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Abstract

Background

Despite declining COVID-19 incidence, healthcare workers (HCWs) still face an elevated

risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We

developed a diagnostic multivariate model to predict positive reverse transcription polymer-

ase chain reaction (RT-PCR) results in HCWs with suspected SARS-CoV-2 infection.

Methods

We conducted a cross-sectional study on episodes involving suspected SARS-CoV-2

symptoms or close contact among HCWs in Bogotá, Colombia. Potential predictors were

chosen based on clinical relevance, expert knowledge, and literature review. Logistic

regression was used, and the best model was selected by evaluating model fit with Akaike

Information Criterion (AIC), deviance, and maximum likelihood.

Results

The study included 2498 episodes occurring between March 6, 2020, to February 2, 2022.

The selected variables were age, socioeconomic status, occupation, service, symptoms
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(fever, cough, fatigue/weakness, diarrhea, anosmia or dysgeusia), asthma, history of

SARS-CoV-2, vaccination status, and population-level RT-PCR positivity. The model

achieved an AUC of 0.79 (95% CI 0.77–0.81), with 93% specificity, 36% sensitivity, and sat-

isfactory calibration.

Conclusions

We present an innovative diagnostic prediction model that as a special feature includes a

variable that represents SARS-CoV-2 epidemiological situation. Given its performance, we

suggest using the model differently based on the level of viral circulation in the population. In

low SARS-CoV-2 circulation periods, the model could serve as a replacement diagnostic

test to classify HCWs as infected or not, potentially reducing the need for RT-PCR. Con-

versely, in high viral circulation periods, the model could be used as a triage test due to its

high specificity. If the model predicts a high probability of a positive RT-PCR result, the

HCW may be considered infected, and no further testing is performed. If the model indicates

a low probability, the HCW should undergo a COVID-19 test. In resource-limited settings,

this model can help prioritize testing and reduce expenses.

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has led to mil-

lions of deaths globally. It is now an endemic public health problem worldwide. Consequently,

the World Health Organization (WHO) and the Center for Disease Control and Prevention

(CDC) continue to advocate vaccination against SARS-CoV-2 and the active search for cases

in healthcare workers (HCWs) [1–3]. The introduction of vaccination, change in the epidemi-

ological situation and limited healthcare resources led to prioritizing COVID-19 diagnosis for

certain groups like HCWs, in several countries, including ours [4].

Frontline workers, especially those in high-risk units such as nurses and those in close con-

tact with patients, are particularly vulnerable to infection due to occupational exposure [5–9].

Testing of HCWs plays a crucial role in reducing illness rates and minimizing the spread of

SARS-CoV-2 within healthcare settings [10]. This prioritization is important for preventing

potential cross-transmission of the infection between HCWs and high-risk patients, with

transmission rates reported to be as high as 44% [11,12].

One possible strategy for SARS-CoV-2 diagnosis in HCWs involves using models that pre-

dict a positive RT-PCR result. RT-PCR is considered the most accurate method for identifying

symptomatic and asymptomatic infection cases [13,14].

These models aim to rapidly classify suspected cases without immediate use of RT-PCR or

other tests, potentially optimizing resources and reducing costs. However, most available pre-

diction models are designed for the general population, not specifically for HCW [15,16]. Few

studies include Latin American populations, and many rely only on data from initial epidemic

waves, lacking information on the behavior of newer viral variants like Omicron, which is

notably more transmissible and presents slightly different signs and symptoms, necessitating

the development of updated predictive models. [17,18].

Hence, this study aimed to develop a statistical model specifically designed to predict a posi-

tive RT-PCR result for SARS-CoV-2 in HCWs with suspected SARS-CoV-2 infection.
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Methods

Study design

A cross-sectional study was conducted on HCWs at Hospital Universitario San Ignacio

(HUSI) in Bogotá, Colombia, who had signs and symptoms suggestive of COVID-19 or who

had been in close contact with a person diagnosed with SARS-CoV-2 between March 6, 2020

and February 2, 2022. The study period covers the first four epidemic waves in Colombia [19].

The predominant variants during the period of the study were: ancestral, Gamma variant (P.1,

P.1.x), Mu variant (B.1.621) and Omicron variant (BA.1.1), respectively [20].

