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Abstract

As the primary power source for electric vehicles, the accurate estimation of the State of

Health (SOH) of lithium-ion batteries is crucial for ensuring the reliable operation of the

power system. Long Short-Term Memory (LSTM), a special type of recurrent neural net-

work, achieves sequence information estimation through a gating mechanism. However,

traditional LSTM-based SOH estimation methods do not account for the fact that the degra-

dation sequence of battery SOH exhibits trend-like nonlinearity and significant dynamic vari-

ations between samples. Therefore, this paper proposes an LSTM-based lithium-ion SOH

estimation method incorporating data characteristics and spatio-temporal attention. First,

considering the trend-like nonlinearity of the degradation sequence, which is initially gradual

and then rapid, input features are filtered and divided into trend and non-trend features.

Then, to address the significant dynamic variations between samples, especially for capac-

ity regeneration,a spatio-temporal attention mechanism is designed to extract spatio-tempo-

ral features from multidimensional non-trend features. Subsequently, an LSTM model is

built with trend features, spatio-temporal features, and actual capacity as inputs to estimate

capacity. Finally, the model is trained and tested on different datasets. Experimental results

demonstrate that the proposed method outperforms traditional methods in terms of SOH

estimation accuracy and robustness.

Introduction

Lithium-ion batteries, known for their high energy density, high conversion efficiency, and

absence of memory effect, are widely used in electric vehicles and energy storage systems [1].

Due to repeated charging and discharging, internal aging of the battery occurs, including deg-

radation of anode and cathode materials, aging of the separator, and reduction of the electro-

lyte, which leads to decreased battery capacity, increased internal resistance, and elevated self-

discharge. The State of Health (SOH) of a lithium-ion battery typically refers to the ratio of its

capacity to its nominal capacity under specific discharge conditions. The process involves
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charging the battery to full capacity [2], followed by discharging it at a defined rate until the

cutoff voltage is reached. Accurate SOH estimation for lithium-ion batteries can extend battery

life, enhance safety, and ensure timely battery replacement, thus maintaining efficient and sta-

ble operation of the battery [3,4].

Current mainstream methods for estimating the State of Health (SOH) of lithium-ion bat-

teries can be broadly classified into two categories: model-based methods and data-driven

methods [5]. Model-based methods are constructed based on the electrochemical evolution

laws within the battery, taking full account of the influence of various aging factors on internal

and external state variables, and thus developing battery aging models [6]. The main

approaches include Kalman filtering, particle filtering, electrochemical impedance spectros-

copy, and equivalent circuit models, among others [7]. Wang et al. developed a state-space

model for lithium-ion battery capacity degradation using a cubature particle filter and con-

ducted SOH estimation [8]. Sun et al. proposed a battery SOH estimation method based on a

simplified electrochemical model optimized using a back-propagation neural network [9].

Zhang et al. combined solid electrolyte interface resistance and charge transfer resistance with

temperature and State of Charge (SOC) to establish a probabilistic model for SOH estimation

[10]. Liu et al. developed a lithium-ion battery dynamic model based on the open-circuit volt-

age method and further refined the model by integrating internal resistance correction and

Kalman filtering for parameter adjustment [11]. Through effective use of state-of-charge esti-

mation, the accuracy of capacity estimation was maintained at a high level. However, model-

based methods need to consider the internal physicochemical properties of the battery, making

the modeling process complex and challenging. Additionally, these methods exhibit poor gen-

eralization when applied to complex usage environments and varying operating conditions

[12].

Data-driven methods do not require consideration of the internal electrochemical reactions

and failure mechanisms of lithium-ion batteries. Instead, they derive insights from battery per-

formance test data and state monitoring data, extracting the latent health status information

and its evolutionary trends, thus enabling SOH estimation [13]. These methods can, to some

extent, overcome the challenges of modeling difficulties and poor generalization faced by

model-based methods [14]. The main approaches include support vector machines, autore-

gressive models, Gaussian process regression models, and Long Short-Term Memory (LSTM)

networks. Lin et al. utilized the correlations between multimodal multilinear features and

designed a high-order polynomial module to integrate feature information, thereby improving

the efficiency and performance of SOH estimation [15]. Wang et al. developed a support vec-

tor regression model to predict the remaining useful life of lithium-ion batteries and optimized

the penalty factor and kernel parameters using the artificial bee colony algorithm for SOH esti-

mation [16]. Chen et al. employed empirical mode decomposition to decompose capacity deg-

radation data and built autoregressive moving average (ARMA) and Elman neural network

models to train and predict multiple modal sequences and residuals separately [17]. Yun et al.

