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ABSTRACT
Background: Between 2020 and 2022, countries used a range of different public health and social measures (PHSMs) to reduce 
the transmission of SARS- CoV- 2. The impact of these PHSMs varied as the pandemic progressed, variants of concern (VOCs) 
emerged, vaccines rolled out and acceptance/uptake rates evolved. In this study, we assessed the impact of PHSMs in the World 
Health Organization (WHO) European Region during VOC phases.
Methods: We relied on time series data on genome sequencing, PHSMs, health outcomes and physical contacts. Panel regression 
models were used to assess the association between PHSMs and SARS- CoV- 2 transmission (approximated using time- varying repro-
duction numbers). The interpretation of these regression models was assisted by hierarchical clustering, which was used to detect the 
temporal co- occurrence of PHSMs. Generalised linear models were used to check if PHSMs are associated with physical contacts.
Results: We identified four phases based on the dominating VOC in the WHO European Region: wild type (before early 2021), 
Alpha (early to mid- 2021), Delta (mid- to- late 2021) and Omicron (after late 2021). ‘School closure’, ‘stay- at- home requirement’ 
and ‘testing policy’ were consistently associated with lower transmission across VOC phases. The impact of most PHSMs varied 
by VOC phases without clear increasing or decreasing trends as the pandemic progressed. Several PHSMs associated with lower 
transmission were not associated with fewer physical contacts.
Conclusions: The impact of PHSMs evolved as the pandemic progressed—although without clear trends. The specific mecha-
nisms by which some PHSMs reduce SARS- CoV- 2 transmission require further research.

1   |   Introduction

The ongoing COVID- 19 pandemic has had a large health bur-
den around the world [1]. Most countries have implemented a 

wide range of public health and social measures (PHSMs) in 
response, defined by the World Health Organization (WHO) as 
‘nonpharmaceutical interventions implemented by individuals, 
communities, and governments during health emergencies to 
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reduce the risk and scale of transmission of infectious diseases 
[2]’, such as COVID- 19.

These PHSMs are generally designed to directly or indirectly re-
duce the frequency of physical contacts on which SARS- CoV- 2 
relies to transmit. PHSMs may have negative consequences on 
economic growth, mental well- being and individual autonomy. 
Hence, understanding the impacts of different PHSMs is crucial 
both to retrospectively assess our response to the pandemic and 
to prepare for future pandemics.

Studies have used statistical models to look for temporal asso-
ciations between PHSM intensity and markers of SARS- CoV- 2 
spread. However, this evidence has primarily focused on the im-
pact of PHSMs over the initial epidemic waves, roughly spanning 
over the first three quarters of 2020 [3–6]. There are several rea-
sons why these estimates of PHSM impacts may not be extrapo-
lated after late 2020. First, several variants of concerns (VOCs) 
emerged as the dominating strains regionally or globally. These 
strains may be more transmissible and may respond differently 
to existing immunity (either vaccine-  or infection- induced) com-
pared to the strains which were dominant in early 2020. The 
changes in transmissibility may alter the implementation and 
impact of PHSMs drastically. Second, several COVID- 19 vaccines 
were approved beginning in late 2020 and subsequently achieved 
high coverage in some parts of the world [7]. Vaccination may 
change the impact of PHSMs because SARS- CoV- 2 is not able to 
transmit as efficiently in a highly vaccinated population. High 
vaccine coverage may also allow a reduction in the stringency of 
PHSMs implemented by governments. Finally, the acceptance 
and uptake of PHSMs may change over time, driven by a wide 
range of factors, including familiarity with certain PHSMs, the 
availability of social security systems, the capacity of healthcare 
systems, risk perceptions and trust in authorities.

The WHO announced the end of COVID- 19 as a public health 
emergency of international concern in May 2023. There is a 
large volume of data on PHSM intensity systematically tracked 
across the world between 2020 and 2022, which provides us 
with an opportunity to retrospectively appraise the impact of 
PHSMs to inform future pandemic preparedness and outbreak 
response planning for both COVID- 19 and other pathogens. 
Here, we provide such appraisal specific to VOC phases for the 
WHO European Region, where data on PHSMs and COVID- 19 
cases are relatively complete and where PHSM definitions are 
relatively comparable. We hypothesised that while PHSMs 
are effective in reducing SARS- CoV- 2 transmission, the effec-
tiveness changed as VOCs emerged and PHSM uptake varied. 
We further hypothesised that the effect mechanisms of these 
PHSMs involve reducing the number of physical contacts.

