (Figure S2). (c) Wild-type

versus mutant interaction scenario of R367Q in the closed AP-4 core: The substitution of the arginine 367 with glutamine leads to the

abolition of a critical salt bridge with adapter protein complex subunit beta-1 (AP4B1)-E467, thus explaining the impact on the target

properties highlighted by means of both alanine and residue scanning. *dAffinity was calculated with respect to the AP4B1 chain for both

R227H and R367Q, while to adapter protein complex subunit epsilon for G307A.
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et al., 2021; Xu et al., 2014). Rutin is made of a rutinose
disaccharide group bound to a quercetin unit (Figure 9b).
We decided to validate the first screening with two com-
mercial docking software: Glide (Halgren, 2007) and
MOE-Dock. The same dataset of compounds was submit-
ted to both gold standard tools, and once again rutin
emerged as a promising candidate with scores of �9.72
and �4.34 (Glide docking score and MOE S score, respec-
tively; see Section 4 for more details). We repeated the
docking of rutin at a higher accuracy level with Glide
and identified its best binding pose within the AP-4
pocket. According to this pose, Q367 is not directly
involved in the binding to rutin (Figure 9c). Nevertheless,
we did not consider this as a huge problem, as rutin still
manages to bind in colocalization with Q367 at the inves-
tigated spot. Repetition of docking with MOE-Dock
revealed overall coherence with Glide, with the quercetin
and rutinose groups similarly oriented in the cavity
(Figure 9d). However, slight differences in the docking
poses led to differences in the interacting residues
(Figure S4). We interpret this outcome as due to the dif-
ferent force fields employed by the docking engines, as
well as to different receptor preparation methods. Finally,
accurate docking was repeated with AutoDock-Vina as
well, although more remarkable differences in the bind-
ing pose emerged this time compared to the previous
tools.

Altogether, these results highlighted a candidate drug,
rutin, expected to bind residues from both AP4B1 and
AP4M1 at the interface spot, where an R367Q-dependent
destabilization is predicted to occur. Thus, these data sup-
port a glue MoA mediated by this small molecule.

3 | DISCUSSION

Molecular modeling pipelines, made of both web servers
and standalone programs, harness significant potential
for drug discovery and for the elucidation of molecular
mechanisms underlying RDs. This study focuses on the
SPG50/AP4M1 pair and reports a new computational
strategy testing the feasibility of personalized computa-
tional medicine and suggesting treatment options.

To achieve our objectives, we employed two new
tools. The first one, DRARDT, is a method demonstrating
that a thorough evaluation of the target—including
aspects like structural context and interactome—is essen-
tial to any computational approach aimed at discovering
a drug to modulate that target. The second tool, 3DVar-
Pro, is a novel visualization platform through which we
conducted a qualitative analysis of the overall structural
context of SPG50-associated missense mutations from
ClinVar. This analysis revealed that these mutations are
uniformly distributed throughout the AP4M1 structure.

FIGURE 8 Binding pocket

definition based on Schrödinger

SiteMap (a) and MOE-SiteFinder

(b). The pocket surface is

displayed in gray, with the Q367

residue shown as spheres.

(c) Highlight on residues

encompassed by the SiteMap

pocket (purple), by the Site

Finder cavity (green) and on

those common to both pockets

(red). Q367 falls in the common

area and is displayed as spheres.

From this figure, it is possible to

appreciate that the Site Finder

cavity is almost entirely included

within the SiteMap pocket, with

the exception of adapter protein

complex subunit beta-1

(AP4B1)-S466. AP4M1, adapter

protein complex 4 subunit mu-1.
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Results provided by DRARDT and 3DVarPro support that
designing and implementing new, ad hoc systems for
computer-aided drug discovery are nowadays pivotal to
foster efforts in this field of research.

Another key step of this study is represented by the
identification and prioritization of a small set of SRVs eli-
gible for personalized drug discovery efforts. This was
achieved by using a variety of tools to select mutants that

are less likely to undergo NMD, premature protein degra-
dation or unfolding. This is particularly important for our
approach, which relies on the availability of the target
protein within cells.