selected three temporal health indicators from the battery’s charge-discharge data and applied

the naive Bayes Monte Carlo theory to estimate the SOH of the battery [18]. Ren et al. pro-

posed an SOH estimation method that combines convolutional neural networks and LSTM

networks, demonstrating its effectiveness on real-world datasets [19]. Liu et al. decomposed

battery capacity data into intrinsic mode functions and residuals using empirical mode decom-

position and employed Gaussian process regression and LSTM networks to estimate the

intrinsic mode functions and residuals, respectively. This approach directly captures the long-

term dependency relationships of capacity, enabling accurate predictions of capacity and SOH

[20].
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By comparing the aforementioned methods, it is evident that LSTM has stronger sequence

modeling and nonlinear learning capabilities in SOH estimation for lithium-ion batteries com-

pared to support vector machines, autoregressive models, and Gaussian process regression

models [21]. However, LSTM still faces the challenge of being unable to focus on different vari-

ables at different time steps. To address this limitation, Yuan et al. proposed a Spatio-temporal

Attention-based LSTM model (STA-LSTM) for industrial process quality forecasting [22]. The

model can identify samples and input variables related to quality variables at different time

steps within the time window, thereby improving prediction accuracy.However, the SOH deg-

radation sequence of lithium-ion batteries inherently exhibits trend-like nonlinearity and sig-

nificant dynamic variations between samples. There are two key issues with applying the

STA-LSTM model for SOH estimation: 1) The SOH degradation sequence shows a trend that

is initially gradual and then rapidly declines. In SOH samples, there are variables that reflect

long-term trends (trend variables) and others that reflect short-term changes (short-term vari-

ables) [23]. The STA-LSTM model applies spatial attention weighting to all sample variables

and propagates them upwards through layers, which obscures the influence of trend variables

on long-term trends. 2) The model’s temporal attention mechanism adaptively identifies the

weights of different sample features relevant to quality prediction but determines these weights

based on estimated quality values rather than actual quality values [24]. This lack of actual

quality data in calculating the weights significantly affects the estimation accuracy for SOH

sequences with pronounced dynamic variations. To address these issues, this paper proposes

an LSTM-based SOH estimation method for lithium-ion batteries that incorporates data char-

acteristics and spatio-temporal attention. First, to address the trend-like nonlinearity of the

degradation sequence, which starts off gradually and then accelerates, input features are fil-

tered and divided into trend and non-trend features. Then, to account for the significant

dynamic variations between samples, particularly the issue of capacity regeneration, a spatio-

temporal attention mechanism structure is designed to extract spatio-temporal features from

multidimensional non-trend features. Subsequently, an LSTM model is built using trend fea-

tures, spatio-temporal features, and actual capacity as inputs to estimate battery capacity. The

main contributions of this paper are as follows:

1. To address the trend-like nonlinearity in the degradation sequence, which is initially grad-

ual and then accelerates, the input variables are filtered based on the degradation character-

istics of lithium-ion batteries and classified into trend variables and short-term variables.

Trend variables represent the long-term trends of SOH degradation, while short-term vari-

ables capture short-term changes.

2. To address the significant dynamic variations between samples, particularly the issue of

capacity regeneration, a spatio-temporal attention mechanism for multidimensional short-

term variables is designed. This mechanism reduces redundancy between different features

through spatial attention and uses temporal attention to steadily predict the stable parts of

capacity degradation while effectively tracking the sudden rises caused by capacity

regeneration.

3. An LSTM structure based on variable classification and spatio-temporal attention is devel-

oped to estimate SOH.

