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Diabetic nephropathy (DN), as the most serious minor vascular complication of

diabetes, imposes a significant socioeconomic and medical cost around the

world, and its prevention and treatment are a major challenge in the current

medical community. Observational studies and randomized controlled trials have

revealed protective and risk factors for some DN. However, the conclusions of

these researches may be influenced by several types of confounding. Mendelian

randomization is a new epidemiological method mainly used to infer the causal

relationship between exposure and outcome. Many Mendelian randomization

studies have found potential causal relationships between DN and some diseases

and lifestyle habits, thus providing valuable data for future mechanistic studies as

well as the development and implementation of clinical prevention strategies. As

a result, the purpose of this review is to evaluate the published Mendelian

randomization study of DN, using the bibliometric research method, analyze

the current research status and hot spots, and further summarize the genetic

evidence about the potential protection of DN and risk factors to provide new

inspiration for the etiology of DN and as a reference for clinical intervention.
KEYWORDS
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1 Introduction

Due to ongoing changes in dietary habits and social structures,

diabetes has become a major global health concern. Epidemiological

surveys indicate that the number of people with diabetes worldwide

will surpass 783 million by 2045 (1), and the prevalence rate has

increased exponentially. Diabetic nephropathy (DN), also known as

chronic kidney disease (CKD) caused by diabetes, is a microvascular

complication frequently accompanied by massive proteinuria and

retinopathy. Each year, more than one-third of newly diagnosed

patients develop DN. DN accounts for 30% to 50% of end-stage

renal disease cases, which is a leading cause of death and disability

among diabetic patients (2).

Although the pathogenesis of DN is not clear, however, many

randomized controlled trials (RCTs) and observational studies have

found that genetic factors, intestinal flora, dietary lifestyle, and

other factors are closely related to DN. However, promoting RCT

testing is challenging due to discharge requirements and medical

ethics constraints, and observational studies cannot eliminate many

confounding factors, potentially leading to bias in the results (3).

Consequently, no current studies can provide high-quality medical

evidence to support preventive and treatment plans for DN.

The large sample Mendelian randomization (MR) research

method, based on genome-wide association studies (GWAS), has

gained widespread attention for studying high-risk factors of

various diseases. To avoid the biased effects of confounding

factors and reverse causality, MR analysis uses single nucleotide

polymorphisms (SNPs) or genetic variations as instrumental

variables (IVs) for causal inferences between risk factors

and disease.

Using MR analysis to investigate high-risk factors for diabetes

complications has become a research hotspot in recent years, driven

by the public release of numerous large-scale GWAS studies.

Among these, MR analysis related to DN is the most prominent

and holds significant clinical value for understanding the etiology of

DN. This review, therefore, focuses on the current situation of MR

analysis in DN etiology to provide the basis and reference for the

clinical prevention and treatment of DN.
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2 An overview of the MR principle

Mendelian’s law of inheritance serves as the theoretical

foundation for MR: during meiosis, genetic variation is assigned

randomly to children and remains constant thereafter. MR analysis

uses whole genome sequencing data and genetic variation as

instrumental factors to determine the causal link between

exposure and outcome.

MR analysis requires that the selection of instrument variables

should meet the three core assumptions of association,

independence, and exclusivity: Assumption 1: instrument

variables must be strongly associated with exposure factors;

Assumption 2: instrument variables cannot be associated with any

confounding factors associated with “exposure-outcome”;

Assumption 3: instrument variables can only influence the

outcome variables through exposure factors. Because genetic

variation is independent of social environment, diet, and other

factors, and the formation of genetic variation must precede the

occurrence and change of various confounding factors and disease

outcomes, using it as an instrumental variable can theoretically

avoid the interference of confounding factors on the results while

also avoiding the role of reverse causality (Figure 1).

MR analysis has gradually gained popularity in the medical field

over the last decade, giving high-quality etiological evidence for a

wide range of complicated clinical disorders as well as scientific

guidance and reference for disease prevention and treatment.
3 Application and exploration of MR in
the study of DN etiology

3.1 Bibliometric analysis of MR analysis
related to DN

Bibliometric analysis can help to identify research trends and

hotspots in existing fields, as well as inspire future studies.