We modeled the structure of the AP-4 core in both
closed and open states. This was necessary to suggest
pathological mechanisms for different mutations: three
of these variants (R227H, G307A, R367Q) are located at

FIGURE 9 Virtual drug

screening on the selected

adapter protein complex 4 (AP-

4) pocket. (a) Proposed mode of

action of a small molecule to

restore the binding affinity

between subunits adapter

protein complex subunit beta-1

(AP4B1) and adapter protein

complex 4 subunit mu-1

(AP4M1). (b) Structure of rutin,

a flavonoid compound

consisting of a quercetin with

the hydroxy group at C-3

substituted with the

disaccharide rutinose (molecular

weight: 610.52 g/mol). (c) Best

docking pose of rutin according

to Glide shown together with

AP4B1 and AP4M1 residues

involved in the interaction. The

interaction diagram shows that

rutin is able to establish

hydrogen bonds with residues

E427, N429, and I430 from

AP4B1, as well as with E410

from AP4M1. A cation-pi

interaction is also formed with

AP4B1-K436. (d) Comparison

between binding modes of rutin

according to Glide (in green),

MOE-Dock (cyan), and Vina

(yellow and magenta). RMSD

values (in Å) indicate that Glide

and MOE-Dock best poses of

rutin are more similar with

respect to the first pose

highlighted by AutoDock-Vina.

However, pose 7 by Vina

displays remarkable

superposition with pose 1 from

MOE-Dock. Bold indicates the

matrix diagonal.
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protein–protein interfaces, indicating a potential loss of
affinity between AP-4 subunits at critical hotspot regions
when mutation occurs. The strongest destabilization of
the AP-4 complex was predicted for R367Q due to the
loss of a critical salt bridge. A consequence of this finding
is that a potential mechanism to counteract the mutation
effect can be a small-molecule drug able to bind both
AP-4 subunits, thus restoring their reciprocal affinity.
This MoA is known in medicinal chemistry by the name
of molecular glue (Domostegui et al., 2022) and supports,
at least in principle, the druggability of the R367Q
mutation.

Ligandability (i.e., the potential to be bound by a
small molecule) is a key requirement to ensure the drugg-
ability of a protein target (Di Palma et al., 2023). This
property is conditional to the presence of a binding cavity
within the desired receptor site. To address this point, we
screened our AP-4 core models for putative binding cavi-
ties including any of the mutant residues and found out
that only R367Q was included in a binding pocket with
sufficient confidence. However, in this study, we did not
account for transient pockets on the protein surface. This
should be considered in the future.

Finally, we performed virtual screening using three
different docking engines, as it is our opinion that a con-
sensus approach is advisable for more solid results. All
three docking tools pointed out the flavonoid rutin as a
candidate molecule to rescue the interaction between
AP4B1 and AP4M1. Although not directly binding to the
mutant residue, rutin was found to establish contacts
with surrounding residues from both AP4M1 and AP4B1.
These findings support rutin as a drug candidate for the
R367Q variant, but open to the question of whether vari-
ants in the same position could benefit from this
treatment too.

To obtain proof-of-concept results, patient-derived
cells such as skin fibroblasts represent an opportunity
(Rossi Sebastiano et al., 2024). This perspective is espe-
cially viable considering that established cell markers are
already available to monitor the effect of AP-4-related
HSP forms on cell models (Ebrahimi-Fakhari et al.,
2021). Thus, further computational and experimental
efforts are needed to support the validity of the suggested
mechanism, the efficacy of rutin and its applicability to
tackle other mutations as well.

4 | MATERIALS AND METHODS

4.1 | 3D structures

Structures used in this study include the experimental
AP4M1 crystal (PDB 3L81; Accessed July 2023), its

predicted structure available in the AlphaFold database
(ID AF-O00189-F1; Accessed July 2024), and two crystals
of the AP-2 core (PDB IDs 6QH5 and 2XA7; Accessed
November 2023). From the AlphaFold database, data
from the AlphaMissense prediction model relative to
AP4M1 were downloaded as well to produce the color
map at Figure 2b (Accessed June 2024). The AlphaMis-
sense model predicts a pathogenicity score ranging from
0 to 1 for each of the possible 19 amino acids substitu-
tions and the color coding of the 3D structure is propor-
tional to average values from all possible substitutions.