The remainder of this paper is organized as follows: Section 2 introduces the battery train-

ing and degradation datasets and analyzes the correlation between the selected health factors

and SOH. Section 3 provides a detailed description of the fusion model based on data charac-

teristics and the spatio-temporal attention mechanism. Section 4 presents the experimental

results and analysis. Finally, Section 5 concludes the paper.
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Battery training and degradation datasets

To study the aging characteristics of lithium-ion batteries, NASA’s 18650-type lithium-ion bat-

tery was used, with a rated capacity of 2Ah and a rated voltage of 3.6V. The charge and dis-

charge cutoff voltages were set to 4.2V and 2.5V, respectively. All data in this paper were

collected at ambient temperature, using constant current (CC) and constant voltage (CV) for

charging, and constant current (CC) for discharging. Specifically, during the charging process,

the battery was charged in CC mode at a constant current of 1C until reaching 4.2V, followed

by CV mode charging until the charging current dropped to 20mA [25]. To simulate different

operating conditions in an ideal laboratory environment, the discharge process was conducted

in CC mode, designed with five different discharge rates and intervals, discharging to the cut-

off voltage of 2.5V. The detailed voltage and current variation curves for battery charge and

discharge are shown in Fig 1. The aging test data of the battery were used to evaluate the per-

formance of the developed SOH and Remaining useful life (RUL) prediction methods in prac-

tical applications. Therefore, this paper selected multiple health features as inputs to the

model, extracted from the voltage data obtained during the charging process, which best reflect

the battery’s operational characteristics. Fig 2 shows the charging voltage variation curves of

the B5 battery from the NASA dataset under different cycle numbers. From the figure, it can

be clearly observed that as the number of charge-discharge cycles increases, the degree of bat-

tery aging intensifies, and the duration of the CC charging phase gradually decreases [26].

During the CC charging process, the time duration between different voltage intervals also

decreases as the cycle number increases. This paper defines this duration as the time spent in

different voltage ranges during charging, and uses it as a health feature.

This paper selects three sets of data, labeled B5, B6, and B7, as the subjects for health factor

extraction. Under the CC charging mode, the time required for the battery voltage to move

through four stages: 3.8V-3.9V (F1), 3.9V-4.0V (F2), 4.0V-4.1V (F3), and 4.1V-4.2V (F4) is

recorded [27]. Among them,F1 represents the battery performance in the 3.8V-3.9V range,

primarily reflecting capacity changes in the initial phase; F2 represents the 3.9V-4.0V range,

reflecting the battery’s mid-term health state; F3 represents the 4.0V-4.1V range, tracking the

Fig 1. Curve of battery charging and discharging voltage and current.

https://doi.org/10.1371/journal.pone.0312856.g001
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battery’s performance as it approaches full charge; F4 represents the 4.1V-4.2V range, describ-

ing the battery’s behavior under high voltage conditions.The experimental results are shown in

Fig 3, illustrating the changes in capacity and health factors over the number of cycles. From

the figure, the following observations can be made: (1) As the number of cycles increases, both

the capacity and the four health factors gradually decrease overall; (2) When capacity regenera-

tion occurs at certain cycle numbers, the capacity increases, and the four health factors also

increase to varying degrees; (3) Among the four health factors, F1, F2, and F3 are more closely

related to capacity overall, while F4 shows higher correlation with capacity in the later stages.

To further refine the selection of health factors, this paper calculates the Spearman correla-

tion coefficient between the capacity and the four health factors. The calculation formula is as

follows:

rs ¼

XN

k¼1

ðxk � �xÞðyk � �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

ðxk � �xÞ2
XN

k¼1

ðyk � �yÞ2
s ð1Þ

Where rs represents the Spearman correlation coefficient, xk and yk denote the health factor

and the cycle capacity at the k-th measurement, respectively, and �x and �y represent the average

values of the N health factors and cycle capacities, with N being the number of elements. The

statistical results are shown in Table 1, which presents the correlation between capacity and

health factors. From the table, the following conclusions can be drawn: (1) The correlation

coefficients between the health factors F1, F2, and F3 and capacity are all greater than 0.9,

Fig 2. Charging voltage variation curve of B5 under different cycles.

https://doi.org/10.1371/journal.pone.0312856.g002
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indicating a strong correlation with capacity; (2) For batteries B5 and B7, the health factor F1

shows the highest correlation with capacity, while for battery B6, F2 has the highest correla-

tion; (3) For data with cycle numbers greater than 90, F4 exhibits the highest correlation.The

data sets F1, F2, and F3 show redundancy. Since users typically charge the battery when there

is still remaining capacity, the health factor F1 may have missing data. Subsequent experimen-

tal validation shows that F2 and F3 perform best as health factors, and therefore, F2 and F3 are

selected for further research in this paper.

