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Background
Polycystic ovary syndrome (PCOS) is one of the most 
common ovarian disorders affecting female fertility, 
accounting for 80% of anovulatory infertile women [1]. 
Clinically, PCOS is characterized by hyperandrogenemia 
(HA), menstrual irregularities, and anovulation, along 
with reduced oocyte quality and functionality [2]. The 
pathogenesis of PCOS is influenced by a combination of 
genetic, environmental, and metabolic factors. Key con-
tributors include HA, insulin resistance (IR), dysregu-
lated glucose and lipid metabolism, oxidative stress (OS), 
and mitochondrial dysfunction [3–6]. Among these, 
impaired ovarian energy metabolism and OS are believed 
to be critical mechanisms underlying the reduced devel-
opmental competence of oocytes in PCOS patients.

OS results from an imbalance between oxidants and 
antioxidants, leading to the accumulation of reactive 
species that directly damage lipids, proteins, and DNA, 

Reproductive Biology 
and Endocrinology

†Heqiu Yan and Li Wang are joint first authors.

*Correspondence:
Mengjun Luo
luomengjun2023@163.com
Weixin Liu
liuweixind@163.com
1Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman’s 
and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of 
Chengdu Medical College, Chengdu, Sichuan 610045, China
2School of Laboratory Medicine, Chengdu Medical College,  
Chengdu 610000, China
3School of Medicine and Life Sciences, Chengdu University of Traditional 
Chinese Medicine, Chengdu, Sichuan Province 611137, China
4Department of Clinical Laboratory, School of Medicine, Chengdu 
Women’s and Children’s Central Hospital, University of Electronic Science 
and Technology of China, No. 1617 Ri Yue Street, Chengdu,  
Sichuan 611731, China

Abstract
Polycystic ovary syndrome (PCOS), as a common endocrine and metabolic disorder, is often regarded as a primary 
cause of anovulatory infertility in women. The pathogenesis of PCOS is complex and influenced by multiple factors. 
Emerging evidence highlights that energy metabolism dysfunction and oxidative stress in granulosa cells (GCs) 
are pivotal contributors to aberrant follicular development and impaired fertility in PCOS patients. Mitochondrial 
dysfunction, increased oxidative stress, and disrupted glucose metabolism are frequently observed in individuals 
with PCOS, collectively leading to compromised oocyte quality. This review delves into the mechanisms linking 
oxidative stress and energy metabolism abnormalities in PCOS, analyzing their adverse effects on reproductive 
function. Furthermore, potential therapeutic strategies to mitigate oxidative stress and metabolic disturbances are 
proposed, providing a theoretical basis for advancing clinical management of PCOS.
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ultimately causing cellular dysfunction and death [7]. 
OS plays a significant role in the onset and progression 
of PCOS, with an imbalance between oxidants and anti-
oxidants in the blood and follicular fluid being a hallmark 
feature of the condition [8]. Mitochondria, as the primary 
site of reactive oxygen species (ROS) production and the 
central hub of energy metabolism, are considered key 
factors in the pathophysiology of PCOS [6].

Energy metabolism is essential for follicular growth and 
development. Mitochondrial oxidative phosphorylation 
(OXPHOS) and glycolysis are the two primary energy 
pathways in granulosa cells (GCs), supporting follicular 
maturation. Targeted metabolomic studies have revealed 
energy metabolism imbalances in the follicular fluid of 
PCOS patients, including abnormalities in mitochondrial 
OXPHOS and glycolysis [9, 10]. These metabolic dis-
ruptions impair energy conversion processes, leading to 
decreased adenosine triphosphate (ATP) production and 
elevated ROS levels. Such changes are closely associated 
with reduced oocyte quality and lower pregnancy rates in 
PCOS patients (shown in Fig. 1) [11, 12].

Thus, mitochondria play a pivotal role in the patho-
genesis of PCOS not only by regulating OS but also by 
modulating energy metabolism. This study aims to com-
prehensively explore the relationship between PCOS, 
oxidative stress, and energy metabolism, with the goal of 
providing new perspectives and theoretical foundations 
for the development of future therapeutic strategies.

PCOS and OS
Oxidation and antioxidant imbalance in PCOS
PCOS patients commonly exhibit elevated OS levels 
and decreased antioxidant capacity [13]. The biologi-
cal markers of OS in PCOS are presented in Table 1. In 
these patients, the Total Oxidant Status (TOS) is signifi-
cantly increased, accompanied by elevated levels of oxi-
dative damage markers such as malondialdehyde (MDA), 
homocysteine (HCY), 8-hydroxy-2’-deoxyguanosine 
(8-OHdG), advanced glycation end products (AGEs), 
hydrogen peroxide (H2O2), superoxide anion (SOA), 
and asymmetric dimethylarginine (ADMA), along with 
increased activity of xanthine oxidase (XO) [14–23]. As 
a terminal product of lipid peroxidation, MDA reflects 

Table 1 Biological markers of oxidative stress in PCOS
Markers Sample types Changes References
8-OHdG Follicular fluid ↑  [12]
TOS Follicular fluid, Serum ↑  [16, 17]
OSI Serum ↑  [17]
H2O2 Serum ↑  [18]
SOA Serum ↑  [18]
GSSG Serum ↑  [18]
MDA Follicular fluid, Serum ↑  [13, 15, 17–20]
PC Serum ↑  [21]
HCY Serum ↑  [22]
ADMA Serum ↑  [22]
XO Serum ↑  [23]
NO Serum →  [22, 23]
AGEs - ↑  [25]
Note “↑” indicates an increase. “↓” indicates a decrease. “→” indicates no change

Fig. 1 Schematic diagram of PCOS oocyte damage induced by energy metabolism disorder and oxidative stress in GCs. Insufficient energy supply 
caused by mitochondrial dysfunction and glucose metabolism defects in ovarian GCs of PCOS patients may affect follicular development and ovulation
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the extent of oxidative damage. HCY exacerbates OS 
by inhibiting the expression and activity of antioxidant 
enzymes such as glutathione peroxidase (GPx) and super-
oxide dismutase (SOD) while promoting the expression 
of inducible nitric oxide synthase (iNOS). 8-OHdG, a 
biomarker of DNA oxidative damage, has been shown to 
negatively affect embryo transfer outcomes when pres-
ent at high levels in follicular fluid [24]. AGEs bind to the 
receptor for advanced glycation end products (RAGE), 
activating the redox-sensitive transcription factor 
NF-κB, which triggers OS and promotes the production 
of inflammatory cytokines. This interaction contributes 
to disruptions in steroid hormone synthesis and secre-
tion, as well as abnormalities in follicular development, 
ultimately impairing reproductive outcomes in PCOS 
patients [25].