2   |   Methods

In this study, we used panel regression models to estimate the 
impact of PHSMs in reducing transmission of SARS- CoV- 2. We 
divided the pandemic into four distinct phases according to the 
dominant VOC (i.e., wild type, Alpha, Delta and Omicron). We 
also used generalised linear models to explore the association 
between PHSMs and physical contacts since physical contacts 
are believed to be a mediator along the causal pathway that 

PHSMs take to reduce SARS- CoV- 2 transmission. The interpre-
tation of both regression models was assisted by temporal hi-
erarchical clustering, which was used to identify the temporal 
co- occurrence of PHSMs.

2.1   |   Data Sources

There are 53 Member States in the WHO European Region1—
we could not include all Member States for a range of reasons 
that we will elaborate on in this section. We first estimated the 
time- varying reproduction number (Rt) in each country to char-
acterise the intensity of SARS- CoV- 2 transmission using daily 
reported case counts extracted from Our World in Data [1]. This 
metric measures the number of secondary cases infected by an 
individual index case. We used a well- established approach to 
estimate Rt [8], which has been described in detail elsewhere 
[9] and been used to assess the intensity of SARS- CoV- 2 trans-
mission [3, 10, 11]. In brief, this approach relied on deconvolu-
tion and known delay distributions (e.g., incubation period and 
onset- to- report delay) to reference cases back to their probable 
date of infection. The temporal changes in inferred daily infec-
tions (as opposed to observed reported cases) reflect the magni-
tude of Rt. The epidemiologic and healthcare system parameters 
we used (e.g., reporting delay, incubation period and generation 
time) were from the literature [12–14]. The Rt values used in this 
study have been visualised in Figures S1–S6.

The starting and ending dates of each VOC phase were deter-
mined using genome sequencing data from the Global Initiative 
on Sharing All Influenza Data (GISAID), accessed through the 
European Centre for Disease Prevention and Control [15]. VOC 
data have been collected weekly in this database. For the baseline 
analysis, we assume that a VOC phase starts if that VOC accounts 
for more than 30% of the samples tested that week. We varied this 
threshold from 10% to 50% with 10% increments as sensitivity 
analyses. We only kept country- week combinations with more 
than 100 samples to mitigate the chance of random errors. With 
this criterion, the remaining dataset involved 30 of 53 countries 
in the WHO European Region. The same VOC phase definitions 
were used for the entire region (i.e., not country- specific).

We downloaded the data on PHSMs from the Oxford COVID- 19 
Government Response Tracker (OxCGRT, v.12). We focused 
only on the PHSMs that we believe to have direct short- term 
causal pathways to reducing the transmission of SARS- CoV- 2. 
Thus, PHSMs such as ‘investment in vaccines’ and ‘interna-
tional support’ were not included. Thirteen PHSMs belonging 
to three categories (i.e., ‘Closure & Containment’, ‘Economic 
Response’ and ‘Public Health & Health System Reports’) were 
included in the analysis (see Table 1). All PHSMs were orig-
inally measured using ordinal categorical variables in the 
OxCGRT database. We rescaled them linearly to continuous 
variables between 0 and 1 to allow for comparability in the 
context of this study.

We further adjusted for COVID- 19 vaccination in the panel re-
gression analysis. COVID- 19 vaccination may change the impact 
of PHSMs by modifying the acceptance and uptake of PHSMs. 
National- level coverage of at least one dose of COVID- 19 was 
obtained from Our World in Data [7]. In the context of this study, 
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we defined vaccine coverage using ‘people vaccinated (with >= 
1 dose of COVID- 19) per hundred’ as we assume that the accep-
tance and uptake will start shifting as soon as individuals get 
vaccinated. Data on Rt, PHSMs and COVID- 19 vaccination si-
multaneously exist for 47 of 53 countries in the WHO European 
Region (apart from Armenia, Belarus, Montenegro, North 
Macedonia, Tajikistan and Turkmenistan), which were used in 
the panel regression models in this study.