LSTM model based on the fusion of data characteristics and

spatio-temporal attention mechanism

To address the trend-like nonlinearity of degradation sequences, which is initially gradual and

then accelerates, the degradation data is divided into trend data and short-term data. Then, to

handle the significant dynamic variations between samples, particularly in the case of capacity

regeneration, a spatio-temporal attention mechanism is designed for short-term data to extract

short-term spatio-temporal features [28]. An LSTM model is then constructed using trend

data, short-term spatio-temporal features, estimated capacity, and actual capacity as inputs to

estimate future capacity. The overall structure of the algorithm is shown in Fig 4. Block I is a

Fig 3. Variation of volume and health factors with the number of cycles.

https://doi.org/10.1371/journal.pone.0312856.g003

Table 1. Correlation between capacity and health factors.

Battery 3.8V-3.9V 3.9V-4.0V 4.0V-4.1V 4.1V-4.2V

B0005 0.993 0.992 0.993 0.989

B0006 0.989 0.990 0.988 0.394

B0007 0.978 0.975 0.976 0.985

https://doi.org/10.1371/journal.pone.0312856.t001

PLOS ONE LSTM-based estimation of lithium-ion battery SOH using data characteristics and spatio-temporal attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0312856 December 26, 2024 6 / 20

https://doi.org/10.1371/journal.pone.0312856.g003
https://doi.org/10.1371/journal.pone.0312856.t001
https://doi.org/10.1371/journal.pone.0312856


feature optimization module based on the spatial attention mechanism. This module mainly

addresses the issue of feature selection by combining the health factors F2, F3, and Q to form a

three-dimensional vector, and using the attention mechanism to calculate weights, enabling

the model to better capture the patterns of battery capacity changes over time.Block II is a fea-

ture optimization module based on the temporal attention mechanism. This module focuses

on dynamic changes in the time series, paying special attention to key time points. It effectively

addresses prediction errors caused by fluctuations in time features during battery capacity pre-

diction, further improving the model’s stability and prediction accuracy.

Short-term feature extraction

To capture the long-term dependencies in battery capacity degradation data, LSTM units are

used as the basic activation function units in the proposed STL-LSTM model. In LSTM, three

gate controllers and a memory cell are embedded within each basic LSTM unit, namely the

input gate, forget gate, and output gate. These three gates are used to determine which infor-

mation from the weighted time series should be remembered. The memory cell stores the

input information across all time steps. The LSTM network achieves temporal memory

through the switching of these gates and the memory cell, preventing the vanishing gradient

problem [29]. The structure of the short-term feature extraction process is shown in Fig 5,

where the input variable cðkÞ ¼ ½c1ðkÞ; c2ðkÞ; � � � ; cTðkÞ� represents the short-term data at the

k-th cycle, and T denotes the dimension of the short-term data. The output variable represents

Fig 4. Algorithm structure diagram.

https://doi.org/10.1371/journal.pone.0312856.g004
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the hidden state at the k-th cycle. The input variables c(k) is processed through the LSTM unit

to compute the output SOH ~QðkÞQðkÞ. The detailed process is as follows:

f ðkÞ ¼ sðWf ½sðk � 1Þ; cðkÞ� þ bf Þ ð2Þ

ik ¼ sðWi½sðk � 1Þ; cðkÞ� þ biÞ ð3Þ

~Qk ¼ tanhðWc½sðk � 1Þ; cðkÞ� þ bcÞ ð4Þ

dðkÞ ¼ fkdðk � 1Þ þ ik ~Ck ð5Þ

hðkÞ ¼ sðWo½sðk � 1Þ; cðkÞ� þ boÞ ð6Þ

In the equation, Wf, Wi, Wc, Wo are weight matrices; bf, bi, bc, bo are bias vectors; s(k), s(k
−1) represent the hidden states of the k-th and (k-1)-th cycle, respectively; c(k), c(k−1) are the

cell states of the current and previous modules, respectively; σ is the sigmoid function.