There is ongoing debate regarding changes in anti-
oxidant biomarkers in PCOS. The alterations in antioxi-
dant biomarkers observed in PCOS are summarized in 
Table  2. Most studies indicate that serum activities of 
SOD, catalase (CAT), and various glutathione-related 
enzymes are suppressed in PCOS. Additionally, levels 
of non-enzymatic antioxidants, such as vitamin C, vita-
min E, retinol, and glutathione, show a decreasing trend 
[14, 18–20, 26]. Similarly, in PCOS animal models, sig-
nificant reductions in glutathione peroxidase (GPx) and 
SOD activities have been observed in both serum and 
follicular fluid [27]. However, some studies have reported 
increased antioxidant enzyme activity in the blood and 
follicular fluid of PCOS patients [21, 22, 26]. Fatima Q 
and colleagues hypothesized that this increase might rep-
resent a compensatory response to OS in PCOS [22, 26, 
28]. The body primarily counteracts excessive oxidative 
damage by utilizing non-enzymatic antioxidant systems, 
including glutathione, vitamins C and E, melatonin, poly-
phenols, β-carotene, and the trace element selenium, to 

directly neutralize ROS [29]. Glutathione (GSH) func-
tions as a small molecule antioxidant scavenging excess 
free radicals and peroxides [30]. Vitamin C, serving as a 
redox catalyst, reduces and neutralizes ROS while main-
taining redox equilibrium [31]. Vitamin E combats lipid 
peroxidation by neutralizing lipid free radicals and exert-
ing antioxidant effects.

The excessive production of ROS can lead to OS, with 
mitochondria being the primary source of ROS [32]. 
Another significant ROS source is the NADPH oxidase 
2 (NOX2) complex. The NOX2 complex consists of six 
subunits, where p22phox binds to NOX2 in its inactive 
form at the cell membrane, while the other subunits, 
p40phox, p47phox, p67phox, and Rac, exist as a cyto-
plasmic complex. Upon activation, the cytoplasmic sub-
unit p47phox translocates to gp91phox, activating NOX2 
[33]. The presence of gp91phox and p47phox proteins 
suggests that the NOX2 pathway may contribute to ROS 
production in PCOS patients. The use of specific inhibi-
tors for NOX2, such as diphenylene iodonium and apoc-
ynin, significantly diminishes ROS production in GCs of 
PCOS [34].

The regulation of OS relies heavily on the Kelch-
like ECH-associated protein 1 (Keap1)/nuclear factor 
erythroid 2-related factor 2 (Nrf2) signaling pathway 
(Keap1-Nrf2/ARE). Under physiological conditions, Nrf2 
primarily binds to its inhibitor, Keap1, and remains in 
an inactive state in the cytoplasm. Upon stimulation by 
ROS, Nrf2 dissociates from Keap1, translocates to the 
nucleus, and binds to antioxidant response elements 
(AREs). This process promotes the expression of antioxi-
dant genes such as SOD, CAT, GPx, GCL, and heme oxy-
genase 1 (HO-1), thereby activating antioxidant defenses 
[35, 36]. In ovarian tissues of PCOS rat models, the acti-
vation of the Nrf2/HO-1 signaling pathway is suppressed, 
resulting in reduced activities of antioxidants, includ-
ing SOD, GPx, CAT, and GSH [37]. Recent studies have 
identified the P21-activated kinase 2 (PAK2)/β-catenin/
c-Myc/pyruvate kinase M2 (PKM2) axis as a newly dis-
covered signaling pathway regulating oxidative stress. 
This pathway triggers OS in PCOS by inhibiting the Nrf2/
HO-1 pathway, suggesting that PAK2 could serve as a 
potential therapeutic target for PCOS [38]. Furthermore, 
studies have shown that carnosol can improve PCOS 
phenotypes in mice by activating the Keap1-mediated 
Nrf2/HO-1 pathway [39]. ROS also interacts with the 
NF-κB signaling pathway through multiple mechanisms. 
The activity of NF-κB is regulated by ROS levels; under 
ROS-related stimulation, the phosphorylation of RelA 
(p65) modulates NF-κB activity, influencing the expres-
sion of downstream genes involved in inflammation, 
immunity, and cell growth. Additionally, NF-κB family 
members, including RelA (p65) and p50, directly regulate 

Table 2 Antioxidant biomarkers of PCOS
Markers Sample types Changes References
TAC Follicular fluid, Serum ↓  [14, 16, 19–21]
SOD Follicular fluid, Serum ↓, ↑, →  [14, 18–22]
CAT Serum ↓  [18, 21]
GPx Follicular Fluid, Serum ↓, ↑, →  [14, 18, 22, 26]
GR Follicular Fluid, Serum ↓, ↑  [14, 18, 26]
GST Serum ↓, ↑  [18, 26]
GCL Serum ↓  [18]
PON1 Follicular fluid, Serum ↓  [14, 16, 22]
Vitamin E Serum ↓, →  [19, 26]
Vitamin C Follicular fluid, Serum ↓  [14, 18, 26]
GSH Serum ↓  [19]
RET Follicular fluid ↓  [14, 16]
Thiol groups Follicular fluid ↓  [16]
NAD + GCs ↓  [74]
Note: “↑” indicates an increase. “↓” indicates a decrease. “→” indicates no change
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the transcription of antioxidant genes such as SOD, CAT, 
GST, HO-1, and GPx, thereby affecting intracellular ROS 
levels [40].

Factors associated with OS in PCOS
The mechanisms underlying ROS production in PCOS 
remain incompletely understood [41]. Mendelian ran-
domization (MR) studies suggest that PCOS itself does 
not directly cause elevated OS levels. Instead, increased 
OS levels are closely associated with other underlying 
factors [42]. These factors commonly include metabolic 
syndrome, HA, inflammation, heavy metal exposure, and 
imbalances in trace elements. These factors may act inde-
pendently or synergistically, ultimately exerting adverse 
effects on the reproductive function of individuals with 
PCOS (shown in Fig. 2).