Setting

HUSI implemented a systematic monitoring program called "Linea Respira" to oversee HCWs

who exhibited symptoms consistent with COVID-19 or had close contact with confirmed

cases of SARS-CoV-2 infection. The program required prompt reporting of symptoms indica-

tive of COVID-19, including the date of symptom onset, details of any close contact with con-

firmed cases, medical history, prior SARS-CoV-2 infection, and COVID-19 vaccination status,

via email or a dedicated phone line to complete a web-based questionnaire. Then, they

received a teleconsultation with a physician or were directed to the institutional emergency

service based on symptom severity. Subsequently, they were scheduled for an RT-PCR test for

SARS-CoV-2 within the following 72 hours, either at home or institutionally.

Inclusion and exclusion criteria

The study included HCWs aged 18 years or older, working in inpatient and outpatient services

of the HUSI. The unit of observation and analysis of this study were the episodes of symptoms

or close contact of the HCWs in which an RT-PCR test was performed.

We excluded clinical episodes in which the RT-PCR test was taken after 10 days of symp-

tom onset. Close contact episodes in which the RT-PCR test was taken within the first 48

hours of contact, or after fourteen days were excluded. To maintain independence between

episodes, the following criteria were applied: If a HCW had a positive RT-PCR test and 15 days

before had other negative RT-PCR test, only the positive result was considered to classify the

episode. Additionally, episodes occurring within 90 days of an initial positive RT-PCR episode

were not included. In cases where a HCW had multiple negative RT-PCR tests within 14 days,

one of the episodes was selected by a random procedure.

Identification of potential predictor variables

Based on existing literature, expert knowledge and availability of relevant data the following

variables were preliminarily considered for prediction of a positive RT-PCR result for SARS--

CoV-2 among HCWs with suspected infection: demographic factors such as age, sex assigned

at birth, and socioeconomic status; occupational variables such as occupation, service, shift,

and work in a COVID-19 designated area; general exposure and immunity indicators such as

close contact with a case, history of COVID-19 and vaccination against SARS-CoV-2. We also

considered known and potential clinical risk factors for infection such as underlying medical

conditions (asthma, obesity, cardiovascular disease, immunosuppression), and reported symp-

toms including fever or chills, cough, dyspnea, rhinorrhea, odynophagia, anosmia or dysgeu-

sia, headache, fatigue/weakness, myalgia or arthralgia, and diarrhea.

The set of variables also included the epidemiological situation of SARS-CoV-2 in Bogotá at

the time of the episode. At the time of the study, reporting RT-PCR results was mandatory in

the country and has remained so to the present. We considered that the percentage of
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positivity of the tests for SARS-CoV-2 performed in Bogotá could give appropriate informa-

tion about the intensity of viral circulation in the population, which will define the risk of

infection and consequently the probability of a positive result. For the model, for each episode

we included the positivity in the city the day before the corresponding RT-PCR was done.

The outcome variable was the result of the RT-PCR for SARS-CoV-2 for the episode.

RT-PCR was performed using nasopharyngeal swabs samples or aspirates collected using the

VIASURE™ Real-Time PCR Detection Kit plates (CerTest BIOTEC, Zaragoza, Spain).

Data collection

Data collection involved extracting information from the “Linea Respira” web-based question-

naire, occupational health surveillance databases, and clinical records of the episodes. The data

were accessed for research purposes between June 15, 2022 and February 15, 2024. The authors

had access to information that could identify individual participants during data collection,

however, such identifying information was withdrawn after completing the date cleaning pro-

cess. Data on positivity of tests in the city were obtained from the publicly available surveil-

lance information provided by the health authorities of Bogotá and Colombia [21,22].

RT-PCR results were obtained from the HUSI clinical laboratory database and medical rec-

ords. A researcher blind to the prediction variables collected the outcome variable.

Sample size

To calculate the sample size required for model development we considered a maximum of 46

parameters to be included in the model. With an estimated RT-PCR positivity rate of 30%

among HCWs, and aiming for at least 10 outcomes per parameter, we estimated the need of

having at least 1,533 episodes of suspected SARS-CoV-2 infection in HCWs. In the end, our

study included 2,498 episodes, having 27 outcomes for each of the 23 parameters included in

the final selected model, ensuring an adequate sample size.

Statistical analysis

Before analysis, we investigated outliers, potential data entry errors, and missing information.

Data cleaning and completion of missing critical clinical information required the review of

medical records, and in a few cases, contact with HCWs.

Missing data accounted for 4.1% of records, primarily in the work shift variable, presumed

to be missing at random. Due to the low percentage of missing data and their nature, a com-

plete-data analysis was chosen instead of imputation of missing values. There were no missing

data for the outcome variable.

Continuous variables were described using medians and interquartile ranges (IQRs)

according to the data distribution, while categorical variables were presented as absolute and

relative frequencies.