This review was conducted by searching the Web of Science

Core Collection (WOSCC). The search strategy is “((TS=(Diabetic
FIGURE 1

Mendelian randomization assumption model.
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kidney disease) OR TS=(Diabetic nephropathy)) AND TS=

(Mendelian randomization)”, The search was finished by May 6,

2024, and after two scientists manually evaluated and removed

papers unrelated to measuring risk factors for DN using MR

analysis, a total of 90 articles matched the criteria. Based on R-

Bibliometrix and Stork, the annual number of publications,

published country map, and author cooperation network map

were generated.

3.1.1 Annual scientific publications
Studies using MR analysis to explore the etiology of DN began

in 2011. The number of publications has increased steadily over the

last 13 years, with an overall yearly growth rate of 24.35%. From

2019 to 2024, the blowout stage of this field, the number of

publications increased dramatically compared to previous years,

peaking in 2023 (21 papers). Since the search was undertaken in

May 2024, the 2024 publications count is incomplete; nonetheless,

as of May, the publications count had reached 17 (Figure 2). It

demonstrates that the use of MR analysis to investigate the high-risk

variables of DN has gained widespread recognition.

3.1.2 Country scientific production
Using MR analysis to explore DN risk factors research primarily

in North America, Europe, and Asia, including China’s largest post

(44 papers), followed by the United States (13 papers) and

Singapore (5 papers), according to the research map analysis, the

field national research level difference is larger, with plenty of room

for future development (Figure 3).

3.1.3 WordCloud analysis
Analyzing the keyword co-occurrence map can reveal the

research hotspot in the current study topic. There is no doubt

that “Mendelian randomization”, “risk” and “association” are the

core keywords, but also include “inflammation”, “blood-pressure”,

“insulin-resistance”, “cardiovascular-disease “ and other keywords

(Figure 4), indicating that researchers have explored the causal

relationship of various diseases and DN, trying to analyze the high-
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risk factors of DN progression provide a reliable basis and guidance

for clinical preventive treatment.

3.1.4 Researcher collaboration network
Analyzing the researcher collaboration network can reveal the

core authors in this subject, and knowing the important research of

the core authors can aid in understanding the field ‘s future research

trends. Liu is the most published author in this field (8 papers). Liu

‘s research mainly focuses on the study of micro-exposures such as

leukocyte telomere length (4) and soluble receptors of advanced

glycation end products (5), and their association with the risk of

DN. The second was Groop (6 papers), who used the MR to analyze

the risk of DN associated with various factors such as obesity (6)

and serum uric acid concentration (7). Furthermore, this review

discovered that researchers are closely cooperative, but only within

their own region, and there is very little cooperation between

researchers from various nations, implying that regional academic

cooperation in this sector should be improved in future research

processes (Figure 5).

3.1.5 Publishing journal analysis
Analyzing publication journals offers a better understanding of

key journals on the subject, which can be widely referenced in future

research. The study finds that “Frontiers in Endocrinology” has the

highest publication volume (15 papers), while “Kidney

International” and “Diabetes Care” have the highest impact factor

(IF = 14.8). Overall, journals publishing articles connected to

Mendelian randomization analysis of DN display high standards,

giving high-quality references for further related studies (Table 1).
3.2 Causal relationship between micro-
exposures and DN

3.2.1 Gut microbiota
As a complex ecosystem, the intestinal microflora has a

significant impact on the internal environment. The existence of
FIGURE 2

Annual scientific production of DN-related MR analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1444808
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Huang et al. 10.3389/fendo.2024.1444808
the gut-kidney axis provides a possibility for the gut microbiota to

contribute to the development of DN, and related studies have also

found a close relationship between gut microbiota and DN (8–10).