We used the average number of daily reported contacts for all 
age groups as reported in the CoMix survey. CoMix is a mul-
ticountry study using weekly online surveys to collect data on 
individuals' physical contact patterns between the beginning of 
the pandemic and the end of 2022 [16, 17]. It was active for at 
least some of the time in more than 20 countries. In the context 

of this study, we only used contact data from countries with 
more than 3 months of contact history (i.e., 12 weeks)—longer 
time series are necessary for our statistical analysis associating 
PHSMs with physical contacts. CoMix survey results in Belgium, 
Finland, Germany, Lithuania, Malta, Netherlands (Kingdom of 
the), Switzerland and the United Kingdom were included in this 
part of the analysis.

2.2   |   Statistical Analysis

We applied hierarchical clustering techniques to the time se-
ries data of PHSMs to assess to what extent they were imple-
mented with similar timing and intensity. We are interested in 
such temporal clustering of PHSMs as the effects of PHSMs that 
were always implemented simultaneously would not be inde-
pendently identifiable. We used Ward's method, which seeks to 
minimise variance between clusters, to define the clusters and 
the Euclidean distance between time series to define the tem-
poral distance between PHSMs [18, 19]. The hierarchical clus-
tering process produced dendrograms, which are tree- shaped 
graphs indicating if certain PHSMs belong to the same clusters. 
The statistical significance of clusters was assessed using mul-
tiscale bootstrapping (n = 10,000) and approximately unbiased 
and bootstrap probability p- value thresholds of < 0.05.

We were not interested in cases where PHSMs were only similar 
in terms of timing. Therefore, we pruned the dendrograms re-
sulting from the hierarchical clustering process. Since the objec-
tive function using Ward's method is the sum of squared errors, 
the pruning threshold of the dendrograms needed to be context- 
specific. Thus, in this study, we pruned the dendrograms of the 
wild type and Omicron phases at 50 and of the Alpha and Delta 
phases at 25, broadly aligning with the lengths of these time 
series (Table 2).

Linear models for panel data were used to investigate the asso-
ciation between PHSMs and SARS- CoV- 2 transmission (proxied 
approximated by median Rt) over distinct VOC phases [20]. The 
model structure can be expressed as follows:

Rtit = �i +
∑

�Xit + �it

TABLE 1    |    Taxonomy of public health and social measures used in 
this study.

PHSM broad category PHSM name

Internal containment and 
closure

School closures

Workplace closures

Cancellation of public events

Limits on gathering sizes

Closure of public transport

Stay- at- home requirement

Restrictions on 
internal movement

International travel controls

Economic policies Income support

Debt/contract relief

Health system policies Public information campaign

Testing policy

Contact tracing

Facial covering policy

TABLE 2    |    Date ranges for the different variant of concern phases.

Variant of 
concern phase Phase start (uncertainty range) Phase end (uncertainty range)

Duration (days) 
(uncertainty range)

Wild type 2020- 01- 01 2021- 01- 31 (2021- 01- 03 to 2021- 02- 15) 404 (369–411)

Alpha 2021- 02- 01 
(2021- 01- 04 to 2021- 02- 16)

2021- 06- 13 
(2021- 06- 07 to 2021- 06- 28)

133 (133–154)

Delta 2021- 06- 14 
(2021- 06- 08 to 2021- 06- 29)

2021- 12- 19 (2021- 12- 13 to 2021- 12- 27) 182 (182–189)

Omicron 2021- 12- 20 (2021- 12- 12 to 2021- 12- 28) 2022- 12- 31 376 (369–383)

Note: The date ranges correspond to the baseline scenario, in which a variant of concern phase was assumed to have started when that variant accounted for more than 
30% of all samples tested. The uncertainty range was obtained by varying this threshold between 10% and 50%, with 10% increments. There was no uncertainty around 
the starting date of the wild type phase or the ending date of the Omicron phase as these are constrained by the time horizon set for this analysis. These data ranges 
were based on genomic sequencing data available in 30 of 53 countries in the WHO European Region. More specific data inclusion criteria can be found in Section 2 
above.
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where Rtit is the Rt of country i at time t, �i is a country- specific 
intercept (assumed to remain constant over each phase), 

∑

�Xt 
represents the PHSMs and their corresponding coefficients and 
�it is the error term.