The multivariable model was built using logistic regression. Initially, a complete model

incorporated all predefined variables. Subsequently, a selection process identified the best

model by considering clinically relevant variables and evaluating model fit using Akaike infor-

mation criterion (AIC), deviance, and maximum likelihood ratio.

The linear relationship between the log odds of the outcome and the continuous variables

was assessed with the “Box and Tidwell” test. We decided to apply a logarithmic transforma-

tion of age and RT-PCR positivity for SARS-CoV-2 to achieve model linearity. Model additiv-

ity and possible interactions between symptoms were evaluated, revealing a statistically

significant interaction between fever and anosmia/dysgeusia, enhancing model fit and leading

to its inclusion. There was no collinearity between the variables included in the model.
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Thereafter, discrimination was evaluated via a receiver operating characteristic curve (ROC

curve) and area under the ROC Curve (AUC) calculation with 95% confidence intervals. At

the same time, calibration was assessed graphically and through the Hosmer and Lemeshow

goodness-of-fit test. We also used the CORP reliability diagram approach, named by this acro-

nym for its four properties: consistency, optimization, reproducibility, and group-adjacent vio-

lator (PAV)-based algorithm [23].

Furthermore, model sensitivity, specificity, and likelihood ratios were evaluated. Internal

validation was performed using cross-validation to reassess model performance. In addition,

another internal validation was carried out on the episodes during the fourth epidemic wave,

dominated by the Omicron variant.

To further evaluate the clinical utility of the model considering the significance of the local

epidemiological situation as indicated by the positivity of SARS-CoV-2 tests in the population

as a crucial predictor of an individual’s RT-PCR result, we assessed how the model performs in

scenarios of low and high SARS-CoV-2 circulation. Thus, the episodes were categorized into

two groups: those occurring in periods with a population test positivity of 15% or higher (high

viral circulation) and those occurring in periods with a positivity below 15% (low viral circula-

tion) [24]. The original model with its parameters was then applied in each of these epidemio-

logical scenarios. Subsequently, the model’s discrimination, calibration, and diagnostic

performance were reassessed in these two scenarios.

Data analysis was conducted using R software version 4.1, using the packages blorr,

UWbe536, pROC, generalhoslem, reliabilitydiag, and rms. This study followed theTRIPOD

Statement and methodological recommendations for the development of prediction models

[25,26].

Research ethics considerations

This study was carried out following national (Resolution 8430 of 1993, of the Ministry of

Health of Colombia) and International Standards (Declaration of Helsinki) for the ethical con-

duct of research. The study was approved by the Research and Ethics Committee of the HUSI

and the School of Medicine of the Pontificia Universidad Javeriana (FM-CIEI-0686-21). We

did not request consent from the participants given the retrospective nature of the study,

which was based on clinical and laboratory records of an existing occupational health program

of HUSI. Only four of the researchers had access to identified data during the process of data

collection and cleaning, and then, we were careful to remove personal identifiers and assured

the privacy of information.

Results

After assessing 5,483 episodes from Linea Respira, we applied eligibility criteria selecting 2,498

episodes of suspected SARS-CoV-2 infection (Fig 1). The episodes occurred in 1,733 HCWs,

from whom 68.7% (n: 1,191) experienced a single episode, 21.8% (n: 378) had two episodes,

7.2% (n: 125) three episodes, and 2.3% (n: 39) had four or more episodes. The RT-PCR for

SARS-CoV-2 was positive in 25% of the episodes (634 / 2,498).

The population’s median age was 32.3 years, with an interquartile range (IQR) of 27.3 to

33.9 years. Most of the episodes were in HCWs under 35 years of age (n: 1541, 61.7%) and in

females (n: 1896, 75.9%). The episodes were more frequent in physicians (n: 656, 26.3%) and

nurse assistants (n: 514, 20.6%).

The most frequently reported symptoms included odynophagia in 65.7% (n: 1,641), head-

ache in 52.4% (n: 1,310), cough in 51.4% (n: 1,283), and fatigue/tiredness in 46.7% (n: 1,165) of

cases. In 21.5% (n: 538) of the episodes the HCW had a history of previous SARS-CoV-2
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infection, while in 52.6% (n: 1,313) of the HCW had completed the vaccination schedule.

Table 1 outlines the characteristics of the episodes and the percentage with a positive RT-PCR

result according to sociodemographic, potential occupational and non-occupational exposure

to SARS-CoV-2, clinical and local epidemiological characteristics.

Selected prediction model

The selected prediction model is presented in Table 2. It achieved an AUC of 0.79, with a 95%

confidence interval (CI) of 0.77 to 0.81 (Fig 2).