Therefore, disruptions in the gut microbiota are considered a risk

factor for DN. However, various biases exist in observational

studies, and the causal relationship remains unclear. Yan (11)

obtained genetic data on gut microbiota from the publicly

available GWAS data of the MiBioGen consortium, which

includes 24 cohorts and 18,340 samples. Their study conducted

an MR analysis on the relationship between 12 microbial taxa in gut

microbiota and DN. The results showed that Akkermansia,

Verrucomicrobia, Peptostreptococcaceae, Butyricimonas,

Catenibacterium, and Marvinbryantia significantly increase the

risk of DN. Among them, the lack of Akkermansia is closely

related to obesity, diabetes, inflammation, and tumors (12).

However, some studies have found that its abundance was

positively correlated with serum creatinine (SCr) and blood urea

nitrogen (BUN) levels (13). Therefore, it is speculated that
Frontiers in Endocrinology 04
Akkermansia may reduce the risk of developing diabetes by

regulating glucose metabolism and intestinal function. However,

with a prolonged duration of diabetes, Akkermansia may increase

the risk of DN by affecting renal function. Verrucomicrobia and

Akkermansia belong to the same bacterial group, and the

mechanisms by which they increase the risk of developing DN

may be similar. Therefore, further experiments are needed in the

future to verify the role of gut microbiota at different stages of the

disease. The above results were confirmed in the latest MR analysis

by Yan (14).

3.2.2 Blood biomarkers
As a complication of metabolic disease, observational studies

have found that the progression of DN is closely associated with

other metabolic markers in the body, including vitamin D, blood

uric acid level, and serum albumin level, but the interference of

confounding factors cannot be excluded. Therefore, conducting MR

analysis can further elucidate the relationship between exposure
FIGURE 4

WordCloud of DN-related MR analysis.
FIGURE 3

Country scientific production of DN-related MR analysis Darker colors indicate a higher number of productions; lighter colors indicate a lower
number of production.
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and outcome, enabling better prediction of the progression of DN in

the future.

Firstly, vitamin D participates in various signaling pathways

within the body, including inflammation, apoptosis, proliferation,

etc, in the form of 25-hydroxyvitamin D. Previous studies believe

that vitamin D can improve glucose metabolism and inhibit the

activation of the renin-angiotensin system (RAS) to achieve the

purpose of preventing DN (15, 16). However, He et al. (17)

conducted an MR analysis using SNP closely associated with

vitamin D extracted from a publicly available GWAS involving

79,366 individuals of European descent. The study ultimately found

no causal relationship between vitamin D and DN. Therefore,

currently, from a genetic perspective, there is no support for

using vitamin D supplementation as an effective strategy for

preventing DN.

Secondly, uric acid, as the end product of purine metabolism,

circulates through the kidneys and is excreted from the body, closely

related to renal function. Epidemiological and observational studies

have found an association between uric acid levels and the

progression of DN (18, 19). However, in an MR analysis

conducted by Ahola et al. (7) in 2014, contradictory results to

previous studies were found. The study showed that there was no

causal relationship between blood uric acid levels and the
Frontiers in Endocrinology 05
occurrence of DN in patients with type 1 diabetes (defined based

on glomerular filtration rate) (OR: 2.24, 95% CI: -17.29 to 21.77, P =

0.631). Subsequently, Feng et al. (20) utilized the latest publicly

available GWAS data from the FinnGen and UK Biobank to

conduct an MR analysis, confirming these findings: there is no

causal relationship between blood uric acid levels and DN. Our

study speculated that uric acid may contribute to the progression of

CKD by generating nitric oxide, activating the RAS, and stimulating

vascular smooth muscle cell proliferation. However, for DN, simply

lowering serum uric acid levels may not be beneficial for the

outcome of DN.

Thirdly, serum albumin is the most abundant protein in the

plasma. Previous cohort studies are ambiguous on the relationship

between serum albumin and the onset of diabetes mellitus (21, 22).

