
Wang et al. Human Genomics          (2024) 18:140  
https://doi.org/10.1186/s40246-024-00712-7

RESEARCH

Integrating single‑cell RNA‑seq and bulk 
RNA‑seq to construct a neutrophil prognostic 
model for predicting prognosis and immune 
response in oral squamous cell carcinoma
Jinhang Wang1, Zifeng Cui2, Qiwen Song3, Kaicheng Yang2, Yanping Chen2 and Shixiong Peng2* 

Abstract 

Background  Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil 
infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms 
remain unclear.

Methods  This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil 
infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis 
(hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying 
patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore 
group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally 
related to OSCC progression.

Results  Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading 
to the construction of a prognostic model based on significant module genes. The model demonstrated strong pre-
dictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis 
revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analy-
sis highlighted differences in drug responsiveness between high- and low-risk groups.

Conclusion  This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progres-
sion. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings 
offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.
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Introduction
Oral squamous cell carcinoma (OSCC) is a type of head 
and neck cancer primarily manifested as oral ulcers or 
sores, bleeding lumps, gingival bleeding, and difficul-
ties in chewing or swallowing [1–3]. Chronic OSCC can 
invade surrounding tissues and bones, leading to jaw or 
facial deformities. Smoking and alcohol consumption are 
typical risk factors for OSCC. The five-year survival rate 
for OSCC is approximately 50% [4], and early diagnosis 
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can significantly improve patient prognosis. Therefore, 
identifying and validating more effective molecular bio-
markers is essential for OSCC diagnosis, targeted ther-
apy, and prognosis improvement.

Neutrophils play a critical role in oral squamous cell 
carcinoma (OSCC), primarily by promoting tumor 
growth and modulating the tumor microenvironment, 
which influences tumor progression. They contribute to 
an inflammatory response, suppress anti-tumor immu-
nity, and remodel the extracellular matrix, creating 
favorable conditions for tumor development [5–7]. Addi-
tionally, neutrophils act as regulators of signaling path-
ways, modulating mechanisms associated with cancer 
cell survival and metastasis [8]. Furthermore, they release 
neutrophil extracellular traps (NETs), which enhance 
cancer cell migration and invasion [9]. Concurrently, 
endoplasmic reticulum stress can induce immunosup-
pressive functions in neutrophils, further inhibiting anti-
tumor immune responses [10]. Neutrophils can promote 
tumor growth by supporting inflammation, suppress-
ing anti-tumor immune responses, and remodeling the 
extracellular matrix, creating a favorable microenviron-
ment for tumor development. In the OSCC tumor micro-
environment, they act as regulators of various signaling 
pathways with pro-tumor functions. For instance, Marco 
A. O. Magalhaes et  al. found that neutrophils modulate 
pathways linked to cancer cell survival and metastasis 
[11]. Additionally, neutrophils produce neutrophil extra-
cellular traps (NETs), which, as Marzena Garley et  al. 
highlighted, actively contribute to OSCC progression by 
facilitating cancer cell migration and invasion [12]. Wu 
et al. discovered that endoplasmic reticulum stress within 
OSCC cells can be transmitted to neutrophils, inducing 
immunosuppressive functions that inhibit the anti-tumor 
immune response [10].

Previous studies have described the potential role of 
key genes and signatures in OSCC prognosis and diag-
nosis from various aspects. For instance, Zhou et  al. 
identified the pro-cancer role of E2F7 in OSCC cell lines 
through qRT-PCR and Western blot analysis [13]. Chen 
et  al. analyzed head and neck squamous cell carcinoma 
(HNSCC) cohorts from The Cancer Genome Atlas 
(TCGA) database, using ssGSEA and hierarchical clus-
tering to categorize patients into high and low immune 
groups, and established a robust prognostic model with 
five features [14]. Xie et al. found that CDH4 expression 
in OSCC is higher than in normal tissues based on TCGA 
data. Further biological experiments revealed that CDH4 
promotes cell proliferation, migration, self-renewal, and 
invasion [15]. Given the significant association between 
neutrophil infiltration and OSCC prognosis, this study 
identifies key gene modules related to neutrophils in 
OSCC using single-cell transcriptomics (scRNA-seq). 

Further analysis of bulk RNA-seq data identified mul-
tiple genes related to OSCC prognosis. The risk model 
constructed based on these genes can effectively stratify 
patients, providing a reference for patient stratification 
and targeted therapy. Additionally, researchers have 
reported on the roles of neutrophil-associated markers 
in various squamous cell carcinomas. For instance, Guo 
et  al. found that Porphyromonas gingivalis promotes 
OSCC progression within the tumor microenviron-
ment by activating neutrophil chemotaxis [16]. Wang 
et  al. identified that the expression of neutrophil gelati-
nase-associated lipocalin protein is associated with the 
incidence of head and neck squamous cell carcinoma 
(HNSCC) but not with regional metastasis, suggesting 
its potential as a novel prognostic biomarker for HNSCC 
patients [17]. In lung squamous cell carcinoma, Wang 
et  al. reported that high levels of neutrophil-associated 
markers correlate with poor prognosis. The developed 
risk score model effectively predicted patient survival and 
revealed mechanisms of interaction between neutrophils 
and tumor cells, offering potential targets for personal-
ized treatment [18].

Despite current advancements in OSCC diagnosis 
and treatment, patient prognosis remains suboptimal, 
necessitating further research to uncover key molecu-
lar mechanisms affecting OSCC progression. This study 
utilizes scRNA-seq technology, combined with bulk 
RNA-seq data, to comprehensively analyze neutrophil 
infiltration patterns and associated key gene modules 
in OSCC. Prognostic genes were identified using uni-
variate Cox regression and Lasso-Cox regression, and 
an effective prognostic model was constructed, stratify-
ing patients into high and low-risk groups based on risk 
scores. Subsequent immune landscape and drug sensi-
tivity analyses revealed significant immune differences 
and potential drug targets between the high and low-risk 
groups. Additionally, Mendelian randomization (MR) 
analysis identified prognostic genes causally related to 
OSCC development. Our research not only elucidates 
the critical role of neutrophils in the OSCC tumor micro-
environment but also provides new molecular biomark-
ers and potential targets for patient diagnosis, prognosis 
evaluation, and targeted therapy, laying the foundation 
for clinical applications.