Feature optimization based on spatial attention mechanism

After short-term feature extraction, the optimal short-term features differ across different bat-

teries. To ensure the model’s generalizability, multiple features need to be selected. However,

redundancy and interference exist among different features. In this section, a temporal atten-

tion mechanism is designed to eliminate redundancy between features. Therefore, a spatial

attention mechanism is introduced to weight the sample features from k,k−1,� � �,k−M+1, adap-

tively adjusting the short-term feature values. The model structure is shown in Fig 6. x(k) rep-

resents the input features, composed of health factors F2 and F3, and after spatial attention

weighting, new inputs xs(k) are generated.

xsðkÞ ¼
XT

i¼1

aiðkÞxiðkÞ; 1 � i � T ð7Þ

aiðkÞ ¼
expjxiðkÞ � Qðk � 1Þj

XT

i¼1

expjxiðkÞ � Qðk � 1Þj

; 1 � i � T ð8Þ

The normalized value αi(k) serves as the spatial attention weight, xi(k) is the three-dimensional

vector composed of F2(k), F3(k), and Q(k−1) is the actual capacity at the previous time step.

Fig 5. Short-time feature extraction structure.

https://doi.org/10.1371/journal.pone.0312856.g005
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Feature optimization based on time attention mechanism

After the feature optimization by the spatial attention mechanism, to prevent abrupt feature

changes caused by fluctuations in lithium-ion battery data, which could result in prediction

outcomes severely deviating from normal values, a temporal attention mechanism is intro-

duced. This mechanism applies weighting to the sample features at k,k−1,� � �,k−M+1 to adap-

tively adjust the short-term feature values. As shown in Fig 7, the temporal attention value for

the hidden state at time k can be calculated as follows.

b
i
1
ðkÞ ¼ expjxsiðkÞ � sðk � 1Þj; 1 � i � M � 1 ð9Þ

b
M
1
ðkÞ ¼ expðjxsMðkÞ � sðk � 1Þj þ jxsMðkÞ � xsMðk � 1ÞjÞ ð10Þ

Fig 6. Spatial attention feature weighting.

https://doi.org/10.1371/journal.pone.0312856.g006

Fig 7. Time attention features weighted.

https://doi.org/10.1371/journal.pone.0312856.g007

PLOS ONE LSTM-based estimation of lithium-ion battery SOH using data characteristics and spatio-temporal attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0312856 December 26, 2024 9 / 20

https://doi.org/10.1371/journal.pone.0312856.g006
https://doi.org/10.1371/journal.pone.0312856.g007
https://doi.org/10.1371/journal.pone.0312856


b
i
ðkÞ ¼

b
i
1
ðkÞ

XM

i¼1

b
i
1
ðkÞ

; 1 � i � M ð11Þ

cðkÞ ¼
XM

i¼1

b
i
ðkÞxsiðkÞ; 1 � i � M ð12Þ

Where b
i
1
ðkÞ is the weight of the i-th feature at time k, and b

M
1
ðkÞ is the optimized weight of the

M-th feature at time k. The normalized value βi(k) becomes the temporal attention weight, and

c(k) is the final feature input.

Long-term trend feature extraction

To address the trend-like nonlinearity of the degradation sequence, which initially declines

gradually and then rapidly, the degradation data is divided into trend data and short-term

data. Trend data should reflect the characteristic of initially gradual and then rapid trends.

Due to fluctuations caused by operational differences, the historical capacity exhibits signifi-

cant variability, and a single capacity value cannot adequately express the trend pattern. There-

fore, in this section, multiple average capacity values are selected as trend data L(k):

LðkÞ ¼
1

M

XM

i¼1

Qðk � iÞ ð13Þ

Where Q(k−i) is the actual capacity. The LSTM model, with the short-term features c(k), trend

data L(k), estimated capacity ~Qðk � 1Þ, and actual capacity Q(k−1) as inputs, is used to esti-

mate the subsequent capacity ~QðkÞ.