However, for DN, some relevant retrospective studies have found

that the decreased serum albumin level is an independent risk

indicator of DN (23, 24). Therefore, MR analysis is needed to avoid

the possible error bias in previous studies to clarify the causal

relationship. Cai et al. (25) combined prospective studies with

bidirectional two-sample MR analysis. In the prospective study, it

was found that for every 10 g/l increase in serum albumin levels, the

hazard ratio (HR) of DN was 0.42 (95% CI: 0.30 to 0.58). Regarding

the MR analysis, the researchers extracted 19 SNPs associated with
FIGURE 5

Researcher collaboration network of DN-related MR analysis Each dot represents a researcher, and the larger dot indicates higher output. The line
between dots indicates that the researchers have cooperation, and the thicker line indicates the cooperation is closer.
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serum albumin from the UK Biobank as instrumental variables. The

MR analysis ultimately found a causal relationship between serum

albumin levels and the occurrence of diabetes, which was negatively

correlated (OR: 0.990, 95% CI: 0.984 to 0.995, P = 2.33×10-4), thus

validating the results of the observational study. The protection

mechanism of serum albumin for diabetes and DN may lie in its

ability to regulate colloidal osmotic pressure and capillary

membrane permeability. Additionally, it can scavenge free

radicals and play an antioxidant role (26), In addition, the

glycation of serum albumin may take precedence over the

glycation of hemoglobin. Therefore, an increase in serum albumin

levels can lead to enhanced competitive glycation inhibition, thus

reducing the level of hemoglobin A1c (27). Ultimately, this

contributes to lowering blood glucose levels and delaying the

progression of microvascular complications.

3.2.3 Inflammatory mediators
With the emergence of the inflammatory theory in the field of

diabetic complications research, it has been receiving increasing

attention. A growing body of experimental evidence emphasizes the

significant role of inflammatory factors in the occurrence and

progression of DN. Activated inflammatory cells migrate and

infiltrate the kidneys, locally producing inflammatory mediators

that exacerbate kidney damage in a high-glucose environment.

Therefore, the elevation of inflammatory mediators may be an

upstream event in the progression of DN. Clarifying the

relationship between inflammatory mediators and DN is crucial

for clinical prevention and treatment. An et al. (28) utilized two-

sample MR to investigate the causal relationships between 41

inflammatory factors and DN. The final results revealed that

Interferon-g (IFN-g) (OR: 1.33, 95% CI:1.09 to 1.63, P = 0.005)

and Stem Cell Factor (SCF) (OR: 1.25, 95%CI: 1.02 to 1.52, P =

0.027) has a positive causal relationship with increased risk of DN,
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Meanwhile, Macrophage inflammatory protein-1b (MIP-1b) (OR:
0.92,95%CI: 0.85 to 0.98, P = 0.022) and interleukin-16 (IL-16) (OR:

0.89, 95%CI: 0.81 to 0.99, P = 0.043) were found to have a causal

relationship with reduced risk of DN. Furthermore, Lin et al. (29)

conducted an observational study and used genetic data provided

by the Taiwan Biobank for MR analysis. The final results of both

studies indicate a causal relationship between levels of high-

sensitivity C-reactive protein (hs-CRP) and the occurrence of DN.

This review analyzed the roles of relevant inflammatory

mediators in DN as follows: First, IFN-g overexpression increases

IFN-regulatory factors (IRFs), as well as the secretion of nuclear

factor kappa-B (NF-kB) and signal transducer and activator of

transcription-1 (STAT-1), selectively promoting the polarization of

M1 macrophages (30). This leads to increased secretion of

inflammatory cytokines. Furthermore, IFN-g can also enhance the

expression of vascular endothelial growth factor (VEGF). Through

the combined action of these mechanisms, continuous damage to

the renal microvasculature may occur. Observational studies further

confirmed that elevated IFN- g is a predictor of DN onset (31). For

SCF, the SCF/c-kit signaling pathway leads to the aggregation of

endothelial progenitor cells and promotes angiogenesis. Animal

experiments have found a significant positive correlation between

the expression levels of SCF and c-kit and the degree of mast cell

infiltration. Mast cell infiltration promotes renal interstitial fibrosis,

thereby increasing the risk of DN (32). Finally, CRP is a nonspecific

marker of inflammation and tissue damage. CRP can promote renal

inflammation through the CD32b-NF-kB signaling pathway and

induce renal fibrosis via the CD32b-Smad3-mTOR signaling

pathway (33). Additionally, elevated CRP levels increase the

production of pro-inflammatory cytokines, leading to mesangial

cell proliferation, excessive matrix production, and increased

vascular permeability, which in turn results in renal function

impairment and albuminuria (34). The aforementioned MR

results emphasize that early intervention targeting certain

inflammatory mediators can play a positive role in protecting

patients with DN.