Method
Dataset acquisition
For scRNA-seq data, we obtained the GSE172577 data-
set from the Gene Expression Omnibus (GEO) data-
base. This dataset includes 6 OSCC samples. For bulk 
RNA-seq data, we acquired the expression data from the 
TCGA-HNSC cohort from The Cancer Genome Atlas 
(TCGA) database, which includes 32 normal and 330 
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OSCC patients. The GSE41613 dataset from the GEO 
database, containing 97 oral cancer patients, was used as 
a validation dataset for the prognostic model. For tumor 
mutation burden (TMB) analysis, we used the “TCGA-
biolinks” package in R software to download TMB data 
from the TCGA-HNSC cohort [19].We explored the 
DNA methylation levels of prognosis-related genes in 
head and neck cancer (HNSCC, to which OSCC belongs) 
using the UALCAN database (https://​ualcan.​path.​uab.​
edu/). Additionally, we collected four spatial transcrip-
tomics samples of OSCC from the GSE220978 dataset.

Preprocessing of scRNA‑seq data
We used the Seurat package (v4.0.0) in R software to 
read the raw data using the Read10X function and cre-
ated Seurat objects for each sample. The samples were 
merged into a single Seurat object. In this study, the 
quality control steps for single-cell RNA sequencing 
data were conducted using the Seurat package. First, to 
remove low-quality cells, each cell was filtered based on 
the number of features (genes) and the proportion of 
mitochondrial genes. Specifically, only cells with a fea-
ture count between 200 and 7500 and a mitochondrial 
gene proportion below 20% were retained, ensuring the 
reliability and quality of the data for subsequent analysis. 
The filtered cells were then normalized, log-transformed, 
and scaled using the NormalizeData, FindVariableFea-
tures, and ScaleData functions, respectively. Principal 
component analysis (PCA) was used to identify variable 
features, retaining the top 20 principal components for 
downstream analysis.

Further, we annotated cell types using the SingleR 
package (v1.0.0) in R software. The Human Primary Cell 
Atlas database was used as a reference dataset for cell 
type identification. The scRNA-seq data were matched to 
the reference dataset, and cell types were predicted using 
the SingleR algorithm. Predicted cell types were visu-
alized using t-distributed stochastic neighbor embed-
ding (t-SNE) plots. To identify marker genes associated 
with specific cell types, we selected genes based on their 
expression levels and calculated the proportion of each 
cell type in the dataset. Marker gene expression was visu-
alized using violin plots and stacked bar plots.

Cell communication analysis
In this study, cell–cell communication analysis was con-
ducted using the CellChat package (v1.6.1) in R software. 
First, expression matrices and cell type information were 
extracted from preprocessed scRNA-seq data to create 
CellChat objects. The CellChatDB database was selected 
to identify specific interaction annotations associated 
with cell–cell communication, and secreted signaling 
pathways were chosen for further analysis. Signaling 

pathways were inferred at both the gene expression and 
interaction levels, with ligand and receptor expression 
data projected onto protein interaction networks. Next, 
cell–cell communication networks were constructed 
by calculating communication probabilities using the 
computeCommunProb function. A minimum cell count 
threshold (min.cells = 3) was applied to exclude commu-
nications involving only a few cells, enhancing specificity. 
To refine communication signals, the computeCommun-
ProbPathway function was used to infer communication 
at the pathway level, and aggregateNet was employed to 
calculate the aggregated cell communication network. 
Finally, centrality scores were calculated using netA-
nalysis_computeCentrality, and heatmaps and scatter 
plots were generated to visualize the primary signal-
ing sources and targets in the network, thus identifying 
ligand-receptor pairs that play key roles in intercellular 
communication.

High‑dimensional weighted gene co‑expression network 
analysis
Weighted gene co-expression network analysis 
(WGCNA) was conducted using the hdWGCNA pack-
age (v0.2.19) in R software [20]. This algorithm is par-
ticularly well-suited for handling high-dimensional and 
complex datasets. It efficiently identifies gene modules 
with co-expression patterns, reducing data dimensional-
ity and extracting underlying biological information. This 
enhances biological interpretability, assisting researchers 
in identifying gene modules associated with specific bio-
logical processes or disease states. The hdWGCNA pack-
age also facilitates the analysis of associations between 
gene modules and phenotypic traits and provides a range 
of visualization tools for intuitive display of gene net-
works and modules.

Specifically, the SetupForWGCNA(·) function was used 
to prepare for WGCNA analysis, selecting the “fraction” 
gene selection method and setting the sampling propor-
tion to 0.05. Metacells were constructed using the Meta-
cellsByGroups(·) function, grouped by cell type and batch, 
with PCA used for dimensionality reduction, setting 
the KNN parameter to 25 and the maximum shared cell 
number to 10.

Different soft-thresholds were tested using the TestSoft-
Powers(·) function, selecting a “signed” network type. The 
selection of the soft threshold was based on the results 
of this function, aiming to identify a power value that 
would yield a scale-free topology in the constructed net-
work. A visual assessment of the power values plotted 
using PlotSoftPowers(·) function guided the selection of a 
soft threshold of 5, which was determined to provide the 
best balance between sensitivity and specificity in captur-
ing co-expression patterns. This approach ensures that 

https://ualcan.path.uab.edu/
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the selected threshold not only reflects true biological 
relationships but also accounts for potential influences 
of other threshold values tested during the analysis. A 
co-expression network was then constructed using the 
ConstructNetwork(·) function with the identified soft 
threshold. Module eigengenes were calculated using 
the ModuleEigengenes(·) function. Module connectivity 
based on eigengenes was calculated using the Module-
Connectivity(·) function. Module-trait correlations were 
computed using the ModuleTraitCorrelation(·) function, 
grouped by cell type. Visualization was performed using 
the PlotDendrogram(·) function for module clustering 
trees, the ModuleNetworkPlot(·) function for module net-
work plots, the HubGeneNetworkPlot(·) function for hub 
gene network plots, and the ModuleCorrelogram(·) func-
tion for module correlation heatmaps. Finally, we per-
formed KEGG and GO enrichment analyses on genes in 
the most relevant modules of the neutrophil population. 
We used the Benjamini-Hochberg (BH) method for mul-
tiple testing correction in both GO and KEGG enrich-
ment analyses to control the false discovery rate (FDR).