To determine the cut-off point, the Youden method was initially employed to balance sensi-

tivity and specificity. However, this analysis resulted in a sensitivity of 72% and a specificity of

71.1%, which may limit its applicability for clinical decision-making. Consequently, specificity

was prioritized, leading to the selection of a cut-off point of 0.49, achieving a specificity of 93%

and a sensitivity of 36%, with a positive likelihood ratio (LR+) of 5.3 and a negative likelihood

ratio (LR–) of 1.5. The model demonstrated adequate calibration, confirmed both graphically

and through the Hosmer-Lemeshow test, which yielded a p-value of 0.785 (Fig 2).

Fig 1. Episodes of suspected SARS-CoV-2 infection among HCWs of Hospital Universitario San Ignacio from

March 6, 2020 to February 2, 2022, selected for the study according to eligibility criteria.

https://doi.org/10.1371/journal.pone.0316207.g001
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Table 1. Characteristics of the episodes of suspected infection with SARS-CoV-2 and percentage with a positive

RT-PCR result in HUSI healthcare workers, from March 6, 2020 to February 2, 2022.

Characteristics Episodes

(N = 2498)*
Percentage of the episodes with an

RT-PCR positive for SARS-CoV-2†

Age (years), (n, %)

< 35 1541 (61.7%) 374 (24.3%)

35–44 663 (26.5%) 179 (27.0%)

� 45 294 (11.8%) 81 (27.6%)

Sex at birth (n, %)

Female 1896 (75.9%) 484 (25.5%)

Male 602 (24.1%) 150 (24.9%)

Socioeconomic status (n, %)

Low 829 (33.2%) 222 (26.8%)

Middle 1317 (52.8%) 348 (26.4%)

High 352 (14%) 64 (18.2%)

Type of occupation (n, %)

Physician 656 (26.3%) 137 (20.9%)

Nurse 382 (15.3%) 96 (25.1%)

Nurse assistant 514 (20.6%) 154 (30.0%)

Administrative 487 (19.5%) 137 (28.1%)

Other 459 (18.4%) 110 (24.0%)

Main service of the HCW (n, %)

Emergency room 386 (15.5%) 88 (22.8%)

General wards 820 (32.8%) 225 (27.4%)

Intensive care unit 163 (6.5%) 52 (31.9%)

Surgical areas 287 (11.5%) 62 (21.6%)

Ambulatory and diagnostic services 479 (19.2%) 125 (26.1%)

Administrative offices and other workers not in

direct contact with patients.

363 (14.5%) 82 (22.6%)

Shift (n: 2394), (n, %)

Day shift 1600 (66.8%) 415 (25.9%)

Night shift 794 (33.2%) 197 (24.8%)

COVID-19 work area (n: 2449), (n, %)

Yes 1202 (49.1%) 305 (25.4%)

No 1247 (50.9%) 316 (25.3%)

Close contact (n, %)‡

Yes 633 (25.3%) 159 (25.1%)

No 1865 (74.7%) 475 (25.5%)

Underlying medical conditions (n, %)§

Cardiovascular and metabolic disease 299 (12.0%) 74 (24.7%)

Obesity 162 (6.5%) 50 (30.9%)

Asthma 163 (6.5%) 30 (18.4%)

Othersk 216 (8.6%) 63 (29.2%)

Symptoms¶ (n, %)

Fever or chills 337 (13.4%) 131 (38.9%)

Cough 1283 (51.4%) 398 (31.0%)

Dyspnea 109 (4.4%) 38 (34.9%)

Rhinorrhea 1128 (45.2%) 269 (23.8%)

Odynophagia 1641 (65.7%) 423 (25.8%)

Anosmia and dysgeusia 236 (9.4%) 132 (55.9%)

(Continued)
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Additionally, a CORP approach was employed, displaying the recalibrated forecast proba-

bilities in a reliability diagram, also documenting an adequate calibration by this methodology

(miscalibration of 0.002) (S1 Fig).