4.2 | 3DVarPro web app

The 3DVarPro web app was developed in Python lan-
guage through the Streamlit framework. The user is
required to provide a gene name or UniProt identifier as
input. Optionally, a PDB file of the target from the Pro-
tein Data Bank can be uploaded too (differently, 3DVar-
Pro can automatically retrieve and upload the AlphaFold
prediction of the target). The current version (1.2.1) does
not support PDB files containing more than one model,
more than one chain, or discontinuous chains. The user
is free to custom visualization options by choosing associ-
ated traits, mutation position, B-factor/pLDDT threshold,
protein color and style, and both color and style of muta-
tion sites. Associated traits taken into account in this
study included (1) AP-4 deficiency syndrome, (2) HSP
50, (3) HSP, (4) spastic tetraparesis, and (5) spastic para-
plegia. Zooming on specific residues is also permitted.
3DVarPro is available at https://3dvarpro.streamlit.app/,
while a public release of the code can be found at https://
github.com/atturk/3DVarPro.

4.3 | DRARDT method

Literature research was performed by using the advanced
search section of the PubMed archive to look for publica-
tions including the text word “AP4M1” from 2000 to 2024
(Accessed March 11, 2024). The definition of the score
thresholds reported in Figure 2 is based on an internal
study of published and unpublished RD-causing muta-
tions. Thresholds were tentatively established based on
such analysis by considering the distribution of literature
abundance, and it will be subjected to future revision
when suggested by the application of the method to other
systems. Anyway, they currently provide a reliable esti-
mation of the amount of the information available in the
literature.

NMD susceptibility was predicted for nonsense and
missense mutations with the MutationTaster2021 web
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server by fetching it with gene symbol (AP4M1), refer-
ence transcript (ENST00000359593), the position of the
single nucleotide variant with respect to the coding
sequence (c.), and the new base. The NMDEsc Predictor
server was used to predict NMD likelihood for frameshift
variants by providing the RefSeq transcript ID of the tar-
get (NM_004722), coding position at frameshift mutation
(c.), and frameshift effect (e.g., +1 for c.218dupA). Both
resources were accessed on May 25, 2023. Finally, the
results of this analysis are summarized by calculating
the percentage of mutations leading to NMD by applying
a consensus approach. Thresholds were established based
on the distribution of literature cases.

Structures 3L81 and AF-O00189-F1 were visualized in
the UCSF Chimera environment (v1.17.3). Residues falling
in a 5 Å-radius-zone from each NMD-negative residue
undergoing mutation were analyzed in terms of B-factor
(3L81) or pLDDT (AF-O00189-F1) and classified in three
classes based on specific thresholds: High, Medium, and
Low. The thresholds for the temperature factor of experi-
mental 3D structures were assigned as follows: Bfactor
<30 Å2 (High), 30 < Bfactor <60 Å2 (Medium), and Bfac-
tor >60 Å2 (Low). Similarly, but with another distribution,
thresholds were so established for pLDDT: pLDDT <50
(Low), 50 < pLDDT <70 (Medium), and pLDDT >70
(High). This choice is rooted in the fixed (0–100) values
and on what was suggested by Jumper and colleagues in
the original AlphaFold2 publication (Jumper et al., 2021).
Out of 61 residues surrounding the analyzed mutation
sites, 51 were labeled as “High” and 10 as “Medium” in
both experimental and predicted structures. In both cases,
the final value was assigned by considering, for each resi-
due under exam, the average of the surrounding amino
acids. Both the temperature factor and the pLDDT are
considered as measures of the flexibility of the considered
protein region, as well as uncertainty in the position of
atoms in the vicinity of the mutation. In principle, a high
degree of flexibility and uncertainty is reflected in poor
modeling of the structure around the mutation and thus
in lower reliability of predictions. High values indicate
more stable and reliable contexts.