Pseudotime analysis
Pseudotime trajectory inference was performed on 
scRNA-seq data using the monocle package (v2.28.0) in 
R software. The scRNA-seq count matrix and metadata 
were converted to a monocle-compatible object. Size fac-
tors and dispersion were estimated, and low-expressed 
genes were detected. High-variance genes were selected 
based on dispersion values, and the dataset was ordered 
accordingly. Dimensionality reduction was performed 
using the DDRTree method, and cells were ordered along 
the trajectory. Pseudotime trajectories were visualized 
using the plot_cell_trajectory function, with cells colored 
by cell type and pseudotime values. Cell density along 
the pseudotime axis was visualized using density plots 
colored by cell type.

Transcription factor and inferCNV analysis
Transcription factor information was obtained using the 
Dorothea package (v1.14.1) in R software. High-confi-
dence regulators were screened based on interactions in 
the Dorothea database. The analysis considered cellular 
heterogeneity by identifying different cell states within 
the single-cell RNA sequencing (scRNA-seq) dataset. 
Transcription factor activity was calculated using the 
Viper package (v1.36.0) in R software, taking into account 
the cell types assigned to individual cells. The Viper 
scores were summarized by cell populations to assess the 
average activity of transcription factors in each cell type. 
Transcription factor activity heatmaps were plotted using 
the pheatmap function, visualizing transcription factors 
by their activity levels across cell types. This approach 

allowed for a nuanced understanding of transcription 
factor dynamics within the heterogeneous cellular land-
scape of the analyzed samples.

Additionally, we conducted copy number variation 
(CNV) analysis on scRNA-seq data using the inferCNV 
package to uncover genomic instability among differ-
ent cell types within the tumor microenvironment. 
First, scRNA-seq data were loaded and preprocessed, 
with human gene annotations obtained through the 
annoGene(·) function in the “AnnoProbe” package in R, 
retrieving chromosomal location information, which 
was then sorted by position and deduplicated. The raw 
count data from the expression matrix was extracted as 
the expression matrix file, with T cells designated as the 
reference group to infer copy number changes in tumor 
cells. An inferCNV object was then created using the 
CreateInfercnvObject(·) function, specifying the expres-
sion matrix, cell annotations, and gene ordering file, with 
T cells set as the reference. CNV analysis was performed 
using the run(·) function.

Differential expression and tumor mutation burden 
analysis
Differential expression analysis of the TCGA-HNSC 
cohort transcriptome data was performed using the 
“limma” package [21] in R software. Benjamini Hochberg 
was used for p-value correction. Genes were screened 
with a corrected p-value < 0.001 and |logFC|< 0.5. The 
differentially expressed genes (DEGs) were intersected 
with the previously identified blue gene module to obtain 
intersecting genes. Tumor mutation burden (TMB) anal-
ysis was performed on somatic variants from the muta-
tion annotation format (MAF) using the “Maftools” 
package [22] in R software.

Prognostic gene screening and prognostic model 
construction and validation
We intersected the differentially expressed genes 
obtained from previous transcriptomic analysis with the 
genes in the neutrophil-associated modules identified 
in the hdWGCNA analysis to obtain a set of intersect-
ing genes. Based on Kaplan–Meier (KM) survival analy-
sis, we then identified genes significantly associated with 
OSCC prognosis. Subsequently, Prognostic genes were 
screened from the intersecting genes of OSCC samples 
using univariate Cox regression analysis (p < 0.03). A 
network graph of interactions between prognostic genes 
was constructed using the “igraph,” “psych,” “reshape2,” 
and “RColorBrewer” packages in R software. Lasso-Cox 
regression analysis was performed on prognostic genes 
using the “glmnet” package [22] in R software to further 
screen genes and construct the prognostic model. The 
constructed model provided a risk score for each OSCC 
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sample. High- and low-risk groups were divided based on 
the median score. Kaplan–Meier (KM) curve analysis was 
performed using the “survival” and “survminer” packages 
in R software to evaluate prognostic differences between 
risk groups. The predictive performance of the risk model 
for patient prognosis was further assessed using receiver 
operating characteristic (ROC) curves plotted with the 
“timeROC” package in R software.

Construction and evaluation of the nomogram model
A nomogram model was constructed and calibration 
curves were plotted using the “rms” package in R soft-
ware, based on risk scores and clinical factors. The model 
established a scoring system based on regression coeffi-
cients of the features.

Immune infiltration analysis
The CIBERSORT algorithm was used to assess the abun-
dance of various immune cells in OSCC samples. The 
R package “e1071” was used for CIBERSORT analysis, 
and we included samples with p-values less than 0.05 
for further analysis to ensure statistical significance of 
the results. Tumor Immune Dysfunction and Exclusion 
(TIDE) was then introduced to score the two risk groups. 
TIDE represents tumor immune dysfunction and exclu-
sion, used to evaluate the likelihood of tumor immune 
escape in the gene expression profiles of tumor samples. 
TIDE score analysis was completed via the online web-
site (http://​tide.​dfci.​harva​rd.​edu/). We used the Wilcoxon 
test to analyze differences in TIDE scores between risk 
subgroups. A p-value of less than 0.05 was considered 
statistically significant.Finally, we utilized the Estimation 
of STromal and Immune cells in MAlignant Tumor tis-
sues using Expression data (ESTIMATE) algorithm [23] 
to calculate the immune and stromal scores of tumor 
samples using pre-screened stromal/immune-related 
gene sets.

Mendelian randomization analysis
To identify genes causally related to OSCC development, 
two-sample Mendelian randomization (MR) analysis was 
performed using the “TwoSampleMR” package (v0.5.7) 
in R software. Expression quantitative trait loci (eQTLs) 
data for prognostic genes and genome-wide association 
study (GWAS) data for OSCC were collected. Benjamini 
Hochberg was used for p-value correction. Tool vari-
ables were selected based on the significant SNPs derived 
from eQTL analyses, ensuring they met the criteria of 
r2 < 0.001, p-value < 5 × 10⁸, and F statistic > 10, and F sta-
tistic > 10 to confirm their strength as instrumental vari-
ables. To account for potential pleiotropy, we performed 
horizontal pleiotropy tests and assessed the heteroge-
neity of the effects. Wald estimates were calculated by 

dividing SNP-outcome by SNP-exposure values, using 
the Wald ratio test. A corrected p-value < 0.05 indicated 
a causal relationship between the gene and the disease.