Mechanisms of OS associated with metabolic syndrome
PCOS patients often present with metabolic syndrome, 
characterized by disruptions in glucose and lipid metabo-
lism as well as obesity [22, 43]. Approximately 50–70% 
of PCOS patients exhibit IR. HA in PCOS exacerbates 
inflammation and OS by increasing inflammatory mark-
ers and ROS levels, which damage pancreatic β-cells, 
impairing insulin secretion and further promoting IR 
[44–46]. When high concentrations of glucose and free 
fatty acids (FFAs) enter cells, they are metabolized into 
pyruvate and acetyl-CoA. These metabolites are oxidized 
in mitochondria, increasing NADH and FADH produc-
tion, which activates the electron transport chain, leading 

to excessive ROS production and OS induction [47]. OS 
aggravates IR by impairing insulin receptor signaling, 
activating c-Jun N-terminal kinase (JNK), promoting ser-
ine phosphorylation of insulin receptor substrate1 (IRS-
1), and reducing glucose transporter type 4 (GLUT4) 
transporter expression on the cell membrane, further 
exacerbating the progression of IR [48]. Thus, IR and OS 
are closely interconnected, significantly contributing to 
metabolic disturbances in PCOS patients.

Lipid metabolism disorders in PCOS are also closely 
linked to OS. Increased OS is associated with elevated 
levels of triglycerides (TG) and estradiol (E2), as well as 
reduced concentrations of apolipoprotein A1 (apoA1) 
[49]. This is manifested by reduced antioxidative activ-
ity of high-density lipoprotein (HDL) [50]. Conversion 
of high-density lipoprotein subtypes to smaller particles 
with weaker antioxidative capacity leads to an increase 
in levels of oxidized low-density lipoprotein (oxLDL) [51, 
52]. Excess oxLDL induces autophagy in GCs through 
the oxLDL-oxidized low density lipoprotein recep-
tor 1 (OLR1)-ROS pathway [53]. Elevated levels of free 
fatty acids (FFAs) and TG in the serum and follicular 
fluid of PCOS patients result in mitochondrial damage, 
endoplasmic reticulum stress, and hormonal synthesis 
imbalance in GCs [54, 55]. Increased FFAs inhibit glu-
cose oxidation while enhancing FFA oxidation, leading 
to excessive ROS production via the tricarboxylic acid 
(TCA) cycle and electron transport chain. Arachidonic 
acid (AA), one of the most abundant FFAs in the body, 
significantly reduces total antioxidant capacity (TAC) and 

Fig. 2 Schematic diagram of OS and its negative effects on the reproductive system in PCOS. PCOS is characterized by elevated oxidative stress levels, 
which are closely associated with metabolic abnormalities (such as IR and MS), endocrine dysfunctions (including HA), exposure to heavy metals, and 
essential elements. Oxidative stress intensifies GCs apoptosis and impairs oocyte quality, leading to follicular atresia and a reduction in ovarian reserve. 
These detrimental effects ultimately result in anovulatory infertility and diminished success rates of assisted reproductive technologies, including IVF-ET
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antioxidant enzyme activity in KGN cells while increas-
ing levels of MDA, ROS, and SOA. AA also impairs mito-
chondrial function and secretion in KGN cells, inducing 
apoptosis [56].

Furthermore, elevated levels of palmitic acid (PA) have 
been detected in the serum and follicular fluid of PCOS 
patients [57]. In a PCOS theca cell model, PA disrupts 
mitochondrial function and induces ROS production, 
activating the ROS/p38 and JNK signaling pathways, 
which promote androgen production and ovarian fibrosis 
[58].

In patients with PCOS, an increase in waist-hip ratio 
(WHR) and visceral fat/subcutaneous fat ratio (VAT/
SAT) is often associated with exacerbated oxidative stress 
[59]. Obesity-induced OS also impairs mitochondrial 
quality. Mouse models of obesity induced by high-fat, 
high-sugar diets have demonstrated a significant decline 
in oocyte mitochondrial quality [60]. As a result, weight 
loss is considered one of the most effective treatment 
strategies for obese PCOS patients. Research has shown 
that weight loss significantly reduces ROS production in 
leukocytes and decreases oxidative damage to lipids and 
proteins [61]. These findings underscore the crucial role 
of weight management in mitigating OS and its associ-
ated complications in PCOS patients.

Mechanisms of OS associated with abnormal androgen levels
Approximately 60–80% of PCOS patients exhibit HA, 
characterized by elevated testosterone (T) levels, which 
lead to clinical manifestations such as acne, hirsutism, 
and alopecia. Notably, among the various phenotypes of 
PCOS, patients with the HA phenotype often experience 
more pronounced OS [50]. Studies have demonstrated 
a significant positive correlation between serum MDA 
levels and testosterone concentrations in PCOS patients 
[62]. Excess androgens exacerbate OS and inflammasome 
activation in GCs through multiple mechanisms. First, 
hyperandrogens activate leukocytes, enhancing their glu-
cose sensitivity and promoting ROS production, which 
increases p47(phox) gene expression and plasma thio-
barbituric acid reactive substances (TBARS) levels [63]. 
Second, hyperandrogens induce endoplasmic reticulum 
stress (ERS) and activate the inositol-requiring enzyme 
1α (IRE1α)-thioredoxin-interacting protein (TXNIP)/
ROS-NOD-like receptor family pyrin domain-contain-
ing 3 (NLRP3) signaling pathway, leading to increased 
ROS production in GCs and theca cells (TCs). Exer-
cise has been shown to upregulate irisin, which inhibits 
IRE1α and its downstream targets, thereby improving 
ovarian function [64]. Additionally, elevated testoster-
one disrupts mitochondrial function and increases ROS 
levels via the androgen receptor (AR)-NADPH oxidase 
4 (NOX4) signaling pathway in C2C12 cells. Treatment 
with the antioxidant N-acetylcysteine (NAC) reduces 

ROS production, restores mitochondrial function, and 
reverses IR [65]. Hyperandrogenism damages ovar-
ian tissue and causes systemic abnormalities through 
OS-related mechanisms [66]. Resveratrol, by activating 
SIRT1 and inhibiting p66Shc, has been shown to prevent 
ovarian OS and fibrosis induced by HA [67]. Further-
more, HA exacerbate IR symptoms [68]. OS and HA are 
interrelated factors. In vitro studies suggest that OS pro-
motes androgen production in PCOS by downregulating 
hepatocyte nuclear factor-4α (HNF-4α), thereby reduc-
ing the expression and secretion of sex hormone-binding 
globulin (SHBG) [69].