~QðkÞ ¼ fl½cðkÞ; LðkÞ;Qðk � 1Þ; ~Qðk � 1Þ� þ bv ð14Þ

Where fl(•) represents the LSTM unit, and bv is the bias vector.

Algorithm description

The soft sensor model architecture based on STL-LSTM is shown in Fig 8, and the architecture

is divided into three steps: (1) A complete lithium battery dataset is selected from the same

Fig 8. Soft sensor modeling framework based on STL-LSTM.

https://doi.org/10.1371/journal.pone.0312856.g008
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type of lithium batteries with a full SOH evolution dataset. Health factors F2(k), F3(k), the

actual capacity Q(k), and the trend feature L(k) at time k are extracted from this dataset.

k = 1,. . .. . .,N1, where k represents the cycle number, and N1 represents the number of cycles

experienced when the capacity degrades to 70%. The STL-LSTM model is trained on this data-

set to initially determine the network parameters; (2) The local lithium battery dataset refers to

the battery currently in use. Health factors F2(k), F3(k), Q(k) and L(k) are extracted from its

historical dataset. k = 1,. . .. . .,N2 where k represents the cycle number, and N2 represents the

selected cycle number used as training samples. The STL-LSTM model is trained on this data

to optimize the network hyperparameters; (3) Based on F2(k), F3(k), Q(k−1) and L(k), the final

capacity ~QðkÞ is estimated. The algorithm description of STL-LSTM is shown in Table 2.

Experiment and analysis

Data preparation

To validate the effectiveness of the proposed LSTM model based on the fusion of data charac-

teristics and spatio-temporal attention mechanism (STL-LSTM) in enhancing the prediction

Table 2. Description of STL-LSTM algorithm.

Algorithm: LSTM model based on data characteristics and space-time attention machine

Input: The input variable xðkÞ ¼ ½x1ðkÞ; x2ðkÞ; � � � ; xTðkÞ� represents the k-th cycle’s short-term data, where T

represents the dimensionality of the short-term data. L(k) represents the real capacity value at the k-th cycle.

Output: The output variable ~QðkÞ represents the SOH estimated value for the k-th cycle’s capacity.

1.Algorithm: Long Short-Term Memory Network Based on Temporal Attention Mechanism(STL-LSTM)

procedure:

1.Standardize the data set

2.Initialize the network parameters, including the weight matrix W and the bias vectors U,V

3.Execute for each time step T = 1 to k:

a.Short-time feature extraction:

For each time step k = 1 to T
i. Calculate the activation values of the input, forget, and output gates

Input gate: ik ¼ sðWi½sðk � 1Þ; cðkÞ� þ biÞ
Forget Gate: f ðkÞ ¼ sðWf ½sðk � 1Þ; cðkÞ� þ bf Þ
Output gate: hðkÞ ¼ sðWo½sðk � 1Þ; cðkÞ� þ boÞ
Calculate cell state
~Qk ¼ tanhðWc½sðk � 1Þ; cðkÞ� þ bcÞ
Update the hidden status

dðkÞ ¼ fkdðk � 1Þ þ ik ~Ck
b. Spatial attention mechanism:

For each time step k = 1 to T:

i.Calculate the time attention value at moment k: xsðkÞ ¼
XT

i¼1

aiðkÞxiðkÞ; 1 � i � T

ii.The time weighted sum of all encoder hidden states is calculated to obtain the final feature input:

aiðkÞ ¼ expjxiðkÞ� Qðk� 1Þj

XT

i¼1

expjxiðkÞ � Qðk � 1Þj

; 1 � i � T

b. Temporal attention mechanism:

i.Calculate the time attention value of the hidden state at time k:

b
i
1
ðkÞ ¼ expjxsiðkÞ � sðk � 1Þj; 1 � i � M � 1

ii.Final feature input c(k)

cðkÞ ¼
XM

i¼1

b
i
ðkÞxsiðkÞ; 1 � i � M

c. Capacity estimation:

i.The average capacity is trend data L(k)