The above analytical framework requires the assumption of a 
causal link between the implementation of PHSMs and SARS- 
CoV- 2 transmission in order to inform policy about interventions. 
From a public health management perspective, PHSMs have 
been designed to target the transmission pathways. In the case 
of COVID- 19 specifically, PHSMs have been designed to decrease 
effective contacts (i.e., physical contacts that could lead to infec-
tion). In this study, we further investigated to what degree PHSMs 
could influence physical contacts and how these associations 
varied over different VOC phases. A generalised linear model 
assuming Gamma distribution (with an ‘inverse’ link) was used. 
We included the VOC phase as an independent variable—both on 
its own and with interaction with PHSMs. Additional indepen-
dent variables included country- specific indicators (for country- 
specific intercepts), contact settings (e.g., school and workplace) 
and PHSMs (apart from their interaction with VOC phases).

3   |   Results

3.1   |   Overview of Changes in PHSMs by 
VOC Phases

Based on sequencing data for the WHO European Region, we 
defined the date ranges of VOC phases as presented in Table 2. 
A detection threshold of 30% was used to identify the beginning 
of each phase. Varying this detection threshold from 10% to 50% 
led to changes in VOC phase markers by up to 4 weeks. The du-
rations of the Alpha and Delta phases were substantially shorter 
than those of the wild type and Omicron phases.

Highly disruptive PHSMs, such as the ‘closure of public trans-
port’ and ‘restrictions on internal movements’, were among the 
least frequently used measures across VOC phases (Figure  1). 
The least disruptive PHSMs, such as ‘public health information 
campaigns’ and ‘testing policies’, came into place during the 
wild type or Alpha phases and have stayed at roughly the same 
level of intensity across VOC phases. Other PHSMs came into 
place during the wild type or Alpha phases and were gradually 
phased out during the Delta or Omicron phases.

The proportion of the population who have been vaccinated with 
at least one dose of COVID- 19 vaccines in the WHO European 
Region has substantially increased since the vaccines became 
available from the end of 2020 onwards (Figure 2). Most of such 
increases occurred during the Alpha and Delta phases. The fast-
est adopters (e.g., Israel and United Kingdom) received 60% cov-
erage by the end of the Alpha phase. The coverage of at least one 
dose of COVID- 19 vaccines remained relatively low (<50%) for 
13 countries a year into the Omicron phase.

3.2   |   Temporal Clustering Between PHSMs

The VOC phase with the highest degree of temporal clustering 
between PHSMs was the Omicron phase (Figure  3). During 

this phase, 12 of 15 PHSMs were members of a temporal clus-
ter, and the largest temporal cluster contained six PHSMs, 
all of which belong to the ‘Closure & Containment’ category. 
This was a period of time when these PHSMs were slowly 
transitioned out in the WHO European Region (Figure  1). 
The VOC phase with the lowest degree of temporal cluster-
ing between PHSMs was the Delta phase. Only two PHSMs, 
‘workplace closure’ and ‘school closure’ were in the same 
temporal cluster. In fact, these two PHSMs were in the same 
temporal cluster throughout the entire time series considered. 
The largest cluster size was two in both the Delta and the wild 
type phases—even if these PHSMs were in a temporal cluster, 
their effects would be relatively straightforward to interpret 
as only one other effect estimate would need to be taken into 
consideration. ‘Contact tracing’ and ‘vaccination’ were never 
in a temporal cluster with any other PHSMs. All observations 
made above were robust to changing thresholds that define 
VOC phases (Figures S7–S10).

3.3   |   Results From the Panel Regression Models

The PHSMs with consistently significantly negative effect esti-
mates on Rt were ‘school closure’, ‘stay- at- home requirement’ 
and ‘testing policy’ (Figure 4). The PHSMs with either negative 
or null effect estimates on Rt further included ‘workplace clo-
sure’ and ‘closure of public transport’. These effect estimates 
imply that the implementation of these PHSMs may be associ-
ated with lower Rt.

Some PHSMs have positive effect estimates. In other words, 
the implementation of these PHSMs was associated with 
higher Rt. Positive effect estimates observed in a temporal 
cluster may reflect residual confounding. Therefore, only pos-
itive estimates outside temporal clusters may indicate true 
positive effect estimates. PHSMs with positive effect estimates 
include ‘debt/contract relief’ during the wild type phase; ‘re-
strictions on internal movement’ during the Alpha phase; ‘re-
strictions on gatherings’, ‘international travel controls’ and 
‘income support’ during the Delta phase; and ‘contact tracing’ 
during the Omicron phase.

While we observed substantial changes in terms of effect esti-
mates over different VOC phases, we did not find substantial 
linear trends. In other words, the coefficients of most PHSMs did 
not consistently increase or decrease as the pandemic progressed. 
The only exceptions were ‘Debt/contract relief’ and ‘testing pol-
icy’—the coefficients of these PHSMs became more negative as the 
pandemic progressed. All observations made above were robust to 
changing thresholds that define VOC phases (Figures S11–S14).