The interactome of AP4M1 was investigated by
addressing the STRING-DB (https://string-db.org/) and
KEGG pathway maps (https://www.genome.jp/kegg/
pathway.html) (Accessed October 2023). The STRING-
DB was fetched with the target name and Homo sapiens
as organism. Settings were modified to display data from
Experiments and Databases only. Interactors with confi-
dence lower than medium were ignored. In this case,
indexes were assigned using a miscellaneous approach:
for <3 interactors in the STRING-DB, a “Low” flag is
assigned, while in the same case but with the protein
being at least in one cellular pathway from the KEGG

database, the “Medium” label is chosen instead; finally,
when the number of STRING interactors was >3, a
“High” flag is assigned. Also in this case, DRARDT was
validated on a set of mutations associated with different
types of paraplegia that were confidentially reported from
third party collaborators.

4.4 | Collection of pathogenicity and
conservation data

Pathogenicity of selected variants was predicted using
both the MutPred2 and E-SNPs&GO web servers
(Accessed October 2023) (Manfredi et al., 2022; Pejaver
et al., 2020). Both tools require the protein primary
sequence and a list of amino acid substitutions as input.
They both rely upon machine learning models to provide
a non-energy-based prediction of pathogenicity for each
given substitution. The output from E-SNPs&GO also
comes with a reliability index ranging from 0 (minimum
confidence) to 10 (maximum confidence) (Manfredi
et al., 2022). E-SNPs&GO is based on protein language
models and focuses on the protein sequence and related
functions by extracting Gene Ontology (GO) functional
annotations (Manfredi et al., 2022). MutPred2 relies upon
both genetic and molecular data (e.g., conservation and
substitution likelihood of single residues, and structural
features of the target) (Pejaver et al., 2020). Both tools
were addressed in order to reach a consensus prediction
for our set of SRVs. For MutPred2 predictions, a thresh-
old of 0.80 was considered based on the guidelines at the
web server to reduce the false-positive rate (although
probabilities greater than 0.50 should theoretically indi-
cate pathogenicity). As for E-SNPs&GO outputs, variants
predicted to be pathogenic were those with p ≥ 0.50,
although their reliability index was taken into account as
well. Parallelly, the evolutionary conservation of AP4M1
residues undergoing mutation was assessed using the
ConSurf-DB (query: 3L81 crystal. Accessed October 2023)
(Ben Chorin et al., 2020). ConSurf works by looking for
homologous sequences with respect to the query to then
generate a multiple sequence alignment (MSA), and ulti-
mately calculate conservation scores for each residue of
the query (Glaser et al., 2003). In particular, we focused
on the 3L81 structure of AP4M1 (Figure 3b), since our
mutations all fall in the MHD.

4.5 | Flexibility, RSA, and
thermodynamics

Disordered AP4M1 regions were identified using the
AIUPred web server (Accessed May 2024) by fetching
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the UniProt ID of AP4M1 (primary sequence) and using
default parameters. Higher scores correlate to a higher
probability of disorder. We called disordered versus struc-
tured regions by considering a cutoff of 0.50 as reported
in the relative original publication (Doszt�anyi, 2018).

The RSA values of residues from AP4M1 were calcu-
lated using FreeSASA (v2.1.2) in Ubuntu 20.04 LTS from
the AlphaFold structure of the target. Used settings were
solvent radius = 1.4 and input = naccess. RSA is calcu-
lated as follows:

RSA¼ SASA=SASAmax

where SASAmax (maximum solvent-accessible surface
area) is calculated on an Ala-X-Ala tripeptide (X=

residue the RSA is being calculated for) because of the
minimal steric hindrance of alanine. Both experimental
and predicted structures of AP4M1 were submitted to this
tool, though the results obtained in both cases were
comparable.