Drug sensitivity analysis
Based on the GDSC (Genomics of Drug Sensitivity in 
Cancer) database, drug sensitivity information for vari-
ous compounds in high- and low-risk OSCC samples was 
assessed using the “oncoPredict” package [24] in R soft-
ware. IC50 values, indicating the potential of a compound 
to inhibit a specific biological or biochemical function, 
were introduced. Drugs with significantly different IC50 
values (p < 0.001) between the two groups were retained.

Spatial transcriptomics data analysis
In this study, the spatial transcriptomics data of oral squa-
mous cell carcinoma (OSCC) were analyzed using the 
Seurat package. Initially, gene expression data and spatial 
images from four samples (GSM633487, GSM633486, 
GSM633485, and GSM633484) were imported to gen-
erate Seurat objects, which were then integrated into a 
single Seurat object named `stRNA` for subsequent anal-
ysis. During the data filtering phase, mitochondrial and 
ribosomal-related genes were removed, and only genes 
expressed in at least 10 spatial points were retained. Data 
normalization was performed using the `SCTransform` 
method to reduce the impact of technical noise. Follow-
ing normalization, principal component analysis (PCA) 
was used for dimensionality reduction, and neighbor-
hood graph construction and clustering analysis were 
conducted based on the top 20 principal components. 
The spatial distribution of different clusters was visual-
ized using UMAP.

To further analyze the cellular composition of the 
OSCC samples, we applied deconvolution techniques. 
Using the scRNA-seq data from this study, we filtered 
tumor samples and generated a single-cell RNA count 
matrix along with the number of transcripts per cell, con-
structing a reference dataset `reference` containing cell 
types for deconvolution analysis. Subsequently, robust 
cell type deconvolution was performed on the spatial 
transcriptomics data using the Robust Cell Type Decom-
position method [25] based on the constructed refer-
ence single-cell data and spatial transcriptomics data. 
Dot plots and spatial distribution maps were created to 
observe the expression patterns of specific genes, and cell 
types were loaded and annotated.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
Patient sample collection
Patients diagnosed with OSCC who underwent surgi-
cal treatment between March 2021 and March 2022 at 

http://tide.dfci.harvard.edu/
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the Fourth Hospital of Hebei Medical University were 
selected for this study. A total of 16 tissue samples were 
obtained from the patients, comprising cancerous and 
corresponding paracancerous tissues from each patient. 
Notably, none of the patients had undergone tumor-
related treatment prior to surgery. Tissue specimens were 
collected intraoperatively, rapidly frozen in liquid nitro-
gen post-excision, and cryopreserved in a tumor speci-
men bank for subsequent RNA extraction. Each patient 
provided informed consent prior to participation in the 
study. The use of patient tissue samples was approved by 
the Ethics Committee of the Fourth Hospital of Hebei 
Medical University (Approval No.: 2020KY283).

qRT‑PCR for gene expression detection
RNA was extracted from tissues using TriQuick rea-
gent (Solarbio, Beijing, China). Reverse transcription 
and cDNA synthesis were performed using the Eastep® 
RT Master Mix Kit (Promega, Shanghai, China). Subse-
quently, qRT-PCR was conducted using Universal Blue 
SYBR Green qPCR Master Mix (Servicebio, Wuhan, 
China) to determine mRNA expression levels. The prim-
ers were provided by Sangon Biotech (Shanghai, China), 
and the specific sequences are presented in Table  1. 
β-actin was used as an internal reference, and the 2−ΔΔCt 
method was used to calculate the relative mRNA expres-
sion levels. Each experiment was conducted at least three 
times, and the results were expressed as mean ± standard 
deviation. The data were analyzed using either a paired 
t-test (when normality was satisfied) or a Wilcoxon 
signed-rank test (when normality was not satisfied). The 
raw data from the qRT-PCR experiments are provided in 
the supplementary material file “PCR data.xlsx”.

Statistical analysis
Statistical analyses were performed using R software 
(v4.0.3). The Wilcoxon test was employed to compare dif-
ferences between groups. Prognostic differences between 
groups were assessed using the Log-rank test. The 
Kruskal–Wallis rank-sum test was used for multi-group 
comparisons of clinical factors. Additionally, Spearman 
correlation analysis was conducted to evaluate the rela-
tionship between immune cells and prognostic genes. 
Unless otherwise specified, a P-value of less than 0.05 
was considered statistically significant.

Results
Basic analysis of scRNA‑seq and cell communication 
analysis results
Figure  1 presents the technical roadmap of this study. 
Initially, scRNA-seq data of OSCC were obtained. First, 
according to the quality control criteria outlined in 
Sect.  “Dataset acquisition” of the Methods, the number 

of cells was reduced from 65,225 to 57,904. During cell 
processing, we initially normalized the data using the 
NormalizeData(·) function with the parameter normali-
zation.method = ”LogNormalize”. This step adjusted for 
sequencing depth and other technical variations across 
cells, ensuring comparability of expression levels. After 
normalization, we identified the most variable genes 
using the FindVariableFeatures(·) function and then cen-
tered and scaled the data with the ScaleData(·) function. 
Next, dimensionality reduction was performed (retain-
ing the top 20 principal components, see Fig. S1), fol-
lowed by clustering analysis. Cell types were annotated 
using the singleR package in combination with marker 
genes (see Fig. S2). A total of 10 cell types were anno-
tated (Fig.  2B), including epithelial cells, monocytes, T 
cells, keratinocytes, tissue stem cells, common myeloid 
progenitor cells (CMP), endothelial cells, B cells, neu-
trophils, and fibroblasts. There were notable differences 
in the proportions of different cell types among various 
samples (Fig.  2C). The specific proportion is shown in 
the “Table 1.csv” file in the Supplementary materials. Cell 
communication analysis results indicated extensive and 
strong interactions among most cell types (Fig.  2D-E). 