3.4   |   The Impact of PHSMs on Physical Contacts

The only PHSM with consistently significantly negative effect 
estimates on physical contacts was the ‘stay- at- home require-
ment’ (Figure 5). The PHSMs with either negative or null effect 
estimates on physical contacts were ‘school closure’, ‘restriction 
on gatherings’, ‘closure of public transport’, ‘restrictions on in-
ternal movement’ and ‘international travel controls’. There 
was not sufficient variation in ‘public information campaigns’ 
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to generate any reliable effect estimates on physical contacts 
throughout the pandemic. There was not sufficient variation in 
7 of 15 PHSMs to generate any reliable effect estimates on phys-
ical contacts during the Omicron phase.

‘Face coverings’ and ‘income support’ were associated with 
higher numbers of physical contacts during the wild type phase. 
‘Face covering’, ‘testing policy’ and ‘contact tracing’ were associ-
ated with higher numbers of physical contacts during the Alpha 
phase. ‘School closure’, ‘workplace closure’, ‘testing policy’ and 
‘debt/contract relief’ were associated with higher numbers of 
physical contacts during the Delta phase.

Similar to the results from the panel regression models, we did 
not find consistent increases or diseasing among coefficients of 
most PHSMs as the pandemic progressed. The only exceptions 
were observed for ‘stay- at- home requirement’ and ‘testing pol-
icy’. As the pandemic progressed, ‘stay- at- home requirement’ 
was associated with lower frequencies in physical contacts, 
while ‘testing policy’ was associated with higher frequencies in 
physical contacts.

The direction of the association between PHSMs and Rt and 
the direction of the association between PHSMs and the fre-
quency of physical contact were not necessarily the same. 

FIGURE 1    |    Prevalence of public health and social measures in the WHO European Region by variant of concern phases. Colours indicate general 
categories of public health and social measures. The numbers of intermediate levels between 0 and 1 differ by PHSM as they are rescaled from 
categorical variables with different levels between ‘not implemented’ and ‘implemented at the highest intensity possible.’
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‘Stay- at- home requirement’ was associated with fewer phys-
ical contacts and lower Rt. ‘Testing policy’, however, was as-
sociated with more physical contacts but lower Rt. For other 
PHSMs, the signals were complex. The cluster of ‘school clo-
sure’ and ‘workplace closure’ was associated with lower Rt 
as well as fewer physical contacts during the wild type and 
Alpha phases; during the Delta phase, it was associated with 
lower Rt but more physical contacts. Given that the results of 
‘cancellation of public events’ and ‘facial covering’ need to be 
interpreted in their respective temporal clusters, we found no 
PHSM that was associated with both higher Rt and more phys-
ical contacts. ‘International travel controls’ were associated 
with higher Rt and fewer physical contacts. Compared to the 

association between PHSM and Rt, the association between 
PHSM and physical contacts by VOC phase is more sensitive 
to the detection threshold that defines when a VOC phase be-
gins or ends (Figures S15–S18).

4   |   Discussion

In this study, we used hierarchical cluster analysis, panel re-
gression models and generalised linear models to examine the 
association between PHSMs, the transmission of SARS- CoV- 2 
and physical contacts in the WHO European Region [21]. 
While single- country analyses are able to factor in greater 

FIGURE 2    |    Coverage of > = 1 dose of COVID- 19 vaccine in the WHO European Region by country (grey lines) and across the entire region 
(green line). The solid vertical lines indicate the start of different variants of concern phases given the baseline scenario; the dashed lines indicate the 
uncertainty around the start/end of these phases. These uncertainty ranges are presented in Table 2.

FIGURE 3    |    Temporal clusters by variant of concern phases. Dashed red boxes denote statistically significant temporal clusters based on 
bootstrapping.
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local contexts  [22, 23], multicountry studies such as ours 
draw more data points from a greater variety of contexts, thus 
helping to augment the body of literature with generalisabil-
ity, which is valuable to regional public health planning. The 
panel regression models we used (also referred to as longitu-
dinal models) are one of several quantitative approaches that 
the research community has relied on to assess the impact 
of PHSMs [24, 25]. In this study, the interpretation of these 
models were further assisted by hierarchical cluster analysis, 
which helped us pick out potential structural confounding [3]. 
The results from the generalised linear models shed further 
light on the effect mechanism of PHSMs on Rt through physi-
cal contact changes, which addresses one of the key technical 
challenges of the field [26].