LðkÞ ¼ 1

M

XM

i¼1

Qðk � iÞ

ii. c(k), L(k), ~Qðk � 1Þ, Q(k−1) as input of LSTM model as input, Estimate subsequent capacity ~QðkÞ
~QðkÞ ¼ fl½cðkÞ; LðkÞ;Qðk � 1Þ; ~Qðk � 1Þ� þ bv

https://doi.org/10.1371/journal.pone.0312856.t002
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accuracy of State of Health (SOH) for lithium-ion batteries, data from the NASA battery data-

base was used. Within the dataset, battery models and time points F2(k), F3(k), Q(k−1) and L
(k) were selected to estimate capacity ~QðkÞ. Specifically, batteries B5 to B7 contributed data for

168 cycles each, and the complete datasets from batteries B5 and B6 were utilized as focal

study datasets for model training. The STL-LSTM model was trained on SOH databases indi-

cating capacity degradation from 50% to 70%, showing a relatively higher error rate when pre-

dictions did not reach the anticipated range [30]. To evaluate the performance of the

algorithm, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used as

evaluation metrics, defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðQ̂ðkÞ � QðkÞÞ2
s

ð15Þ

MAE ¼
1

n

Xn

i¼1

jQ̂ðkÞ � QðkÞj ð16Þ

Where Q̂ðkÞ is the predicted value for the k-th cycle, and Q(k) is the actual value for the k-th

cycle.

Algorithm performance comparison under different characteristics

To verify the impact of different features on the capacity estimation performance of the LSTM

model, this section selects three features that are highly correlated with the capacity at time k:

the capacity Q(k−1) at time k−1, and the health factors F2(k), F3(k). Three models were

designed accordingly: the first method uses Q(k−1) as the input feature, the second method

uses F2(k), F3(k) as the input features, and the third method uses Q(k−1), F2(k), F3(k) as input

features. For the first method, Q(k−1) is highly correlated with Q(k) when the battery capacity

changes slowly. However, when the battery has not been used for an extended period, a capac-

ity regeneration phenomenon occurs, and there is a significant difference between Q(k−1) and

Q(k), manifested as sharp peaks in the battery capacity curve. For the second method, since the

health factors F2(k), F3(k) are highly related to the charged capacity at time k, a large charged

capacity necessarily means a large discharged capacity. Therefore, theoretically, using F2(k),

F3(k) as inputs should result in better performance, especially in estimating the sharp peaks

during capacity regeneration. For the third method, which selects three features, theoretically,

Q(k−1) should benefit capacity estimation performance in regions of slow capacity change,

while F2(k), F3(k) should improve peak capacity estimation.

To verify and compare the performance of the three methods, this section selects batteries

B5 and B6 from the NASA dataset, with the first 50% and 70% of the battery data used as the

training set, and the remaining 50% and 30% as the test set. The experimental results are

shown in Figs 9 and 10, Table 3. From the figures and table, the following can be observed:

1)Methods 1 and 2 provide estimated capacities that are close to the actual capacity when

the battery capacity is in a region of slow change. However, when the capacity is in a sharp

peak region, Method 1 shows a larger estimation error compared to the actual capacity,

whereas Method 2 has a significantly smaller error, which is consistent with the theoretical

analysis. Method 3 performs worse than Methods 1 and 2 in regions of slow capacity change

due to the interference among the simple combinations of the three features, which negatively

impacts the estimation accuracy.

2)When using the first 50% and 70% as the training set, the performance metrics of the

three methods ranked from best to worst are: Method 2, Method 1, and Method 3. However,
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Fig 9. B5 battery capacity estimation performance comparison of three methods. (a) The first 50% is the training

set (b)The first 70% is the training set.

https://doi.org/10.1371/journal.pone.0312856.g009
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Fig 10. B6 battery capacity estimation performance comparison of three methods. (a)The first 50% is the training

set (b)The first 70% is the training set.

https://doi.org/10.1371/journal.pone.0312856.g010
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with an increase in the training set size, the performance metrics of all three methods signifi-

cantly improve, indicating that expanding the training set enhances estimation performance.