3.2.4 Leukocyte telomere length
Telomeres are DNA-protein structures at the ends of

chromosomes, and their length shortens with each cell division.

Telomeres protect the genome from damage and serve as important

markers of organismal aging and cellular apoptosis. A study has

found that controlling telomere length is crucial for maintaining

telomere stability (35). A cohort observational study found that

relatively short telomere length (RTL) is closely associated with

faster CKD progression in diabetic patients (HR: 1.16, 95% CI: 1.01

to 1.34, P = 0.03) (36). Another prospective study based on multiple

Asian ethnicities similarly found that T2DM patients with shorter

leukocyte telomere length (LTL) had more than double the risk of

albuminuria (OR: 2.10, 95% CI: 1.15 to 3.83, P = 0.016) (37). These

studies suggest that short LTL may be a novel biomarker for the

progression of DN. To further clarify the causal relationship,

Gurung et al. (4) extracted 16 SNPs closely associated with

leukocyte telomere length (LTL) from a GWAS in the Singapore

Chinese Health Study (SCHS) cohort and conducted a two-sample
TABLE 1 Main research journals of DN-related MR analysis (2023).

Journal Count
Impact
Factor

Journal
Citation
Reports

Frontiers in Endocrinology 15 3.9 Q2

Diabetes 7 6.2 Q1

Journal of Clinical
Endocrinology & Metabolism

4 5.0 Q1

Diabetologia 3 8.4 Q1

Kidney International 2 14.8 Q1

Diabetes Care 2 14.8 Q1

Diabetes Metabolic Syndrome
and Obesity

2 2.8 Q3

Frontiers in Microbiology 2 4 Q2

International Urology
and Nephrology

2 1.8 Q3

BMJ Open Diabetes Research
& Care

2 4.1 Q2
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MR analysis. The final results validated the conclusions of previous

observational studies: genetically determined shorter LTL is closely

associated with an increased risk of CKD in T2DM patients (OR:

1.51, 95% CI: 1.12 to 2.12, P = 0.007). Therefore, preventing

premature telomere shortening will be an important strategy in

the prevention and treatment of DN.

3.2.5 Drug target
Drug-target MR analysis is emerging as an effective tool for

inferring the effect of various drugs acting on encoded proteins on

disease risk (38). Unlike traditional MR studies, in drug-target MR

analysis, genetic variants are selected from the gene of interest or a

neighboring genomic region. The wide application of drug-target

MR can help to better identify the potential targets of drug action on

diseases in order to facilitate drug development and improve

clinical efficacy.

For the onset and progression of DN, the renin-angiotensin-

aldosterone system (RAAS) plays an important role, and inhibition

of the RAAS can have many positive effects on the prevention of DN

(39). RAAS inhibitors, with Angiotensin Converting Enzyme

Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB), are

the most widely used in clinical practice. However, a follow-up

study found that DN patients who have been treated with ARB, are

still at high risk of end-stage renal disease (ESRD) outcomes (40). In

addition to this, another study found that combining an ACEI with

an ARB increased the risk of hyperkalemia and acute kidney injury

(41). Thus, drug-target MR offers the possibility to explore the

target mechanism of action of RAAS inhibitors in DN. Zhou (42)

conducted a network pharmacology combined with a drug-target

MR study, and the final MR results demonstrated the positive effects

of CTSC (IVW, OR: 0.861, P=0.041) and PDE5A (IVW, OR: 0.842,

P=0.018), the key targets of RAAS inhibitors in the treatment of

DN, in protecting DN. CTSC has been shown in previous studies to

be a human DN uroprotein gene, which may play a role by

participating in the regulation of urinary proteins (43). PDE5A

belongs to the phosphodiesterase family, and an animal study has

shown that targeted regulation of PDE5 exerts a significant anti-

fibrotic and nephroprotective effect on the kidney (44).