Unraveling the role of inflammation in OS
Chronic low-grade inflammation has been implicated in 
the pathogenesis of PCOS, with inflammatory markers 
such as TNF-α, CRP, IL-6, IL-8, and IL-18 significantly 
elevated in PCOS patients [70]. OS and inflammation 
are interlinked pathological mechanisms in PCOS, with 
NF-κB serving as a key mediator. In inflammatory states, 
increased expression of toll-like receptor 2 (TLR2) and 
other inflammatory factors in KGN cells induces OS. Res-
veratrol has been shown to downregulate TLR2 expres-
sion, thereby suppressing OS and restoring GCs function 
[71]. Inflammatory cytokines activate IL-1 receptor type 
1 (IL-1R1) and TLR4 on GCs, triggering the release of 
the NF-κB complex. Once translocated to the nucleus, 
NF-κB activates RelA (p65) via phosphorylation, promot-
ing the transcription of key components of the NLRP3 
inflammasome, including NLRP3, ASC, and caspase-1. 
The assembled NLRP3 inflammasome leads to the cas-
pase-1-dependent release of pro-inflammatory cytokines 
IL-1β and IL-18, perpetuating the inflammatory response 
[72]. Studies have also revealed that NLRP3 protein local-
izes to mitochondria in GCs and accumulates around the 
nucleus, where the inflammatory cascade exacerbates 
mitochondrial damage and induces ROS production [73]. 
Furthermore, inflammation reduces nicotinamide ade-
nine dinucleotide (NAD) levels in PCOS GCs, leading to 
mitochondrial dysfunction. Nicotinamide riboside (NR) 
supplementation has been shown to restore NAD levels 
and alleviate mitochondrial dysfunction [74].

OS mediated by heavy metals and essential elements
In addition to endogenous factors, exposure to certain 
toxic metals, such as antimony (Sb), cadmium (Cd), lead 
(Pb), mercury (Hg), arsenic (As), tellurium (Te), thal-
lium (Tl), and osmium (Os), can also induce OS in PCOS 
patients [18, 75]. For instance, subacute cadmium expo-
sure disrupts hypothalamic-pituitary-gonadal (HPG) axis 
function, causing PCOS-like symptoms and OS in rats 
[76]. Heavy metals primarily impair antioxidant defenses 
by interacting with sulfhydryl groups in non-enzymatic 
antioxidant systems, forming organometallic complexes 
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that reduce the body’s antioxidant capacity. Lead binds to 
protein sulfhydryl groups, depletes GSH, and enhances 
lipid peroxidation, while thallium damages mitochondrial 
function and increases ROS generation [77]. Moreover, 
lead exposure disrupts mitochondrial structure, activates 
the Nrf2/Keap1 pathway, and exacerbates OS, leading to 
reduced fertility in female mice [78]. These findings high-
light the need for protective measures to minimize heavy 
metal exposure and prevent reproductive dysfunction.

Evidence suggests that alterations in essential element 
levels such as selenium (Se), zinc (Zn), chromium (Cr), 
calcium (Ca), magnesium (Mg), and copper (Cu) are 
associated with OS in PCOS patients [75]. However, dis-
crepancies exist regarding serum trace element levels in 
PCOS patients. Some studies report reduced serum Zn 
levels, while others find no significant differences in Zn, 
iron (Fe), or Mg levels. Conversely, Cu concentrations 
are often elevated, and excessive Cu can catalyze ROS 
production and deplete GSH levels [76, 79]. Supplemen-
tation with trace elements such as Zn, Cr, Se, Ca, along 

with vitamins D and K, magnesium, and melatonin, has 
been shown to reduce OS and improve PCOS symptoms 
[75].

The abnormal energy metabolism in PCOS
In the ovaries of PCOS rat models, ATP levels and lac-
tate concentrations are significantly reduced, indicating 
disruptions in ovarian energy metabolism. Mitochondrial 
function and glucose metabolism are critical for bidirec-
tional signaling between GCs and oocytes. Mitochondrial 
dysfunction and glucose metabolic defects in GCs from 
PCOS patients lead to insufficient energy supply, directly 
impairing oocyte development and reducing pregnancy 
rates (shown in Fig. 3) [11].

Disordered glycolytic activity
GCs play a critical role in supporting oocyte develop-
ment by producing pyruvate and lactate through glycoly-
sis, which serve as the primary energy sources for oocyte 
maturation. Normal follicle development accompanied 

Fig. 3 The mechanism of mitochondrial dysfunction and limited glycolysis leading to abnormal energy metabolism in PCOS. In PCOS GCs, impaired gly-
colytic metabolism and mitochondrial dysfunction are the main reasons for the lack of sufficient energy substrates in oocytes and GCs. The mitochondrial 
dysfunction of PCOS granulosa cells may be caused by a variety of factors, including mitochondrial DNA mutations, decreased mitochondrial biogenesis, 
impaired mitochondrial dynamics, abnormal mitochondrial autophagy, oxidative phosphorylation dysfunction, enhanced oxidative stress or calcium 
homeostasis imbalance. In addition, impaired glycolysis metabolism can also lead to impaired mitochondrial OXPHOS function, exacerbating the abnor-
mal energy metabolism of PCOS GCs. This imbalance of energy metabolism leads to the inability to maintain ATP synthesis, but produces excessive ROS, 
which further aggravates mitochondrial damage and oxidative stress
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by increased GC glycolysis [80]. However, studies have 
shown that glycolytic function is impaired in GCs from 
PCOS patients, as evidenced by reduced levels of pyru-
vate and lactate in follicular fluid and significantly down-
regulated expression of glycolysis-related enzyme genes 
such as glucose transporter type 1 (GLUT1), Lactate 
dehydrogenase A (LDHA), and Phosphofructokinase 
(PFKP) [12]. This indicates that the decreased glycolytic 
rate in PCOS is driven by the downregulation of rate-lim-
iting enzymes in the glycolytic pathway. In addition, GCs 
in PCOS patients exhibit mitochondrial abnormalities, 
including altered morphology, number, and localization, 
reduced mitochondrial membrane potential (MMP), 
decreased ATP production, elevated mitochondrial ROS, 
increased oxidative stress, and insufficient OXPHOS 
[81]. These findings indicate that mitochondrial dysfunc-
tion and glycolytic limitations together contribute to the 
energy metabolism abnormalities in the ovarian micro-
environment of PCOS. Sirtuin3 (SIRT3), predominantly 
localized in mitochondria, regulates mitochondrial func-
tion through deacetylation. In PCOS, SIRT3 deficiency 
may induce abnormal activation of the Phosphoinositide 
3-kinase/protein kinase B (PI3K/Akt) signaling pathway 
via mitochondrial oxidative stress, disrupting insulin-
dependent glucose metabolism [81]. Additionally, SIRT2 
modulates the acetylation and activity of key glycolytic 
enzymes such as LDHA, PKM2, and hexokinase 2 (HK2) 
in GCs. Resveratrol has been shown to upregulate SIRT2, 
thereby promoting the expression of rate-limiting glyco-
lytic enzymes, increasing lactate and ATP levels, restor-
ing glycolysis, and improving ovarian energy metabolism 
in PCOS rat models [82]. Combination therapy with 
Diane-35 and metformin has also been found to restore 
glycolytic pathways and improve ovarian energy metab-
olism by regulating glycolysis-related rate-limiting 
enzymes such as PKM2 and LDHA [83]. Meanwhile, 
elevated concentrations of branched-chain amino acids 
(BCAAs) have been observed in both the blood and fol-
licular fluid of PCOS patients [84]. High levels of BCAAs 
inhibit the activity of the pyruvate dehydrogenase com-
plex (PDH), interfering with mitochondrial pyruvate 
utilization and thereby suppressing glucose metabolism 
[85]. The Protein phosphatase Mg2+/Mn2+-dependent 
1  K(PPM1K)gene, a genetic driver of BCAA catabolism 
in PCOS, promotes the diversion of GCs glycolysis into 
the pentose phosphate pathway, further inhibiting mito-
chondrial OXPHOS and exacerbating the mitochondrial 
energy burden [86].