Impact of different modules on algorithm performance

To verify the impact of spatio-temporal attention and long-term trend features on algorithm

performance, this paper designs three methods: the SOH estimation model based on spatial

attention mechanism (SA-LSTM), the SOH estimation model based on spatio-temporal atten-

tion mechanism (ST-LSTM), and the method proposed in this paper, STL-LSTM. In the SA

model, the temporal attention mechanism module is removed from the original STL-LSTM

model, while in the ST-LSTM model, the long-term trend feature input is removed [50]. To

verify and compare the performance of the three methods, the NASA dataset with batteries B5

and B6 was selected, with the first 50% and 70% of the battery data used as the training set and

the remaining 50% and 30% as the test set. The experimental results are shown in Figs 11 and

12, Table 4. From the figures and table, the following can be observed:

1. In the capacity regeneration region, the SA-LSTM model performs best at time k+1. This is

because the SA at time k+1 integrates the health factors F2 and F3, which are highly corre-

lated with the capacity Q, making it beneficial for estimating Q. However, this also exacer-

bates dynamic fluctuations, leading to greater estimation performance variation after

model training. At time k+2, the performance of STL-LSTM is close to that of SA-LSTM

because the temporal attention mechanism introduces adaptive weighting, increasing the

fusion weight of F2 and F3 at the most recent time when the F2 and F3 values show a trend

of increase or decrease.

2. In the early slow-changing region, the performance of ST-LSTM is significantly better than

that of SA-LSTM, and the performance of ST-LSTM is close to that of STL-LSTM.

3. In the later stages, the overall performance of STL-LSTM is closer to the actual capacity and

is superior to STL-LSTM. This is because the overall trend feature was introduced, ensuring

that the model can achieve both short-term and long-term fusion estimation.

Performance comparison of different algorithms

To compare the superiority of the STL-LSTM algorithm proposed in this paper, the main-

stream LSTM algorithm was selected for comparison, using the NASA datasets for batteries B5

and B6. The first 70% of the battery data was used as the training set, and the remaining 30%

as the test set. The experimental results are shown in Table 5. From the table, it can be seen

that the STL-LSTM algorithm outperforms the traditional algorithm in terms of performance

in short-term regions, regeneration regions, and later-stage regions.

Table 3. Comparison of capacity estimation performance metrics for two batteries using three methods.

Battery Training Set Method 1

RMSE/MAE

(10−2)

Method 2

RMSE/MAE

(10−2)

Method 3

RMSE/MAE

(10−2)

B0005 50% 1.49/1.26 1.45/1.24 1.60/1.46

B0005 70% 0.59/0.36 0.48/0.36 0.89/0.83

B0006 50% 2.00/1.60 1.76/1.30 2.15/1.86

B0006 70% 1.34/1.25 1.50/1.10 1.78/1.46

https://doi.org/10.1371/journal.pone.0312856.t003
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Fig 11. Comparison of capacity estimation performance for battery B5 using three methods. (a)The first 50% is the

training set (b)The first 70% is the training set.

https://doi.org/10.1371/journal.pone.0312856.g011
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Fig 12. Comparison of capacity estimation performance for battery B6 using three methods. (a)The first 50% is the

training set (b)The first 70% is the training set.

https://doi.org/10.1371/journal.pone.0312856.g012
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Conclusion

Conventional LSTM-based SOH estimation methods do not account for the trend-like nonlin-

earity in battery SOH degradation sequences and the significant dynamic variations between

samples. This paper proposes an LSTM-based lithium battery SOH estimation method that

incorporates data characteristics and spatio-temporal attention. Considering the trend-like

nonlinearity of degradation sequences, which starts gradually and then accelerates, the input

features are divided into trend and non-trend features. The trend data reflects the gradual-to-

rapid change in the trend, while the non-trend features include health factors and the actual

capacity at the previous time step. To address the significant dynamic variations between sam-

ples, especially the issue of capacity regeneration, a spatio-temporal attention mechanism

structure for multidimensional non-trend features is designed to extract spatio-temporal fea-

tures. Subsequently, an LSTM model is built using trend features, spatio-temporal features,

actual capacity, and other inputs to estimate the capacity. Finally, the model is trained and

tested on different datasets. Experimental results demonstrate that STL-LSTM outperforms

traditional algorithms in short-term regions, regeneration regions, and later-stage regions.
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