In addition, statins are widely used in the diabetic population

because diabetic patients are often prone to comorbid lipid

metabolism abnormalities (45). However, previous studies have

differed on the use of statins in patients with DM. A multicenter

cohort study conducted in China showed that statin use was

associated with a lower risk of DN events (HR: 0.72, 95% CI =

0.62 to 0.83) (46). A retrospective cohort study, however, found that

statin use in diabetic patients was associated with a moderately

elevated risk of kidney disease progression (OR: 1.16, 95% CI:1.12 to

1.20) (47). Therefore, drug-target MR studies need to be introduced

to avoid the influence of various confounding factors on the results.

Zhao et al. (48) found a significant correlation between HMGCR

inhibition, the main pathway of action of statins, and a high risk of

DN (OR: 1.79, 95% CI:1.14 to 2.78, P = 0.01). The results of MR are

usually interpreted as lifetime exposure, so the final results can be

interpreted as a negative effect of long-term HMGCR inhibitors on
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DN. This study provides new insights into the selection of lipid-

lowering medications for patients with clinical DN.

3.2.6 Proteomic
Proteomic MR is an emerging research direction with

similarities to drug-target MR, as proteins often have specific

binding sites or regions that can be targeted by biologics, so with

the identification of thousands of protein quantitative trait loci

(pQTLs) for plasma proteins by GWAS, carrying out proteomic MR

can help us to identify the potential therapeutic sites for DN and

identify drug targets in advance. Fan et al. (49) conducted a

proteomic MR by extracting pQTL of plasma proteins from seven

different proteomic GWAS and found that higher levels of MICB

(OR: 1.46, 95% CI 1.27 to 1.67; P = 3.94×10-8), GZMA (OR: 1.34,

95% CI 1.17 to 1.53; P = 1.86×10-5), and CLIC5 (OR: 1.45, 95% CI

1.04 to 2.03, P = 2.99×10-2) may promote the progression of DN,

whereas CTSS (OR: 0.90, 95% CI 0.83 to 0.97, P = 5.78×10-3) may

play a protective role in the progression of DN. Zhang et al. (50)

subsequently combined proteomic MR with co-localization analysis

and external validation in an attempt to find key targets for the

treatment of DN, resulting in the novel identification of potential

drug target properties of COL6A2, CBLN1, TGFBI, and ITIH3 for

the treatment of DN. Gurung et al. (51) conducted an MR analysis

based on young Asian T2DM DN patients and found that higher

plasma ANG levels were associated with an increased risk of DN in

young Asian T2DM (OR: 4.03, 95% CI 1.28 to 12.68, P = 0.017).

These proteomic MR studies offer the possibility of new protein

targets for the prevention and treatment of DN.
3.3 Causal relationship between macro-
exposures and DN

3.3.1 The underlying diseases
The occurrence and progression of DN are regulated and

influenced by the endocrine system, immune system, and other

factors. Using MR analysis to study the causal relationship between

various diseases and DN contributes to the early diagnosis and

screening of DN in populations with related diseases, enabling early

and effective intervention.

Firstly, Diabetic Retinopathy (DR) is another typical

microvascular complication of diabetes mellitus, apart from DN.

Meta-analysis has shown that the comprehensive sensitivity and

specificity of diabetic retinopathy in predicting DN are 0.65 (95%

CI: 0.62 to 0.68) and 0.75 (95% CI: 0.73 to 0.78), respectively. Duan

et al. (52) further conducted MR analysis by extracting SNPs closely

related to DR and DN from FinnGen and UK Biobank. They

ultimately found a causal relationship between DR and DN

occurrence (OR: 2.89, 95% CI: 1.76 to 4.75, P<0.001), validating

the conclusions of previous observational study (53). Therefore, it is

recommended to promptly perform comprehensive renal function

tests in DR patients to prevent the occurrence of DN.