Lipid metabolism dysfunction in PCOS
In PCOS, lipid metabolism pathways, including glycero-
phospholipid metabolism, fatty acid degradation, fatty 
acid biosynthesis, and ether lipid metabolism, are sig-
nificantly affected. Alterations in fatty acid degradation 

and biosynthesis pathways in PCOS patients may dis-
rupt energy balance and hormone levels, as evidenced 
by changes in acylcarnitine and other fatty acid metab-
olism-related metabolites [87]. Oocytes regulate the 
intrafollicular microenvironment through bidirectional 
signaling with surrounding cells, such as GCs, which pro-
vide essential support for oocyte developmental compe-
tence, including meiotic progression, fertilization, and 
embryogenesis. Thus, the composition of fatty acids in 
follicular fluid and GCs directly influences oocyte quality 
[88].

In obese women with PCOS, levels of palmitic acid 
and oleic acid are significantly elevated in both serum 
and follicular fluid. Treatment of KGN cells and primary 
GCs from PCOS patients with oleic acid suppresses the 
phosphorylation of AMPKα, suggesting that elevated 
fatty acid levels in follicular fluid may reduce fatty acid 
oxidation in GCs by inhibiting AMPKα phosphorylation, 
thereby further impairing oocyte development [89].

Lipid metabolism in GCs primarily involves fatty acid 
and cholesterol metabolism to produce steroid hor-
mones. GCs regulate hormonal changes within the fol-
licle by processing steroid hormones, thus controlling 
oocyte development. Fatty acid β-oxidation serves as 
a vital source of ATP for oocyte maturation. Carnitine 
is indispensable in fatty acid metabolism as it facilitates 
the transport of long-chain free fatty acids into the mito-
chondrial matrix for β-oxidation. Supplementing culture 
media with carnitine enhances β-oxidation in follicles, 
promotes lipid utilization, increases energy availability, 
and positively impacts oocyte and embryo developmen-
tal competence [90]. However, both obese and non-obese 
PCOS women exhibit reduced serum carnitine levels 
[91], potentially inhibiting fatty acid β-oxidation. Despite 
these findings, the precise mechanisms by which GCs 
lipid metabolism regulates energy metabolism remain to 
be elucidated.

Transcriptomic studies of PCOS GCs have revealed 
interactions between ovarian steroidogenesis and GC 
lipid metabolism, including fatty acid biosynthesis, and 
their effects on follicle growth and ovulation in vitro. 
Genes encoding enzymes involved in fatty acid biosyn-
thesis, such as fatty acid synthase (FASN), stearoyl-CoA 
desaturase (SCD), and fatty acid desaturase (FADS), 
are downregulated in GCs from PCOS patients, poten-
tially altering the fatty acid profile in GCs and leading to 
insufficient energy supply for oocyte maturation. Addi-
tionally, the expression of genes involved in ovarian ste-
roidogenesis, such as 3-hydroxy-3-methylglutaryl-CoA 
reductase (HMGCR), is reduced, resulting in disordered 
steroid hormone metabolism, decreased estrogen lev-
els, and increased androgen and progesterone levels. In 
mice treated with dehydroepiandrosterone (DHEA), 
the expression of key genes in androgen and estrogen 
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biosynthesis pathways, including Cytochrome P450 17A1 
(CYP17A1) and Cytochrome P450 19A1 (CYP19A1), is 
significantly reduced, leading to lower estradiol (E2) lev-
els, which negatively affect follicle development and ovu-
lation [3].

In summary, lipid metabolism dysregulation in PCOS 
manifests in various aspects, including abnormal fatty 
acid metabolic pathways, altered fatty acid composition 
in follicular fluid and GCs, inhibited fatty acid oxida-
tion, and disrupted steroid hormone metabolism. These 
factors contribute to ovarian energy metabolism abnor-
malities, adversely affecting oocyte development and fol-
licular function.

Mitochondrial abnormalities in energy metabolism of 
PCOS
Mitochondrial dysfunction represents another critical 
factor contributing to the abnormal energy metabolism 
of GCs. In PCOS, ovarian GCs exhibit structural abnor-
malities and impaired mitochondrial function [92]. This 
dysfunction directly compromises GC functionality, sub-
sequently affecting oocyte quality and ovarian reserve 
capacity, ultimately leading to adverse pregnancy out-
comes [93].

Mitochondrial oxidative phosphorylation
Mitochondria are the primary site of ROS production 
within cells. Under normal physiological conditions, 
intracellular ROS act as critical signaling molecules, reg-
ulating essential physiological processes. However, when 
tissues are subjected to damage, mitochondrial ROS 
levels can increase sharply, triggering oxidative stress. 
NDUFS1, a subunit of mitochondrial respiratory chain 
complex I, is regulated by SIRT3 through deacetylation, 
which influences mitochondrial oxidative phosphory-
lation and ROS production. In GCs of PCOS, SIRT3 
deficiency may lead to mitochondrial dysfunction and 
elevated OS levels, ultimately impairing oocyte quality 
[81]. Mitochondria-targeted antioxidants, such as coen-
zyme Q10, have been shown to regulate folliculogenesis 
and redox signaling pathways in granulosa cells of PCOS 
mouse models, providing a promising therapeutic avenue 
for PCOS treatment [16].

