Table 2.
Average performance of the trained models classifying malnutrition using all (n = 134) features.
| Decision tree | KNN | SVM | Logistic regression | Naive Bayes | Random Forest | AdaBoost | LGBM | XGBoost | |
|---|---|---|---|---|---|---|---|---|---|
| Sensitivity | 0.875 ± 0.107 | 0.491 ± 0.152 | 0.807 ± 0.123 | 0.903 ± 0.096 | 0.696 ± 0.140 | 0.849 ± 0.107 | 0.863 ± 0.109 | 0.888 ± 0.101 | 0.849 ± 0.112 |
| Specificity | 0.909 ± 0.070 | 0.954 ± 0.046 | 0.852 ± 0.077 | 0.843 ± 0.078 | 0.841 ± 0.083 | 0.907 ± 0.065 | 0.941 ± 0.055 | 0.935 ± 0.054 | 0.935 ± 0.053 |
| F1-score | 0.85 ± 0.085 | 0.608 ± 0.139 | 0.766 ± 0.09 | 0.815 ± 0.076 | 0.688 ± 0.110 | 0.833 ± 0.082 | 0.870 ± 0.079 | 0.879 ± 0.075 | 0.856 ± 0.078 |
Performance was evaluated for 100 × 10-fold cross-validation iterations (n = 1,000). The highest value for each performance metric across all algorithms is highlighted. Data are shown as mean ± standard deviation. KNN, K-nearest neighbors; SVM, support vector machine; AdaBoost, adaptive boosting; LGBM, light gradient boosting machine; XGBoost, eXtreme gradient boosting. Bold values indicate statistical significance (p < 0.05).