The mutation-related effects on AP4M1 stability
(ΔΔG) downstream of missense variants were obtained
starting from the 3L81 crystal of the target, together with
the list of missense mutations, by using a consensus
approach based on the DynaMut2 (Rodrigues et al., 2021)
and INPS-3D (Savojardo et al., 2016) web servers (https://
biosig.lab.uq.edu.au/dynamut2/ and https://inpsmd.
biocomp.unibo.it/inpsSuite/default/index3D, respectively;
Accessed November 2023), as well as the SimBaNI model
described by Caldararu and co-workers (Caldararu
et al., 2021). DynaMut2 is an online tool that, starting
from the 3D structure of a protein, applies Normal Mode
Analysis to study protein movements and graph-based
methods to evaluate the native protein environment to
predict the effect of SRVs on protein stability and dynam-
ics. INPS-3D also starts from a 3D structure, and it
extracts descriptors such as the RSA of wild-type residue,
the local energy difference between wild-type and mutant
residue, and other sequence-based descriptors. Finally,
SimBaNI is a multilinear regression model that does not
require any structure as input but considers three distinct
molecular properties (solvent accessibility of wild-type
site, volume difference, and polarity difference upon
mutation) to calculate the effect of SRVs on protein
stability.

4.6 | AP-4 models' generation and
evaluation

Homology modeling of the wild-type closed and open
AP-4 cores was performed using SWISS-MODEL (https://
swissmodel.expasy.org/. Accessed June 5, 2023) starting

from the 6QH5 and 2XA7 crystals, respectively. In both
cases, AP-4 subunits were modeled starting from their
primary sequences provided in FASTA format and down-
loaded from UniProt (AP4B1: Q9Y6B7; AP4M1: O00189;
AP4E1: Q9UPM8; AP4S1: Q9Y587). Only the core
domain of AP-4 was generated since all mutations taken
into account fall in this domain. We also evaluated the
homology between the employed AP-2 subunits in
the templates and the primary sequences of the AP-4 sub-
units. Although the degree of homology between AP-2
and AP-4 subunits is lower compared to AP-1 and
AP-2 subunits (data not shown), we considered our
homology models valid for the purpose of our analysis
due to the high structural conservation across all eight
monomers, and expected AP-4 to assemble in the same
fashion as AP-1 and AP-2.

The resulting models were subsequently mutated to
generate the R227H, G307A, and R367Q mutant models
using the Dunbrack rotamer library implement in Chi-
mera (v1.17.3) (backbone: fixed). Wild-type and mutant
structures were then prepared and minimized via the
Molecular Operating Environment (MOE 2022.2): in
the Structure Preparation panel, models were first cor-
rected for issues, then protonated using the Protonate3D
application (default settings but pH set to 7.4), and finally
minimized through the Energy Minimize panel (force-
field: Amber10:EHT; RMS gradient: 0.01 kcal/mol/Å2;
planar systems treated as rigid bodies. Remaining options
left as from default). In wild-type models, inter-subunit
binding affinities and residue-based contacts from
Table S2 were calculated from the Protein > Contacts
application within MOE by testing one subunit against
the other in the former case and selecting residues
undergoing mutation against all those from the interact-
ing subunit in the latter. Residues undergoing mutation
in wild-type AP-4 core models were also submitted to the
Protein Design tools, alanine scanning and residue scan-
ning, to predict the effect of SRVs on stability and affinity
(parameters: Amber10:EHT force field and R-field 1:80.
Rest as from default). Electrostatic potential surface map
of both wild-type and R367Q open AP-4 cores was com-
puted in ChimeraX (v1.7.1).

4.7 | Pocket screening

MOE-SiteFinder was used on both closed and open AP-4
core models by centering the search on H227, A307, and
Q367, and defining a radius of about 10 Å. The propen-
sity for ligand binding index was chosen as metric to
evaluate the identified cavities. Pockets with propensity
for ligand binding <0.00 were discarded. Only Q367 in
the closed AP-4 model passed this selection. Schrödinger
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SiteMap was used on the whole AP-4 core models (re-
prepared in Maestro via the Protein Preparation Wizard)
with default parameters and reporting up to 15 sites,
including shallow binding sites. A pocket including Q367
with SiteScore 0.960 and Dscore 1.088 was highlighted in
the closed AP-4 mutant model, but none including nei-
ther H227 nor A307. Finally, a pocket including Q367 in
the closed AP-4 core was also detected by DoGSiteScorer
(https://proteins.plus/) and FPocketWeb v1.0.1 (https://
durrantlab.pitt.edu/fpocketweb/) with default settings
(Accessed June 2024) (data not shown). We screened all
three closed AP-4 mutant core models for pockets includ-
ing any of the three residues undergoing mutation, as
well as the open AP-4R227H core for a pocket including
H227, since a more significant loss of affinity and/or
structural stability was observed in this scenario, and fur-
ther justified by the observation of the loss of a critical
ionic bond (Figure S4). This latter case is the only one
where protein–protein interactions are not affected, but
rather a destabilization within the AP4M1 subunit is
likely occurring.