Table 1  Primers for qRT-PCR

Gene Primer sequence 
(5′ → 3′)

PTGES3 Forward GCC​TGC​TTC​TGC​AAA​GTG​GT

Reverse CTG​TCC​GTT​CTT​TTA​TGC​TTGG​

CSRP2 Forward GAG​CAG​GGG​CTC​TTG​TTC​AT

Reverse TCC​TAC​GAG​TTA​GCC​AGC​CT

PSMD2 Forward GGA​CCC​AAA​CAA​CCT​CTT​CA

Reverse AGC​CAC​CAG​CCC​ATA​CAA​T

LRG1 Forward GTT​GGA​GAC​CTT​GCC​ACC​T

Reverse GCT​TGT​TGC​CGT​TCA​GGA​

ADM Forward TTG​CCA​GTG​GGA​CGT​CTG​AG

Reverse GTA​CAT​CAG​GGC​GAC​GGA​AAC​

RNF149 Forward AAC​ATC​ACC​TTG​CCC​ATG​TCT​

Reverse CCC​CTA​TGG​TCA​TCG​TTA​CTGG​

SNX6 Forward AAG​CAC​GAG​TGT​CTG​CTG​AT

Reverse TGG​GAA​GTT​TCG​GCC​TGT​AG

PGAM1 Forward AGT​CAG​GTC​ACT​GCC​TAC​TGC​

Reverse TCA​GGG​AGG​AAA​CAG​TTG​TCAC​

PYGL Forward CAG​CCT​ATG​GAT​ACG​GCA​TTC​

Reverse CGG​TGT​TGG​TGT​GTT​CTA​CTTT​

ANP32B Forward CTG​TTC​GAG​AAC​TTG​TCT​TGGAC​

Reverse AGC​TTG​GGG​AGA​TTT​GAA​ACTG​

EIF2S2 Forward CCA​GAG​CCA​ACT​GAG​GAC​AA

Reverse ACA​TCA​CTT​TCA​ATC​TTT​ACA​CCT​T

β-actin Forward AGC​GAG​CAT​CCC​CCA​AAG​TT

Reverse GGG​CAC​GAA​GGC​TCA​TCA​TT
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Among all cell types, endothelial cells exhibited the high-
est input signal intensity, while fibroblasts showed the 
highest output signal intensity (Fig. 2F). Given the close 
association between neutrophils and OSCC, we further 
explored their communication pathways with other cell 
types when acting as both receptors and ligands (Fig. 2G-
H). The results indicated that the Chemokine (C-X-C 
motif ) ligand (CXCL) pathway and ANNEXIN pathway 
had the highest intensities when neutrophils were acting 
as both ligands and receptors. In the discussion section, 
we will analyze the roles of these pathways and the genes 
involved in OSCC progression.

Module selection related to neutrophils 
through hdWGCNA
This study explored genes highly correlated with neutro-
phils based on Weighted Gene Co-expression Network 
Analysis (WGCNA). After setting the soft threshold 
to 5 (Fig.  3A), a dendrogram reflecting the relationship 
between gene expression patterns and modules was 

drawn (Fig. 3B). The “grey” module contained genes not 
assigned to any co-expression module. Four modules 
were identified through hdWGCNA analysis (Fig.  3C), 
with strong correlations observed between some of them 
(Fig.  3D). Central genes from the four modules exhib-
ited distinct expression patterns within the neutrophil 
cluster. Genes in the blue and turquoise modules were 
significantly enriched in neutrophils (Fig. 3E). Addition-
ally, interaction networks were constructed based on hub 
genes from the two modules (Fig. 3F-G). We performed 
KEGG and GO enrichment analyses on genes within 
the blue and turquoise modules (Fig. 3H-I). Enrichment 
results for genes in the blue module suggest that OSCC 
may involve abnormalities in ribonucleoprotein complex 
assembly and cytoplasmic translation, leading to dysreg-
ulated protein synthesis and promoting cancer cell prolif-
eration. Alterations in ribosomal structure and function, 
along with aberrant cadherin binding, may affect inter-
cellular adhesion and cell migration, facilitating tumor 
invasion and metastasis. Additionally, pathways related 

Fig. 1  Technical roadmap for the paper
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Fig. 2  Basic analysis of scRNA-seq. A depicts the violin plot of basic metrics after filtering scRNA-seq data. B shows the distribution of different 
cell types in two-dimensional space based on t-SNE dimensionality reduction. C illustrates the proportion of different cell types across six 
samples. D and E represent network diagrams based on the quantity and strength of interaction pathways between different cell types, 
respectively. F is a scatter plot showing the strength of incoming and outgoing interactions between different cell types. G and H display bubble 
plots of communication processes between neutrophils acting as ligands and receptors with other cells. I and J show the expression profiles 
of significant signaling pathway genes involved in neutrophil outgoing and incoming interactions across different cell types, respectively
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to coronavirus disease and Parkinson’s disease indicate 
abnormalities in inflammatory responses and protein 
processing mechanisms, collectively contributing to 
OSCC progression. Enrichment results for genes in the 
turquoise module suggest OSCC may involve defense 
responses to viruses and symbionts, abnormalities in 
vesicle transport and secretion, functional changes in 
RAGE receptors and intercellular adhesion molecules, 

and inflammatory processes associated with phagosomes 
and bacterial infections.

Acquisition of intersection genes and construction 
and validation of the risk model
In this study, we initially conducted differential expres-
sion analysis between the control and OSCC samples in 
the TCGA-HNSC cohort, resulting in the identification 
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Fig. 3  Using hdWGCNA, key modules related to neutrophils were identified. A illustrates the scale-free topology fitting index and average 
connectivity of soft-threshold power. B presents a dendrogram reflecting gene hierarchical clustering, with different colors at the bottom 
representing different co-expression modules. C displays the top 10 hub genes in each module. D shows the matrix of inter-module relationships 
based on the correlation of module characteristic genes. E depicts the average expression bubble plot of module-specific hub genes in neutrophil 
clusters. F and G are interaction networks of hub genes in the blue and turquoise modules, respectively. H and I are the KEGG and GO enrichment 
analysis results of genes in the blue and turquoise modules, respectively
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of 4206 DEGs (Fig. 4A). Detailed information regarding 
DEGs is provided in the supplementary materials in the 
“diff.xls” file. We intersected the differentially expressed 
genes (DEGs) with the genes from the previously iden-
tified blue and turquoise modules, resulting in a total of 
204 intersecting genes (Fig.  4B). A detailed list of these 
intersecting genes can be found in the supplementary 
materials in the “Intersection_gene.xlsx” file. Based on 
the Kaplan–Meier analysis, we selected 45 genes that 
were significantly associated with OSCC prognosis 
(p < 0.01). A univariate Cox regression analysis was then 

performed on these 45 prognostic genes. The results indi-
cated that the expression of 15 genes (PTGES3, CSRP2, 
HSP90AA1, PSMD2, LRG1, TUBA1B, ADM, RNF149, 
SNX6, PGAM1, HSP90AB1, ENO1, PYGL, ANP32B, and 
EIF2S2) was significantly associated with the prognosis 
of OSCC patients (Fig. 4C). In Fig. 4D, we depicted the 
network showing the interaction, expression, and rela-
tionship with prognosis of these 15 prognostic genes in 
OSCC patients. Subsequently, metascape analysis was 
performed on intersection genes to identify the interac-
tion network between the pathways they participate in 