Considering that the use of the selected model requires up-to-date and exact knowledge of

the positivity of tests for SARS-CoV-2 in the relevant population, we developed an additional

model in which the local tests positivity variable is categorical instead of continuous. It has two

categories representing low (less than 15% tests positivity) or high circulation of SARS-CoV-2

(15% or higher positivity) in the population. This approach would facilitate the use of the

model when the exact population tests positivity is unknown (S1 Table). This modified model

showed an AUC of 0.77 with a 95% IC of 0.76–0.80. An adequate calibration of the model was

Table 1. (Continued)

Characteristics Episodes

(N = 2498)*
Percentage of the episodes with an

RT-PCR positive for SARS-CoV-2†

Headache 1310 (52.4%) 319 (24.4%)

Fatigue/weakness 1165 (46.7%) 342 (29.4%)

Diarrhea 256 (10.2%) 51 (19.9%)

Myalgia or arthralgia 19 (0.8%) 10 (52.6%)

History of SARS-CoV-2 infection (n, %)** 538 (21.5%) 76 (14.1%)

SARS-CoV-2 vaccination schedule (n, %)††

No 1060 (42.4%) 338 (31.9%)

Incomplete schedule 125 (5.0%) 17 (13.6%)

Complete schedule 1313 (52.6%) 279 (21.2%)

SARS- CoV-2 tests positivity (%) in Bogotá at the

time of taking the test‡‡ (median, IQR) 28.9

(16.8–36.4)

-

Epidemic waves (n, %)§§

First epidemic wave 348 (13.9%) 141 (40.5%)

Second epidemic wave 554 (22.2%) 168 (30.3%)

Third epidemic wave 919 (36.8%) 88 (9.6%)

Fourth epidemic wave 677 (27.1%) 237 (35.0%)

*: Column-based percentages

†: Row-based percentages. The denominators are those in the corresponding categories of the preceding column

‡: HCWs who were less than 6 feet away from a SARS-CoV-2-infected person (laboratory-confirmed or a clinical

diagnosis) for 15 min without PPE, at any time since March 2020

§: Self-reported pre-existing medical condition

k: Others underlying conditions: Anemia, history of tuberculosis, venous thromboembolic disease, osteoarthritis,

migraine, epilepsy, HIV, kidney disease and rheumatological disease, neoplasia, and others

¶: Symptoms are not mutually exclusive, consequently, the percentages do not add to 100%

**: History of SARS-CoV-2 infection confirmed by RT-PCR, antibody, or antigen

††: An incomplete vaccination schedule was defined as only having one dose of the vaccine. Johnson and Johnson

vaccine was not used as standard strategy in HUSI. A complete vaccination schedule was defined as having the

complete basic schedule with or without a booster dose. Johnson and Johnson vaccine was not used as standard

strategy in HUSI

‡‡: Percentage of SARS-CoV-2 tests positivity in the city of Bogotá on the day before the healthcare worker had the

RT-PCR test done

§§: The episodes were assigned to the first, second, third and fourth epidemic waves according to the following dates:

March 6, 2020, to September 30, 2020; October 1, 2020, to February 28, 2021; March 1, 2021, to October 30, 2021;

and from November 1, 2021, to February 2, 2022, respectively.

https://doi.org/10.1371/journal.pone.0316207.t001
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observed graphically, and with the Hosmer and Lemeshow test a p-value of 0.063 was obtained

(S2 and S3 Figs).

Internal validation

The internal validation of the selected model was carried out through a 10-fold cross validation

technique, finding an average AUC of 0.78 (95% CI 0.77–0.78) (S2 Table). Additionally, in the

Table 2. Model selected for the prediction of a positive RT-PCR result for SARS-CoV-2 in healthcare workers with suspected infection in a hospital setting.

Predictors Βeta (Log-Odds) 95% CI* Adjusted OR 95% CI*
(Intercept) -8.37 -10.10 – -6.68

Age (log) 0.55 0.13 – 0.98 1.74 1.14–2.66

Socioeconomic status

Low ref.

Middle 0.16 -0.09 – 0.41 1.17 0.92–1.51

High -0.24 -0.69 – 0.20 0.78 0.50–1.22

Occupation

Administrative ref.

Physician -0.48 -0.88 – -0.07 0.62 0.41–0.93

Nurse -0.46 -0.86 – -0.07 0.63 0.42–0.93

Nurse assistant -0.13 -0.51 – 0.24 0.87 0.60–1.28

Other -0.48 -0.85 – -0.11 0.62 0.43–0.90

Main service

Administrative office ref.