4.8 | Structure-based virtual screening

Compounds for virtual screening were downloaded as
3D-SDF from DrugBank (v5.1.12) and then filtered, based
on the number of rotatable bonds (<13) and molecular
weight (100–1000 Da), as both accuracy and speed of
docking engines are generally lower for large and highly
flexible molecules (Dhanik et al., 2013; Guo et al., 2014).
Moreover, heavy molecules are less likely to cross the
blood–brain barrier, while too small ones were not suit-
able for the relatively large pocket they were screened
against. Ligands were further filtered after virtual screen-
ing based on their indication, meaning that compounds
with nonnegligible side effects and nonoral routes of
administration (for which patient compliance is lower)
were ignored (e.g., chemotherapeutics, contrast agents,
etc.) to consider those with acceptable therapeutic index
only. Resulting molecules were then prepared and stan-
dardized using an in-house protocol combining RDKit
and MOE, to ensure correct chemical representation and
the major ionization specie at physiological pH. Finally,
the Python Meeko package was employed for conversion
to PDBQT format (required by AutoDock Vina).

AutoDockTools1.5.7 was used to prepare the R367Q
mutant AP-4 core in closed state for virtual screening
with AutoDock-Vina (v1.2.3): hydrogens were corrected
and Kollman charges added.

AutoDock-Vina was run in batch mode with the fol-
lowing parameters: exhaustiveness 16, number of modes
10, and energy range 3. The docking box was centered on

Q367 (coordinates: �51.5, �19.5, 281.7), with size along
coordinates set to 25, 20, and 30 Å respectively. Output
affinities (kcal/mol) ranged from �14.54 (highest affinity)
to �2.91 (weakest interaction).

Prior to virtual screening with Glide (via Virtual
Screening Workflow in Maestro v12.5), the drug library
was prepared with LigPrep (OPLS3e force field, proton-
ation states at pH 7.0 +/� 2.0 generated with Epik,
desalting and tautomer generation set on, chirality deter-
mined from 3D structure), and the receptor grid gener-
ated via the Receptor Grid Generation panel (Q367
picked as the center of the box, with size along center
coordinates set to 25, 20, and 30 Å as for Vina). Glide vir-
tual screening was launched from the Virtual Screening
Workflow panel. All virtual screening steps (HTVS, SP,
XP) were allowed to dock flexibly, to perform post-
docking minimization, and to keep 50% of best com-
pounds from each step (HTVS stage: all states retained;
SP stage: all good scoring states retained; XP: only best
scoring states retained). Glide docking scores ranged
from �17.28 (best outcome) to 1.59.

For virtual screening with MOE-Dock, the docking
box corresponded to the pocket highlighted with SiteFin-
der, while the drug library was washed for correct pro-
tonation and desalting and minimized with RMS
gradient set to 0.1 (MMFF94x force field) to obtain start-
ing conformers. The triangle matcher placement method
was used to generate up to 30 poses, refinement set to
none to speed up the process, and affinity-dG selected as
scoring function. The final scores (S) ranged from �6.27
(best) to 9.90 (worst).

Docking of rutin only to identify the most favored
binding pose was performed with AutoDock-Vina at
exhaustiveness 500. Glide was used at extra precision
(XP) with the same aim. MOE-Dock was also launched
on rutin only using triangle matcher placement (60 poses,
affinity-dG score) and the induced fit refinement method
(10 poses, affinity-dG score). Final poses highlighted from
the three tools were superposed in MOE using an SVL
applet to obtain RMSD values with respect to both the
Glide pose and the MOE pose.
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