Fig. 4  Analysis results of differential expression and intersection genes. A depicts the volcano plot of differential expression analysis 
between the control and OSCC groups in the TCGA-HNSC cohort. B shows the Venn diagram of DEGs intersecting with the blue and turquoise 
modules. C illustrates the forest plot obtained from single-factor Cox regression analysis of intersection genes. D represents the Circos plot 
of single-factor Cox regression analysis, indicating the correlation between the β value of prognostic genes and OSCC prognosis (red denotes 
upregulated prognostic genes, gray denotes downregulated prognostic genes, purple denotes risk factors; green denotes protective factors). 
E displays the pathway network diagram constructed from metascape enrichment analysis of intersection genes. F shows the circular plot 
of the chromosomal locations of 15 prognosis-related intersection genes. G presents the frequency statistics of gains and losses in CNVs of the 15 
prognosis-related intersection genes
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(Fig. 4E). The roles of relevant pathways in OSCC devel-
opment will be further analyzed in the discussion section. 
We further annotated the positions of the 15 genes on 
chromosomes (Fig. 4F) and investigated their copy num-
ber variations (CNVs) (Fig. 4G) to explore the changes of 
prognostic genes on chromosomes. The results showed 
that PSMD2 was the most significant gene with “GAIN,” 
while LRGS was the most significant gene with “LOSS.”

Furthermore, we further screened the fifteen prognos-
tic genes to construct a risk model for OSCC. Specifically, 
based on Lasso-Cox regression analysis, we constructed 
an OSCC risk model based on eleven genes in the train-
ing set (Fig.  5A-B). This model assigned a risk score to 
each OSCC sample. All OSCC samples were divided 
into high- and low-risk groups based on the median 
risk score. By examining the risk score curves and scat-
ter plots, it was found that samples in the high-risk group 
exhibited poorer survival status in both the training and 
testing cohorts (Fig.  5C-D), with significant differences 
in the expression of 11 genes between the two groups. 
The survival status of the two groups also showed signifi-
cant differences in both datasets (Fig. 5E-F). Additionally, 
KM survival curves of the eleven genes are provided in 
supplementary material Figure S5 The survival between 
OSCC samples stratified into high and low expression 
groups based on the expression levels of the eleven genes 
showed significant differences. The model predicted the 
1-year, 3-year, and 5-year survival of patients in the train-
ing set with AUCs of 0.706, 0.741, and 0.725, respectively 
(Fig.  5G). In the test set, the AUCs for predicting the 
1-year, 3-year, and 5-year survival of patients were 0.695, 
0.704, and 0.633, respectively (Fig. 5H).

Nomogram model construction and immunological 
landscape of different risk groups
In this section, we first explored the differences in various 
clinical factors between the high- and low-risk groups. 
Significant differences were observed between the two 
groups in terms of G1 and G2 grading, Stage I and Stage 
II staging, Stage I and Stage III staging, Stage I and Stage 
IV staging, T1 and T2 staging, T1 and T3 staging, T1 and 
T4 staging, T2 and T4 staging, N0 and N3 staging, and 
N2 and N3 staging (Fig.  6A-D). Additionally, we con-
structed a nomogram model based on risk scores and 

four clinical factors (Fig.  6E-F). The AUC of this model 
for predicting patient survival at 1  year, 3  years, and 
5 years was 0.743, 0.81, and 0.81, respectively (Fig. 6G), 
indicating superior predictive capability compared to the 
risk model.

Furthermore, we explored the interactions between 
different types of immune cells and the immunologi-
cal landscape of the two groups. Initially, we assessed 
the quantity and intensity of interactions between four 
immune cell types at the single-cell level. Macrophages 
exhibited a greater number and stronger intensity of 
interactions with other cells (Fig.  7A-B). Subsequently, 
we evaluated the abundance of various immune cell 
infiltrations based on expression data from OSCC sam-
ples (Fig.  7C and the “Fig.  7C.p_values.txt” document 
of the Supplementary Material). Significant differences 
in infiltration abundance were observed in both groups 
for T cells CD8, T cells follicular helper, T cells regula-
tory (Tregs), T cells gamma delta, NK cells resting, NK 
cells resting, Mast cells resting, Mast cells activated, 
Eosinophils, and Neutrophils. The relationship between 
these cells and OSCC will be analyzed in the discus-
sion section. Eleven prognostic genes showed significant 
correlations with various immune cells (Fig. 7D and the 
“Fig.  7D.p_values.txt” document of the Supplementary 
Material). The TIDE scores also exhibited significant dif-
ferences between the two groups (Fig. 7E).

Mutation, mendelian randomization, and drug sensitivity 
analysis results
Firstly, we assessed the somatic mutation landscape of 
11 prognostic genes in the high- and low-risk groups 
(Fig. 8A-B). Furthermore, we observed a significant posi-
tive correlation between risk score and Tumor Mutation 
Burden (TMB) (Fig. 8C). The TMB in the high-risk group 
was significantly higher than that in the low-risk group 
(Fig. 8D). Additionally, significant differences in survival 
were observed between the high and low TMB groups, 
divided based on the median TMB of all OSCC sam-
ples (Fig. 8E). Finally, the ESTIMATE algorithm revealed 
significant differences in tumor purity, stromal score, 
immune score, and ESTIMATE score between the two 
groups (Figure S6).