Emergency room 0.47 0.03 – 0.91 1.60 1.03–2.48

General wards 0.71 0.30 – 1.12 2.03 1.35–3.07

Intensive care unit 0.71 0.18 – 1.24 2.03 1.20–3.44

Surgery areas 0.29 -0.20 – 0.78 1.34 0.82–2.18

Ambulatory and diagnostic services 0.43 0.03 – 0.84 1.54 1.03–2.31

Symptoms

Fever and chills 0.76 0.45 – 1.07 2.14 1.57–2.90

Cough 0.7 0.48 – 0.92 2.01 1.62–2.50

Fatigue/weakness 0.25 0.04 – 0.46 1.29 1.04–1.59

Diarrhea -0.58 -0.96 – -0.22 0.56 0.38–0.80

Anosmia or dysgeusia 1.6 1.25 – 1.96 4.97 3.50–7.11

Asthma -0.46 -0.94 – -0.02 0.63 0.39–0.98

History of SARS-CoV-2 infection† -0.98 -1.30 – -0.68 0.37 0.27–0.51

SARS-CoV-2 Vaccination‡

Not vaccinated ref.

Incomplete schedule -0.65 -1.26 – -0.08 0.52 0.28–0.92

Complete schedule -0.39 -0.61 – -0.16 0.68 0.54–0.85

SARS- CoV-2 tests positivity (%)§ (logarithm) 1.48 1.25 – 1.73 4.4 3.50–5.63

Interaction: Fever and chills and anosmia or dysgeusia -1.03 -1.82 – -0.22 0.36 0.16–0.80

This model has an Akaike information criterion (AIC) of 2320, deviance of 2272 and Log-Likelihood of -1136

*: CI: Confidence interval

†: History of SARS-CoV-2 infection confirmed by RT-PCR, antibody or antigen

‡: An incomplete vaccination schedule was defined as having only one dose of the vaccine. Johnson and Johnson vaccine was not used as standard strategy in HUSI. A

complete vaccination schedule was defined as having the complete schedule with or without a booster dose. Johnson and Johnson vaccine was not used as standard

strategy in HUSI

§: Percentage of SARS-CoV-2 tests positive in the city of Bogotá on the day before the healthcare worker had the RT-PCR test done.

https://doi.org/10.1371/journal.pone.0316207.t002
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temporal validation that was carried out using exclusively the episodes that occurred when

Omicron variant was dominant in the fourth epidemic wave, an AUC of 0.81 (95% CI 0.78–

0.84) was found for the model, with adequate calibration (Hosmer and Lemeshow test, p-

value = 0.37) (S4 Fig).

Validation of the prediction model in periods with low levels of

SARS-CoV-2 circulation

In the validation of the model on 580 episodes that occurred when SARS-CoV-2 RT-PCR posi-

tivity in Bogotá was less than 15%, an AUC of 0.93 (95% CI 0.90–0.95) was found, achieving

adequate calibration (Hosmer and Lemeshow test, p-value = 0.12) (Fig 3). The sensitivity and

specificity of the model with a cut-off point at 0.49 were 40% and 97%, respectively. For

instance, if the positivity were 10%, this model would correctly classify 91% of HCWs, with

only 6% false negatives and 2.7% false positives (S3 Table).

Validation of the prediction model in periods with high levels of

SARS-CoV-2 circulation

In the validation of the model on 1918 episodes that occurred when the SARS-CoV-2 RT-PCR

positivity in Bogotá was equal or greater than 15%, an AUC of 0.75 (95% CI 0.72–0.77) was

found, achieving adequate calibration (Hosmer and Lemeshow test, p-value 0.41) (Fig 3). The

sensitivity and specificity of the model with a cut-off point at 0.49 were 30% and 93%, respec-

tively. For instance, if the positivity were 30%, this model would correctly classify 74% of

HCWs, with 5% false positives and 21% false negatives (S3 Table).

Discussion

Despite the ending of the COVID-19 pandemic emergency declared by WHO in May 2023,

timely diagnosis of SARS-CoV-2 infections remains an important challenge for HCWs. It is

essential to continue prioritizing suspected cases among healthcare workers (HCWs) to ensure

timely access to diagnostic testing. Our model predicts RT-PCR positive results for

Fig 2. “Diagnostic performance of the selected model for the prediction of a positive RT-PCR result for SARS-CoV-2 in

healthcare workers with suspected infection in a hospital setting. A. Receiver Operating Characteristic (ROC) curve. B.

Calibration graph of the model”.

https://doi.org/10.1371/journal.pone.0316207.g002
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SARS-CoV-2 among HCWs with suspected infection with a global accuracy of AUC 0.79 (95%

CI 0.77–0.81) and a specificity of 93% at the defined cut-off point.

One crucial aspect of this model is the inclusion of a variable to capture the local and tem-

poral variations in SARS-CoV-2 epidemiological situation. This factor stands as a key element

in predicting the risk of infection and significantly enhances the model’s performance. We

identified only one model developed in the general population that assessed diagnostic perfor-

mance based on different RT-PCR positivity scenarios. However, this model did not include

this variable among its predictors [27].