We looked at four distinct phases dominated by the wild type 
virus and the Alpha, Delta and Omicron variants to explore if 

the impact of PHSMs changed. Due to the changing VOCs and 
PHSM acceptance and uptake, we hypothesised that the impact 
of PHSMs would also have changed. The existing literature look-
ing at the link between PHSMs and SARS- CoV- 2 transmission 
in a multicountry context focuses on the pre- Omicron phases, 
with the majority of the studies we found focusing on the first 
epidemic waves [4, 5].2 To our knowledge, our study is the first 
multicountry analysis to extend the study period to the Omicron 
phase (i.e., beyond the end of 2021).

There were significant temporal clustering between PHSMs 
in all VOC phases explored. Relative to other VOC phases, the 
Omicron phase had the largest number of PHSMs belonging to 
significant temporal clusters (12 of 15) and the largest number 
of PHSMs within a given temporal cluster (n = 6), making the 
isolation of effects for specific PHSMs challenging. This was 
a period when many PHSMs transitioned out. Consequently, 

FIGURE 4    |    Effects of PHSMs on Rt by variants of concern phases.
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FIGURE 5    |    Effects of PHSMs on the number of physical contacts by variant of concern phases. We do not present effect estimates for ‘school 
closing’, ‘stay- at- home requirements’, ‘testing policy’ and ‘facial covering’ during the Omicron phase or the ‘public information campaign’ as there is 
enough variation in data to generate reliable inferences. For instance, the ‘public information campaign’ was active in all countries considered in this 
analysis during the entire study period; therefore, we do not have sufficient information to conclude the outcome when it is not active.
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the interpretation of the panel regression analysis during this 
phase requires the most caution. The Delta phase had the small-
est number of PHSMs in significant temporal clusters (2 of 15). 
During the wild type and Delta phases, the largest temporal 
clusters only contained two members, making it less challeng-
ing to isolate the effects of individual PHSM.

Previous studies have suggested that workplace closures, restric-
tions on gatherings and cancellation of public events are among 
some of the most effective PHSMs at reducing the transmission 
of SARS- CoV- 2 [27–32]. Research with a greater focus on the 
European Region adds to this list ‘school closures’, travel restric-
tions and testing [33–35]. However, as we mentioned above, all 
of these studies have been based on pre- Omicron or even wild 
type only phases. In this study, we found that ‘school closure’, 
‘stay- at- home requirements’ and ‘testing policy’ were consis-
tently associated with lower Rt throughout the entire pandemic 
phase we considered. ‘Workplace closure’ and ‘closure of pub-
lic transport’ had either negative or null effect estimates on Rt. 
While there were changes in the effect estimates of PHSMs on 
predicting Rt, there was no consistently increasing or decreasing 
trend over time among the coefficients.

A small number of PHSMs, after factoring in temporal clustering 
(or the lack of), were associated with higher Rt during specific 
VOC phases. These results, while surprising, are not impossi-
ble. For example, ‘contact tracing’ is associated with higher case 
identification, which may appear as an increase in transmission; 
‘restrictions on internal movement’ may modify local contact 
patterns as people spend more time around their residential area. 
These results need to be further validated using different datasets, 
and the underlying effect mechanisms need to be investigated.

Only the ‘stay- at- home requirement’ was consistently associ-
ated with fewer physical contacts. ‘School closure’, ‘restriction 
on gatherings’, ‘closure of public transport’, ‘restrictions on in-
ternal movements’ and ‘international travel controls’ were not 
associated or associated with fewer physical contacts. Similar 
to the models above, although there were changes in the effect 
estimates of PHSMs on predicting physical contacts, there was 
no clear increasing or decreasing trend over time among them. 
A small number of PHSMs, during specific VOC phases, were 
associated with higher numbers of physical contacts.