(See figure on next page.)
Fig. 5  The process of constructing the prognostic model based on Lasso-Cox. A and B represent the genes determined by Lasso regression 
analysis to participate in building the risk model and their corresponding coefficients. C and D represent the risk score distribution curves, risk 
score scatter plots, and the heatmap of gene expression involved in constructing the risk model for the high-risk and low-risk groups in the training 
and testing cohorts, respectively. E and F represent the KM survival curves of high and low-risk groups in the training and test sets, respectively. 
G and H respectively depict the ROC curves of the risk model predicting 1-year, 3-year, and 5-year survival rates of OSCC patients in the training 
and test sets
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Next, we evaluated the expression of prognostic 
genes in different cell types. PTGES3 exhibited high 
expression in T cells, while LRG1, ADM, RNF149, and 
PYGL showed high expression in Neutrophils (Fig. 9A). 
Mendelian randomization analysis of these genes indi-
cated a causal relationship between SNX6 and OSCC 
development, where SNX6 acted as a risk factor for 
OSCC (Fig.  9B-E). Finally, we assessed differences in 
drug sensitivity between the two groups. Partial box-
plots illustrating significant differences in sensitivity to 
certain drugs between the two groups are presented in 
Fig. 9F-K, and the roles of these drugs in OSCC treat-
ment are analyzed in the discussion section. Boxplots 
for the remaining drugs are provided in the “drug” 
folder of the supplementary materials.

Validation of prognostic gene expression
In this study, the expression of 11 prognostic genes was 
further validated. Specifically, Fig.  10A illustrates the 
expression levels of these genes in both the control and 
HNSC groups (the “Fig.  10A.p_values.txt” document of 
the Supplementary Material). All genes showed signifi-
cant differences in expression between the two groups 
(p < 0.05) (Fig.  10B-L). The expression of the 11 genes 
was further validated in 16 pairs of tissue samples. qRT-
PCR results demonstrated that the expression levels 
of PTGES3, CSRP2, PSMD2, ADM, RNF149, PGAM1, 
PYGL, ANP32B, and EIF2S2 were elevated in OSCC 
tissues (p < 0.05), while LRG1 expression was reduced 
in OSCC tissues (p < 0.05). SNX6 levels showed a slight 
increase in OSCC, but this difference did not reach statis-
tical significance (p > 0.05). These findings are consistent 

Fig. 8  Mutation analysis of risk models. The mutation landscape plots for somatic mutations in the high- and low-risk groups are illustrated 
in A and B, respectively. C depicts the scatter plot showing the correlation between risk scores and Tumor Mutational Burden (TMB). D presents 
the differential box plot of TMB between high- and low-risk groups. E displays the KM survival curves for high- and low-TMB groups
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Fig. 9  Prognostic gene expression, MR, and drug sensitivity analysis results. A depicts violin plots illustrating the expression of prognostic genes 
across different cell types. B illustrates the impact of SNPs on HNSCC within the model. C presents a funnel plot generated from sensitivity analysis. 
D represents the causal relationship of SNX6 with OSCC, depicted using Wald ratios. E summarizes the forest plot illustrating the role of SNX6 
in OSCC. F-K consist of box plots illustrating drugs with significantly different sensitivities between high- and low-risk groups
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with the bioinformatics analysis results presented in 
Fig.  10A. In Figure S7, we compared the distribution 
of methylation levels in the corresponding methylated 
regions of these genes between the control group and 
the OSCC group. The LinkedOmicsKB database (https://​
kb.​linke​domics.​org/) enables users to access uniformly 
processed and systematically precomputed CPTAC pan-
cancer proteogenomics data, including head and neck 
squamous cell carcinoma (HNSCC, to which OSCC 
belongs). Using the LinkedOmicsKB database, we inves-
tigated the protein expression levels of 11 prognostic 
genes. Detailed results are provided in the “protein.docx” 
file in the supplementary materials. Additionally, we per-
formed deconvolution on the spatial transcriptomics 
data of OSCC using the annotation results from previous 
scRNA-seq data. Figures S8 and S9 show the expression 
profiles of the prognostic genes in the tissue sections and 
in different cell types, respectively. Finally, we queried the 
immunohistochemical results of seven prognostic genes 
in the control and OSCC groups through The Human 
Protein Atlas (HPA) database (https://​www.​prote​inatl​as.​
org/), and they were consistent with the bioinformatics 
and qRT-PCR analysis results (Figure S10).

Discussion
OSCC is a malignant tumor with poor prognosis. Multi-
ple studies have shown that neutrophil infiltration is often 
closely associated with promoting OSCC development. 
This study aims to identify reliable prognostic biomark-
ers for OSCC through bioinformatics and experimental 
validation. Firstly, complex cell types and communication 
networks in OSCC were revealed through scRNA-seq 
data. A total of 10 cell types were identified, with sig-
nificant differences in their proportions among different 
samples. Cell communication analysis indicated strong 
interactions between most cells, especially endothelial 
cells and fibroblasts, showing the highest input and out-
put signal strengths, respectively. Communication path-
ways of granulocytes, particularly CXCL and ANNEXIN 
pathways, were highlighted. Zhou et  al. found that CC 
chemokine receptor 7 in OSCC cells promotes recruit-
ment and M2 polarization of macrophages by regulat-
ing the production of CCL19 and CCL21 [26]. Sun et al. 
found that decreased expression of Annexin A1 enhances 
OSCC sensitivity to combined chemotherapy with mul-
tiple chemotherapeutic drugs [27]. Genes involved in 
both pathways were also confirmed to be closely associ-
ated with OSCC, such as CXCL1, CXCL2, CXCL3, and 
ANXA1. Wei et al. found that CXCL1 induced by stimu-
lation of cancer-associated fibroblasts (CAFs) mediated 
the invasion of OSCC cells [28]. CXCL2 synthesized by 
OSCC contributes to tumor-associated bone destruc-
tion [29]. Overexpression of CXCL3 affects the malignant 

behavior of OSCC through the MAPK signaling pathway 
[30]. Wan et  al.’s study first demonstrated that ANXA1 
inhibits the proliferation and invasion of OSCC cells 
in vitro [31].

Secondly, based on hdWGCNA analysis, four gene 
modules highly correlated with neutrophils were iden-
tified. Genes in the blue and turquoise modules were 
significantly enriched in neutrophils, suggesting their 
potential key roles in OSCC development. Interaction 
network analysis further revealed complex relationships 
among these genes, providing new research directions to 
understand neutrophil functions in OSCC.