Mitochondrial morphology
Mitochondrial morphology is closely linked to its bioen-
ergetic function, and transmission electron microscopy 
(TEM) is widely used to examine structural changes in 
mitochondria. The PI3K/Akt signaling pathway plays 
a protective role by reducing the opening of mitochon-
drial permeability transition pore (mPTP), stabilizing 
mitochondrial membrane potential, and preventing 
membrane damage. Mitochondrial membrane injury can 
lead to swelling, increased cytochrome C release, and 

exacerbated apoptosis [94]. In GCs from PCOS patients 
and mouse models, mitochondrial swelling, cristae loss, 
and membrane damage have been observed. Concur-
rently, elevated cytoplasmic cytochrome C levels, upreg-
ulated mitochondrial BAX (BCL2-associated X protein) 
expression, and downregulated p-Akt expression were 
noted. Melatonin protects GCs from mitochondrial 
membrane damage by enhancing SIRT1 expression and 
activating the PDK1/Akt signaling pathway [95].

Mitochondrial DNA mutations
Mitochondrial DNA (mtDNA) encodes key proteins and 
components of the mitochondrial respiratory chain com-
plexes, playing a crucial role in regulating mitochondrial 
energy metabolism. Due to its proximity to the electron 
transport chain (ETC) and the absence of histone pro-
tection and corresponding repair mechanisms, mtDNA 
is vulnerable to mutations caused by ROS attacks [96]. 
Specifically, mtDNA mutations lead to mitochondrial 
dysfunction, disrupting OXPHOS, reducing ATP produc-
tion, and increasing ROS generation, which ultimately 
trigger apoptosis and genomic damage [97]. Meta-anal-
yses have revealed decreased mtDNA copy numbers in 
PCOS female patients, along with genetic variations in 
both coding and non-coding regions of mtDNA, which 
are believed to contribute to abnormal protein synthesis 
of mitochondrial components, leading to OS in cells, trig-
gering autophagy [98]. Notably, these variations involve 
mutations in several OXPHOS complex components 
and tRNA genes [99, 100]. For example, the ND1T3394C 
mutation affects the stability of ND1 mRNA, the assem-
bly and activity of Complex I, and results in decreased 
ATP levels, reduced MMP, and increased ROS produc-
tion [101]. Similarly, mutations in tRNA-encoding genes, 
such as tRNALeu(UUR) C3275T, tRNAGln T4363C, 
and tRNALys A8343G, alter tRNA secondary structures, 
leading to increased ROS levels, reduced MMP, dimin-
ished ATP production, and lower mtDNA copy numbers 
[99]. PCOS patients with IR carrying mt-tRNA mutations 
exhibit significant OS and mitochondrial dysfunction 
[102]. These mutations impair OXPHOS complexes and 
mitochondrial protein synthesis, reducing ATP produc-
tion in granulosa cells and leading to insufficient energy 
supply [103]. MtDNA copy number serves as an essential 
indicator of mitochondrial metabolic function. Studies 
have shown that the mtDNA copy number in follicular 
GCs correlates with embryo quality in in vitro fertiliza-
tion (IVF) [104]. These findings suggest that mtDNA 
genetic variations may lead to mitochondrial dysfunc-
tion, contributing to the pathogenesis of PCOS.

Mitochondrial quality control
The mitochondrial quality control system, encompass-
ing mitochondrial biogenesis, dynamics, and mitophagy, 
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is essential for maintaining mitochondrial homeostasis 
and function. Mitochondrial biogenesis acts as a regen-
erative mechanism to sustain mitochondrial quantity. 
In GCs of PCOS patients, the expression levels of key 
mitochondrial biogenesis genes, including Mitochondrial 
transcription factor A (TFAM), POLG, and RNaseH1, 
are significantly reduced [105]. TFAM plays a critical 
role in regulating mtDNA replication and transcription, 
thereby influencing mitochondrial gene expression and 
functionality. Additionally, TFAM is instrumental in pro-
tecting mtDNA from oxidative stress-induced damage 
[106]. Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α) is a master regulator of 
mitochondrial biogenesis and function. Cellular energy 
states, such as increased SIRT1 or NAD levels, promote 
the nuclear accumulation of PGC-1α, initiating the tran-
scription of genes required for mitochondrial biogenesis 
and function [107]. SIRT1 regulates PGC-1α deacety-
lation through the AMPK signaling pathway, which is 
crucial for maintaining mitochondrial function in ovarian 
GCs [108]. A downregulated SIRT1/p-AMPK-PGC-1α 
pathway leads to decreased expression of mitochondrial 
transcription factors in GCs, impairing mitochondrial 
function and ultimately compromising oocyte quality 
[109]. Furthermore, reduced expression of mitochon-
drial biogenesis genes, such as PGC-1α and NRF1, in 
GCs of atretic follicles suppresses the mitogen-activated 
pathway kinase (MAPK)/extracellular signal-regulated 
kinases (ERK) signaling pathway, which is necessary for 
initiating mitochondrial biogenesis. This suppression 
contributes to an increased number of atretic follicles in 
PCOS mouse models [110]. Vitamin D3 enhances mito-
chondrial biogenesis and membrane integrity, improving 
mtDNA copy number in GCs of PCOS mice, and poten-
tially enhancing follicle development and oocyte quality 
[111].

Mitochondria are highly dynamic organelles that 
undergo continuous processes of fusion and fission, 
altering their morphology, size, and position, collec-
tively known as mitochondrial dynamics, to maintain 
mitochondrial homeostasis [112]. Mitochondrial fission 
and fusion play key roles in follicular development. Fis-
sion breaks down tubular mitochondrial networks into 
smaller organelles, facilitating the removal of depolarized 
mitochondria through mitophagy. In GCs from patients 
with PCOS, mitochondrial dynamics are disrupted, lead-
ing to increased fission and decreased fusion. In PCOS 
rat models, a reduction in rod-shaped mitochondria is 
observed, along with an increased proportion of rounded 
and contracted mitochondria. This is accompanied by the 
upregulation of the mitochondrial fission marker dyna-
min-related protein 1 (Drp1). Excessive Drp1 expression 
promotes mitochondrial fission, which further acceler-
ates mitophagy and apoptosis, ultimately resulting in 

growth arrest of early antral follicles [113]. Mitochon-
drial fusion is typically viewed as a protective response, 
where two mitochondria merge their inner and outer 
membranes to form a tubular, interconnected network, 
thereby enhancing mitochondrial resilience. The fusion 
process is primarily regulated by the interactions of mito-
fusin 1 and 2 (Mfn1/2), located on the outer mitochon-
drial membrane, and optic atrophy 1 (OPA1), located on 
the inner mitochondrial membrane. However, in ovar-
ian tissues of PCOS rats, the expression of Mfn1/2 is 
significantly downregulated [114]. Thus, disturbances in 
mitochondrial dynamics may lead to the accumulation of 
damaged mitochondria in the ovaries of PCOS models, 
ultimately impairing ovarian function.