Most PHSMs were designed to reduce the transmission of 
SARS- CoV- 2 in the community by reducing physical contact. 
Our results showed that only the ‘stay- at- home requirement’ 
consistently showed associations with both lower Rt and fewer 
physical contacts across all VOC phases. During the Delta 
phase, ‘testing policy’ and ‘Debt/contract relief’ were associated 
with lower Rt and more physical contacts. These PHSMs may 
have reduced the frequency of ‘effective contacts’ (i.e., contacts 
that resulted in transmission) and not general physical contacts. 
For ‘testing policy’ specifically, this may reflect individual deci-
sions to socialise based on their test results [36]. These PHSMs 
may be able to reduce transmission without disrupting people's 
day- to- day lives, potentially making them ideal public health in-
terventions in future pandemics.

‘School closure’ and ‘workplace closure’ consistently appeared 
in the same temporal cluster throughout the pandemic. During 

the initial phases (i.e., wild type and Alpha), they were associ-
ated with lower Rt and fewer physical contacts. During the Delta 
phase, however, they were associated with lower Rt but more 
physical contacts. The mechanisms by which these PHSMs in-
fluenced Rt may have changed over time. Surprisingly, ‘interna-
tional travel controls’ were associated with higher Rt and fewer 
physical contacts during the Delta phase. There is a possibility 
of residual confounding—this PHSM was only used during the 
Delta phase when the potential introduction of a more transmis-
sible VOC was high [37]. There may have also been unintended 
causal pathways that require further research to disentangle. 
However, no PHSM was associated with more physical contacts 
and higher Rt.

Our study has several limitations. First, we estimated the 
combined impact of PHSMs and their acceptance and uptake 
levels in this study as we do not have access to behaviour data 
that could help us separate them. Systematically collecting 
behaviour data may be crucial in future pandemic response 
efforts. Second, we used an observational study design. Most 
PHSMs we studied were in significant temporal clusters at 
some point during the COVID- 19 pandemic. In other words, 
they were implemented and lifted simultaneously with some 
other PHSMs, creating a situation where their effect sizes 
cannot be independently assessed. These factors reduce our 
ability to make accurate inferences and to establish causality. 
Hence, we limit our discussion to the direction of associations 
without discussing their magnitude or implying causality. 
Further, while discussing overall effectiveness, we only focus 
on PHSMs with consistent results in terms of the direction of 
associations. Third, we did not explore the effect of any in-
teractions between PHSMs. For instance, workplace closure 
may be more effective when accompanied by income support. 
Fourth, the progression of epidemic waves within the WHO 
European Region has been relatively synchronised, the tim-
ing of variant phases has been similar and the PHSMs in use 
are also relatively similar. An expanded study that includes 
more countries may be useful in gaining a fuller picture. 
However, such an analysis may have other issues, as some 
PHSMs may not be comparable between regions. Last but not 
the least, there may have been changes in population repre-
sentativeness in the CoMix study (used to approximate weekly 
changes in physical contact) that we could not account for in 
this study [16].

5   |   Conclusion

Among all PHSMs investigated in the current paper, ‘school 
closure’, ‘stay- at- home requirement’ and ‘testing policy’ were 
consistently associated with lower Rt. There was slightly weaker 
evidence that supports the impact of ‘workplace closure’ and 
‘closure of public transport’ on SARS- CoV- 2 transmission. These 
are PHSMs that may most likely be effective in future outbreak 
response if a pathogen with primary modes of transmission and 
epidemiological characteristics like SARS- CoV- 2 emerges in the 
future, particularly before an effective vaccine is available or 
widely accessible.

The impact of the other PHSMs significantly varied by VOC 
phase, with no consistent increasing or decreasing trends in 
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estimates as the pandemic progressed. Several PHSMs associ-
ated with lower Rt were not associated with fewer physical con-
tacts. Their effect mechanisms need to be further investigated as 
part of future research and to inform optimal design of PHSMs, 
as we face future emerging epidemics.
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Endnotes

 1 Albania, Andorra, Armenia, Austria, Azerbaijan, Belarus, Belgium, 
Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czechia, 
Denmark, Estonia, Finland, France, Georgia, Germany, Greece, 
Hungary, Iceland, Ireland, Israel, Italy, Kazakhstan, Kyrgyzstan, 
Latvia, Lithuania, Luxembourg, Malta, Moldova, Monaco, Montenegro, 
Netherlands (Kingdom of the), North Macedonia, Norway, Poland, 
Portugal, Romania, Russia, San Marino, Serbia, Slovakia, Slovenia, 
Spain, Sweden, Switzerland, Tajikistan, Türkiye, Turkmenistan, 
Ukraine, United Kingdom, Uzbekistan.

 2 Note that these PHSMs may be defined differently in these studies.
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