Based on our model’s performance, we suggest using it differently based on the epidemio-

logical situation. In low SARS-CoV-2 circulation periods, the model could serve as a replace-

ment diagnostic test to classify HCWs as infected or not, potentially reducing the need for

RT-PCR. Conversely, in high viral circulation periods, the model could be used as a triage test

due to its high specificity. If the model indicates a high probability of a positive RT-PCR result,

HCWs should be considered potentially infected and advised to start isolation protocols. If the

model indicates a low probability of a positive RT-PCR result, HCWs should undergo a molec-

ular COVID-19 test to reduce false negatives, as the model has shown limited sensitivity. In

resource-limited settings, this model can help prioritize testing and reduce unnecessary

expenses.

Fig 3. Diagnostic performance of the selected model for the prediction of a positive RT-PCR result for

SARS-CoV-2 in healthcare workers with suspected infection in a hospital setting under conditions of low

(RT-PCR positivity in the city below 15%) and high circulation (RT-PCR positivity in the city 15% or higher) of

the virus. A1. Receiver Operating Characteristic (ROC) curve and A2. Calibration graph for the prediction model

during periods when the population RT-PCR positivity is below 15% (low positivity). B1. Receiver Operating

Characteristic (ROC) curve and B2. Calibration graph for the prediction model during periods when the population

RT-PCR positivity is 15% or higher (high positivity).

https://doi.org/10.1371/journal.pone.0316207.g003
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Moreover, our model has the advantage that it was developed using data from multiple epi-

demic waves, including the period when the Omicron variant, currently prevailing, was pre-

dominant and many HCWs had already received the COVID-19 vaccine. During the

predominance of the Omicron variant, symptom patterns varied, with a reduced frequency of

anosmia/dysgeusia and an increased incidence of upper respiratory symptoms. [28–30]. When

we conducted internal validation solely on data from Omicron-dominant fourth wave, our

model demonstrated satisfactory discrimination and calibration. This finding is relevant, as it

suggests that our model may still be applicable now when Omicron subvariants, including

JN.1 and its descendants are prevalent, as reports indicate a similar symptom pattern across

these subvariants [31,32].

Other important variables incorporated into our model were those associated with the

HCWs occupation. Remarkably, these variables have not been included in previously reported

models for this specific population in the reviewed literature [18,33]. However, previous stud-

ies have identified occupation-related factors like occupation type, and the specific healthcare

service in which workers are employed, as significant risk factors for SARS-CoV-2 [5–7].

Regarding symptom inclusion in our prediction model, we have integrated common symp-

toms observed in SARS-CoV-2 infected patients, including anosmia/dysgeusia, fever, cough,

and fatigue. We have also considered the presence of diarrhea, which may decrease the proba-

bility of infection [34]. It is important to note that relying solely on symptoms for prediction

may not yield strong diagnostic performance [34,35].

In contrast to previous models developed during the pandemic, the prediction model in

this study does not rely on a variety of diagnostic tests, such as biomarkers or chest x-rays

[17,36]. This is advantageous as most SARS-CoV-2 infections in HCWs are currently mild,

and only clinical and occupational information is typically needed, eliminating the need for

extra testing [27,37]. This model is recommended for use in HCWs with suspected mild

COVID-19, but not for severe cases requiring hospitalization. In such cases, RT-PCR tests are

recommended for etiological diagnosis and treatment decisions.

Our study has limitations. First, while it involves HCWs with suspected SARS-CoV-2 infec-

tion during the Omicron variant’s predominance, it was not evaluated in episodes occurring

when other prominent Omicron sublineages (XBB.2.1, EG. 5.1 or JN.1) were circulating in

2023 and 2024 [38]. This highlights the importance of future external and temporal validation

of the model in these specific and evolving epidemiological scenarios, especially considering

the circulation of other respiratory viruses.

Secondly, our model does not include factors like HCWs’ use of personal protective equip-

ment, as accurately measuring these variables is difficult. HCWs tend to over-report compli-

ance when monitored in their workplace [39]. Thirdly, in low viral circulation scenarios, this

model can be used as a substitute for RT-PCR in HCWs with mild symptoms. In a scenario

with a 10% prevalence, 9% of workers may be misclassified: 3% as false positives, potentially

leading to unnecessary isolation, and 6% as false negative results, allowing infected individuals

to continue working. In these instances, it is imperative for HCWs with respiratory symptoms

to wear masks and practice frequent hand washing to reduce the risk of transmitting SARS--

CoV-2 to patients.