Mitophagy refers to the selective degradation of dam-
aged mitochondria by cells through autophagic mecha-
nisms, thereby maintaining mitochondrial and cellular 
homeostasis. Among the key pathways involved in this 
process is the ubiquitin-dependent PINK1/Parkin-medi-
ated pathway. Specifically, PINK1 acts as a sensor of 
mitochondrial damage and recruits Parkin (an E3 ubiq-
uitin ligase) to damaged mitochondria, facilitating their 
clearance through Parkin-mediated ubiquitination and 
subsequent mitophagy [115]. However, excessive activa-
tion of mitophagy can lead to the degradation of essen-
tial cellular components, ultimately resulting in cellular 
dysfunction. In GCs of PCOS patients and androgen-
treated KGN cells, PINK1/Parkin-mediated mitophagy is 
enhanced, as indicated by increased levels of autophagy-
related proteins Beclin1 and LC3B-II, alongside elevated 
protein levels of PINK1 and Parkin, and decreased SIRT1 
expression. Melatonin has been shown to ameliorate 
this excessive PINK1/Parkin-mediated mitophagy by 
enhancing SIRT1 expression in GCs [116]. However, the 
mechanisms of mitophagy in PCOS remain controversial. 
B-cell lymphoma-2 adenovirus E1B 19  kDa interacting 
protein 3 (BNIP3) induces mitophagy following autoph-
agy stimulation, whereas BNIP3L promotes autophago-
some accumulation. Excessive ROS levels may impair 
the hypoxia-inducible factor (HIF)-1α/BNIP3-mediated 
mitophagy pathway, thereby weakening mitophagy and 
exacerbating mitochondrial dysfunction [114].

Mitochondrial Ca2 + overload
OS disrupts intracellular calcium homeostasis, caus-
ing a significant release of Ca²⁺ from the endoplasmic 
reticulum (ER) and its subsequent influx into mitochon-
dria. This process increases mitochondrial membrane 
permeability, leads to the loss of membrane potential, 
and triggers the release of pro-apoptotic factors [117]. 
The mitochondrial calcium uniporter (MCU), a highly 
selective Ca²⁺ channel located on the inner mitochon-
drial membrane, regulates the influx of cytoplasmic Ca²⁺ 
into mitochondria. Abnormal activation of the MCU 
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can result in mitochondrial calcium overload, leading 
to mitochondrial dysfunction, impaired oxidative phos-
phorylation, loss of membrane potential, and defec-
tive opening of the mPTP [118]. In the ovaries of PCOS 
mouse models, increased MCU expression disrupts 
mitochondrial calcium homeostasis. Puerarin, a natu-
ral isoflavone, ameliorates this imbalance by inhibiting 
ERK1/2 and JNK phosphorylation, reducing cytoplas-
mic Ca²⁺ accumulation, and inactivating the calcineurin/
Nfatc pathway targeting the MCU. These actions prevent 
excessive Ca²⁺ influx into mitochondria, thereby preserv-
ing mitochondrial function, improving the secretory 
function of GCs, and reducing apoptosis [119].

The effect of OS and energy metabolism disorder 
on PCOS reproduction
Ovarian GCs generate pyruvate through the glycolytic 
pathway, serving as the main energy source for oocytes. 
Additionally, GCs regulate the ovarian redox balance, 
playing a crucial role in the development, maturation, 
and ovulation process of follicles [14]. Mitochondrial 
dysfunction and restricted glycolysis in GCs may lead to 
decreased energy production and increased OS, poten-
tially damaging oocytes in patients with PCOS [11, 12, 
120].

The pathological role of OS in PCOS reproductive 
dysfunction
Studies have shown that OS levels in patients with PCOS 
are significantly higher than those in non-PCOS anovu-
latory patients [16]. OS is closely linked to decreased 
oocyte quality, reduced oocyte number, lower fertil-
ization rates, diminished embryo quality, and reduced 
pregnancy rates in PCOS patients [14, 34, 62, 121]. OS 
activates the JNK pathway, enhancing the activity of 
forkhead box protein O1 (FoxO1), which subsequently 
induces apoptosis in GCs [122]. Since GCs tightly sur-
round the oocyte, a high rate of GC apoptosis negatively 
impacts oocyte quality, thereby reducing the success 
rate of in vitro fertilization-embryo transfer (IVF-ET) in 
PCOS patients [34]. Moreover, OS induces the expression 
of pro-apoptotic gene Bax in oocytes, further exacerbat-
ing ovarian dysfunction in PCOS [123]. These mecha-
nisms collectively impair the health of GCs and oocytes, 
contributing to ovarian dysfunction.These findings sug-
gest that reducing OS with antioxidants may improve 
reproductive outcomes in PCOS patients. For example, 
melatonin alleviates GC autophagic death by inhibiting 
FoxO1 through the PI3K-Akt axis, thereby improving 
ovarian function in PCOS [124, 125]. Growth hormone 
(GH) also activates the PI3K/Akt signaling pathway, 
mitigating oxidative stress, enhancing mitochondrial 
function in GCs, and improving oocyte quality in PCOS 
patients [126, 127].

The effect of energy metabolism imbalance on the 
reproductive function of PCOS
Ovarian energy metabolism significantly influences 
oocyte maturation and ovulation. AMP-activated pro-
tein kinase (AMPK) is a key sensor of cellular energy 
status, maintaining energy balance by regulating the syn-
thesis and degradation of cellular metabolites [128]. he 
hypoxia-inducible factor 1 (HIF1) pathway promotes fol-
licular development and prevents follicular atresia; how-
ever, energy deficiency activates AMPK, which in turn 
inhibits the mTOR and HIF1 signaling pathways, lead-
ing to follicular atresia [129]. GCs enhance glycolysis and 
reduce AMPK activity to activate the mTOR signaling 
pathway, subsequently initiating the PI3K-Akt-FOXO3a 
signaling pathway within oocytes, thereby promoting 
the activation of primordial follicles [130]. In PCOS, 
impaired glycolysis in GCs is hypothesized to activate 
AMPK, inhibiting mTOR signaling, which may contrib-
ute to the restricted activation of primordial follicles and 
lead to follicular atresia. Additionally, impaired glyco-
lytic metabolism results in insufficient energy substrates 
for both oocytes and GCs, leading to mitochondrial 
OXPHOS dysfunction in GCs. This dysfunction impairs 
ATP synthesis and generates excessive ROS. These ROS 
further damage mitochondria, induce OS and ultimately 
cause insufficient energy supply to oocytes and apoptosis 
in GCs [81].