Thirdly, pseudo-time analysis revealed the distribution 
of different cell types at different stages of OSCC devel-
opment, indicating that keratinocytes mainly reside in 
the early differentiation stage, while monocytes and tis-
sue stem cells are concentrated in the late differentiation 
stage. Additionally, transcription factor analysis showed 
the involvement of multiple transcription factors in key 
biological processes associated with OSCC, including 
glandular development and hematopoiesis. These find-
ings provide new insights into the pathogenesis and pro-
gression of OSCC. We found that pathways involving 
multiple TFs have complex roles in OSCC progression, 
such as adipogenesis, pyroptosis, hepatitis B, and head 
and neck squamous cell carcinoma pathways. Experi-
mental results from Kazuhisa Watanabe suggest that 
N4bp2l1 may be involved in adipogenesis and is highly 
expressed in OSCC [32]. Liu et  al. found that cyanidin 
promotes OSCC cell death by activating cell pyropto-
sis, inhibiting tumor progression [33]. Sara Donà et  al. 
found a positive correlation between chronic hepatitis B 
infection and HNSCC, suggesting that the increased risk 
of HNSCC may lead to earlier diagnosis and better out-
comes for patients with hepatitis B [34].

Fourth, this study identified 204 intersecting genes 
through differential expression analysis and hdWGCNA, 
and constructed an OSCC risk model based on these 
genes, consisting of 11 genes (PTGES3, CSRP2, PSMD2, 
LRG1, ADM, RNF149, SNX6, PGAM1, PYGL, ANP32B, 
and EIF2S2). The model exhibited good predictive per-
formance in both the training and test sets, with AUC 
values of 0.706 and 0.695, respectively. Survival analysis 
further confirmed the effectiveness of this model. Addi-
tionally, some of the 11 genes have been shown to play 
crucial roles in OSCC development, such as CSRP2, 
LRG1, ADM, and PGAM1. CSRP2 overexpression is 
associated with poor prognosis in OSCC and plays a 
critical role in maintaining the stemness of OSCC cells 
[35]. Wang et al. found that reduced expression of LRG1 
in HNSCC tissues, regardless of grade, has potential 
clinical value in early diagnosis of HNSCC [36]. Lucas de 
Lima Maia et al. identified ADM as a predictor of OSCC 

https://kb.linkedomics.org/
https://kb.linkedomics.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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progression and prognosis after detecting its expression 
in OSCC paraffin-embedded tissue microarrays using 
immunohistochemical methods [37]. Zhang et al. identi-
fied PGAM1 as a poor prognostic biomarker for OSCC 
through bioinformatics analysis and immunohistochemi-
cal experiments [38]. Additionally, PSMD2, RNF149, and 
PYGL have been confirmed to play critical roles in other 
squamous cell carcinomas. Liu et al. found that PSMD2 
is involved in the progression of esophageal squamous 
cell carcinoma by inhibiting autophagy [39]. Zhu et  al. 
reported that RNF149 induces cisplatin resistance in 
esophageal squamous cell carcinoma by destabilizing 
PHLPP2 and activating the PI3K/AKT signaling pathway 
[40]. Guan et al. demonstrated that PYGL promotes the 
progression, metastasis, and chemoresistance of head 
and neck squamous cell carcinoma (HNSCC) via the 
GSH/ROS/p53 pathway [41].

Fifth, immune landscape analysis revealed significant 
differences between high- and low-risk groups. Specifi-
cally, strong interactions between monocytes and other 
cells, as well as significant differences in the abundance 
of various immune cell infiltrations between high- and 
low-risk groups, suggest the critical role of the immune 
microenvironment in OSCC progression. Immune cells 
such as CD8 + T cells, regulatory T cells, and neutro-
phils were particularly highlighted. Zhang et  al. found 
that CD8 + T cells may be involved in lymphatic metas-
tasis of OSCC, with FKBP4 being a potential biomarker 
for lymph node metastasis risk among the cell-associated 
genes [42]. OSCC cell-infiltrating CD25 + FoxP3 + regula-
tory Tregs are associated with tumor grading and stromal 
inflammation [43]. Judah E Glogauer et al. reported that 
neutrophils increase OSCC invasion through an invado-
podia-dependent pathway [44].

Finally, mutation analysis revealed that the high-risk 
group had a higher TMB, and TMB was significantly 
positively correlated with risk scores. MR analysis dem-
onstrated that SNX6 had a causal relationship with 
OSCC development and was a risk factor for OSCC. 
Drug sensitivity analysis revealed differential responses 
to various drugs between the high- and low-risk groups, 
providing potential strategies for personalized therapy. 
Drugs depicted in Fig. 10F-K have been used in clinical 
treatment of OSCC. Li et  al. found that ABT737 syner-
gistically kills HNSCC cells in chemotherapy through 
the noxa-mediated pathway [45]. There are many dys-
regulated pathways in head and neck tumors, including 
VEGFR and EGFR, highlighting the potential role of tar-
geted therapy. A review elaborated on the role of VEGFR 
in head and neck cancer and discussed recent trials 
using axitinib, a tyrosine kinase inhibitor targeting dys-
regulated pathways VEGFR-1, 2, and 3 present in head 
and neck tumors [46]. Sun et  al. found that decreased 

Annexin A1 expression enhances OSCC sensitivity to 
combination chemotherapy with docetaxel, cisplatin, and 
5-fluorouracil [27]. Jin et  al. found that BST2 promotes 
OSCC cell growth and induces resistance to gefitinib 
[47]. Lapatinib is an oral medication that targets multiple 
transmembrane receptors in the epidermal growth factor 
receptor family. Mitul D Gandhi et al. reviewed the prin-
ciples and clinical efficacy of lapatinib therapy in HNSCC 
[48]. NU7441 enhances the radiosensitivity of clinically 
relevant radiation-resistant OSCC cells [49].

Conclusion
In summary, this study identified gene modules associ-
ated with neutrophils in OSCC, and functional enrich-
ment analysis of these genes provides insight into 
potential mechanisms of neutrophil infiltration in OSCC. 
Furthermore, several genes associated with OSCC prog-
nosis were identified, and a prognostic model was con-
structed. This model effectively stratifies patients and 
provides a reference for drug target development and 
therapeutic interventions in OSCC.
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