To properly implement this model, physicians guided by local occupational health services

or infection control departments should apply it. They must know the local COVID-19 epide-

miology and input local data on positive SARS-CoV-2 tests positivity and HCWs’ individual

variables in the model. If exact values for SARS-CoV-2 tests positivity are unavailable, the

model with the dichotomous variable may be employed instead, only requiring knowledge of

high or low SARS-CoV-2 circulation.
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Suggested use of the predictive model

To improve readers’ understanding of the predictive model and facilitate its application for

predicting SARS-CoV-2 infection among HCWs in similar settings, we developed a calculator

based on it (https://github.com/Mars1971/SARS_CoV_2_Risk_Prediction_in_Healthcare_

Workers/blob/main/README.md). This tool is licensed under the Creative Commons Attri-

bution-NonCommercial-ShareAlike 4.0 International license CC BY-NC-SA 4.0.

To use the calculator, users will input data for the following variables of the HCW that con-

stitute the prediction model: age in years, socioeconomic status (low, middle and high accord-

ing to local definitions. For instance, in our country, it depends on the economic strata that

are used to classify the place of residency), occupation, main hospital service where the person

works, symptoms at presentation (fever and chills, cough, fatigue/weakness, diarrhea, anosmia

or dysgeusia), history of asthma, history of SARS-CoV-2 infection, SARS-CoV-2 vaccination

status (not vaccinated, incomplete schedule, complete schedule with or without booster).

It is also essential for the prediction to input an estimate of the local level of viral circulation

when the HCW presents for care. An approximation to this level is based on the positivity of

the SARS-CoV-2 tests in the population. We recommend that users obtain this positivity per-

centage from local public health authorities or their institution’s occupational health team.

Based on the results, the calculator also provides guidance on the need or not for additional

testing. In the context of a respiratory peak with high levels of SARS-CoV-2 circulation in the

population (test positivity equal or greater than 15%) and prediction of a high probability of

infection, the healthcare worker should be managed as potentially infected, and isolation pro-

tocols should be initiated without further testing. Conversely, if the calculator estimates a low

probability of infection for the HCW, a molecular COVID-19 test is recommended to reduce

the risk of false negatives, as the model has demonstrated limited sensitivity and the risk of

being infected is relatively high given the epidemiological situation.

In the context of low to moderate levels of SARS-CoV-2 circulation in the population (test

positivity below 15%) and a prediction of a high probability of infection, we suggest that the

healthcare worker be considered potentially infected, without further testing. However, if the

model predicts a low probability of infection in this context, the worker can be considered not

infected.

Conclusion

In conclusion, we present an innovative diagnostic prediction model for a positive RT-PCR

result for SARS-CoV-2 that among its predictors includes an indicator of the local epidemio-

logical situation and may serve as a decision-making tool that help to spare tests and save

resources in programs for COVID-19 control in HCW, particularly in resource-limited set-

tings, where access to diagnostic tests is expensive, lacking, or limited. This model could be uti-

lized differentially based on the epidemiological situation of SARS-CoV-2, either as a

replacement for the reference test in periods of low viral circulation, or as a triage test in high-

circulation periods.
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References

1. World Health Organization. Infection prevention and control in the context of COVID-19: a guideline

[Internet]. 2023 [cited 2024 Apr 7]. Available from: WHO/2019-nCoV/IPC/guideline/ 2023.4.

2. Center for Disease Control and Prevention (CDC). Interim Infection Prevention and Control Recommen-

dations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic [Inter-

net]. 2023 May. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-

recommendations.html.

3. World Health Organization 2023. WHO roadmap on uses of COVID-19 vaccines in the context of Omi-

cron and high population immunity [Internet]. 2023 Nov [cited 2024 Apr 9]. Available from: WHO/2019-

nCoV/Vaccines/SAGE/Prioritization/2023.2.

4. Ministerio de Salud y Protección Social. Lineamientos para el uso de pruebas diagnósticas para SARS-
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6. Gómez-Ochoa SA, Franco OH, Rojas LZ, Raguindin PF, Roa-Dı́az ZM, Wyssmann BM, et al. COVID-

19 in Healthcare Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors,

Clinical Characteristics, and Outcomes. Am J Epidemiol [Internet]. 2021; 190(1):161–75. Available

from: 10.1093/aje/kwaa191. https://doi.org/10.1093/aje/kwaa191 PMID: 32870978

7. Valderrama-Beltrán SL, Cuervo-Rojas J, Ariza B, Cardozo C, Ángel J, Martinez-Vernaza S, et al.
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