Treatment strategies for energy metabolism 
disorder and OS in PCOS
Analysis of oxidative markers and antioxidant param-
eters in PCOS patients, along with their associations with 
hormonal, glucose, lipid metabolism disturbances, and 
inflammatory factors, suggests that elevated OS levels 
may be a key contributor to adverse pregnancy outcomes. 
This indicates that antioxidant therapy may hold clinical 
significance in the management of PCOS. Several anti-
oxidant agents, such as resveratrol, coenzyme Q10, and 
astaxanthin, have already been reported for use in PCOS. 
In addition, supplementation with trace elements has 
been shown to effectively reduce OS and improve endo-
crine dysfunction associated with PCOS [75]. Besides 
the antioxidants mentioned in the text, various agents 
used in PCOS to reduce oxidative stress, enhance mito-
chondrial function, and regulate energy metabolism are 
summarized in Table 3. This refined assessment provides 
a comprehensive overview of the therapeutic strategies 
involving antioxidants, mitochondrial regulators, and 
energy metabolism modulators tailored for patients with 
PCOS. Such interventions hold promise in ameliorating 
the pathophysiological aspects of PCOS and warrant fur-
ther investigation for better patient outcomes.
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Conclusions
This review emphasizes the importance of energy metab-
olism balance and antioxidation in PCOS to ensure 
efficient energy utilization and maintenance of mito-
chondrial function. Mitochondrial dysfunction primarily 

affects the energy metabolism of GCs, which may result 
from disruptions in the mitochondrial quality control 
system, genetic mutations, oxidative stress, and struc-
tural mitochondrial damage. Additionally, various fac-
tors—including obesity, inflammation, hyperlipidemia, 

Table 3 Testing of antioxidants and drugs to improve energy metabolism in animals and humans
Drugs Subjects Mechanism Effect References
Soy Isoflavones PCOS rats Inhibits NF-κB p65signaling pathway a. Alleviates OS, inflammation;

b. Improves ovarian morphology, hormonal disturbances
 [131]

Soy Isoflavones PCOS 
patients

- a. Alleviates OS;
b. Improves hormonal disturbances and IR

 [132]

Sulforaphane PCOS 
patients’ 
GLCs

Activates AMPK/AKT/Nrf2 signaling 
pathway

a. Alleviates OS;
b. Reduces cell apoptosis

 [133]

MitoQ10 PCOS-IR rats Improves mitochondrial function; Regu-
lates cell death-related proteins

a. Alleviates OS;
b. Reverses endocrine and reproductive conditions

 [134]

Acetyl L-carnitine PCOS mice a. Antioxidant properties;
b. Enhances mitochondrial function

a. Alleviates OS;
b. Improves ovarian dysfunction

 [135]

Humanin PCOS rats Activates Keap1/Nrf2 signaling pathway Alleviates OS  [136]
Genistein PCOS mice Enhances antioxidant capacity via ER-

Nrf2-Foxo1 pathway
a. Alleviates OS;
b. Protects ovarian function

 [137]

Luteolin PCOS rats Activates Nrf2 pathway to enhance 
antioxidant capacity

a. Alleviates OS;
b. Improves IR

 [138]

Curcumin PCOS 
patients

Increases gene expression of PGC1-α Alleviates OS  [139]

Hydroxysafflor 
yellow A

PCOS mice Antioxidant properties a. Alleviates OS;
b. Restores hormone secretion

 [140]

Astaxanthin PCOS 
patients

Activates Nrf2/HO-1 signaling pathway a. Alleviates OS;
b. Enhances oocyte and embryo quality

 [8]

Oligosaccharide KGN Inhibits HIF-1α and VEGFA gene 
expression

a. Alleviates OS, inflammation;
b. Inhibits GCs apoptosis;
c. Improves follicle development

 [141]

Metformin PCOS mice a. Alleviates OS;
b. Enhances oocyte development

 [142]

Metformin and 
Resveratrol

PCOS rats a. Activates SIRT1 antioxidant pathway;
b. Activates AMPK anti-inflammatory 
system

a. Alleviates OS, inflammation;
b. Improves hormonal disturbances, follicle quality

 [143]

Selenium PCOS rats a. Regulates mitochondrial dynamics;
b. Anti-apoptotic effects

a. Alleviates OS;
b. Improves mitochondrial function; c. Improves endo-
crine and metabolic disturbances

 [144]

Vitamin C/E PCOS mice Upregulates antioxidant enzyme 
expression

a. Alleviates OS;
b. Restores ovarian function

 [145]

Vitamin D PCOS mice (a) Activates MAPK-ERK1/2 signaling 
pathway; (b) Improves GCs mitochon-
drial biosynthesis

a. Alleviates OS;
b. Improves ovarian mitochondrial and follicular damage

 [110]

Melatonin PCOS mice Enhances SIRT1 expression to inhibit 
PINK1/Parkin-mediated mitochondrial 
autophagy

Protects GCs mitochondrial function  [116]

N-acetyl cysteine PCOS mice (a) Improves mitochondrial function; (b) Alleviates OS  [65]
Resveratrol PCOS rats Upregulates SIRT2 to promote expres-

sion of glycolytic enzyme
Restores glycolysis process, improving ovarian energy 
metabolism dysfunction

 [82]

Diane-35 and 
Metformin

PCOS rats increases the expression of PKM2 and 
LDHA

Restores glycolysis pathway to improve ovarian energy 
metabolism

 [83]

Bu-Shen-Tian-Jing 
Formula (BSTJF)

PCOS GCs Upregulates SIRT3, reducing the produc-
tion of mitochondrial ROS and inhibiting 
the activation of p38 MAPK

a. Alleviates OS;
b. Improves glucose metabolism

 [146]

Mogroside V PCOS rats Upregulates LDHA, HK2, and PKM2 in 
GCs

a. Enhances lactate and energy production;
b. Improves follicle development and ovulation

 [147]
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hyperglycemia, androgen excess, insulin resistance, and 
heavy metal exposure—independently or synergisti-
cally contribute to increased OS in PCOS. Consequently, 
mitochondrial-targeted therapies have emerged as prom-
ising interventions to mitigate OS and improve energy 
metabolism. However, further studies are required to 
clarify the exact role of mitochondrial dysfunction in the 
pathogenesis of PCOS, specifically whether it serves as a 
primary or secondary factor.
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