Skip to main content
. 2024 Dec 12;11:1479501. doi: 10.3389/fnut.2024.1479501

Table 2.

Average performance of the trained models classifying malnutrition using all (n = 134) features.

Decision tree KNN SVM Logistic regression Naive Bayes Random Forest AdaBoost LGBM XGBoost
Sensitivity 0.875 ± 0.107 0.491 ± 0.152 0.807 ± 0.123 0.903 ± 0.096 0.696 ± 0.140 0.849 ± 0.107 0.863 ± 0.109 0.888 ± 0.101 0.849 ± 0.112
Specificity 0.909 ± 0.070 0.954 ± 0.046 0.852 ± 0.077 0.843 ± 0.078 0.841 ± 0.083 0.907 ± 0.065 0.941 ± 0.055 0.935 ± 0.054 0.935 ± 0.053
F1-score 0.85 ± 0.085 0.608 ± 0.139 0.766 ± 0.09 0.815 ± 0.076 0.688 ± 0.110 0.833 ± 0.082 0.870 ± 0.079 0.879 ± 0.075 0.856 ± 0.078

Performance was evaluated for 100 × 10-fold cross-validation iterations (n = 1,000). The highest value for each performance metric across all algorithms is highlighted. Data are shown as mean ± standard deviation. KNN, K-nearest neighbors; SVM, support vector machine; AdaBoost, adaptive boosting; LGBM, light gradient boosting machine; XGBoost, eXtreme gradient boosting. Bold values indicate statistical significance (p < 0.05).