Thyroid hormone receptors are abundantly present in the

vascular endothelium, and fluctuations in thyroid hormone levels
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can affect vascular function. Although current observational studies

have found a certain correlation between thyroid function and renal

function (54, 55), there is still insufficient evidence to prove a direct

causal relationship between thyroid function and DN. Therefore, Li

et al. (56) conducted an MR analysis based on a European

population sample to investigate the causal relationship between

thyroid function and DN. They found that thyroid-stimulating

hormone (TSH) was positively correlated with the risk of DN

(OR: 1.44, 95% CI: 1.04 to 2.41, P = 0.033). Additionally, TSH

was negatively correlated with the estimated glomerular filtration

rate (eGFR) in diabetic patients (b: -0.031, 95% CI: -0.063 to -0.001,

P = 0.047). This suggests that an increase in TSH may raise the risk

of DN and simultaneously decrease the eGFR in patients with

T2DM. This study speculates that this is because TSH can stimulate

leptin secretion, thereby increasing hepatic glucose output and

enhancing gluconeogenesis to stimulate endogenous glucose

production, which in turn reduces hepatic insulin sensitivity.

Additionally, TSH inhibits insulin synthesis in b-cells, ultimately

raising blood glucose levels (57). Moreover, abnormal secretion of

thyroid hormones combined with a high-glucose environment will

further exacerbate damage to the vascular endothelium (58).

Although MR analysis has demonstrated the causal relationship

between them, further basic research is still needed to clarify the

underlying mechanisms in the future.

Obesity has been considered a starting point for multiple diseases

and is closely associated with the occurrence of complications in

diabetes. Assessment of obesity includes indicators such as body

mass index (BMI), waist circumference (WC), trunk fat content, etc.

Several MR analyses have now demonstrated a significant causal

relationship between obesity and DN (6, 59–61). Our study suggests

that obesity leads to reduced secretion of adiponectin in the body.

Adiponectin has various beneficial effects, such as anti-atherosclerosis

and anti-inflammatory properties (62). Consequently, reduced

adiponectin levels exacerbate endothelial damage and inflammation.

Additionally, excessive visceral adipose tissue (VAT) can disrupt

metabolism and exacerbate insulin resistance. Meanwhile,

lymphocytes and macrophages infiltrate adipose tissue, leading to

the release of inflammatory cytokines and reactive oxygen species,

exacerbating the body’s inflammatory response and oxidative stress

levels, and ultimately promoting the progression of DN (63, 64).

Additionally, after MR analysis, diseases such as inflammatory

bowel disease (65), sarcopenia (66), and periodontitis (67) were

found to lack a significant causal relationship with DN from a

biogenetic perspective.

3.3.2 Lifestyle
Since the 21st century, there has been a significant change in

human lifestyle compared to previous times. Factors such as diet

and daily routines constantly influence bodily functions, leading to

the emergence of a new discipline: Lifestyle Medicine. This

discipline aims to study the significance of lifestyle changes in the

prevention and treatment of chronic diseases (68). Using MR

analysis to explore the relationship between lifestyles and DN

effectively avoids errors caused by confounding, reverse causation,

and bias. It has become an essential tool in epidemiological

research today.
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Coffee, currently the most widely consumed beverage worldwide,

contains main components such as caffeine, chlorogenic acid, and

hydroxy-hydroquinone (69). Previous epidemiological studies and

meta-analyses have not reached consensus on the relationship

between coffee consumption and diabetes and its complications.

Some studies suggest that coffee can significantly reduce the risk of

developing T2DM while delaying the occurrence of diabetic

complications (70–72). However, a prospective study has found that

consumingmore than 2 cups of caffeine-containing beverages per day

increases the risk of eGFRdecline by 1.19 times (OR: 1.19, 95%CI: 1.01

to 1.41) (73). Therefore, further research is needed to clarify the

relationship. In 2021, Mazidi et al. (74) conducted an MR analysis

on the relationship between coffee intake and kidney function, finding

no causal relationship between coffee intake and eGFR in diabetic

patients. Additionally, in 2023, an MR analysis based on the latest

GWAS data from the UK Biobank revealed a causal relationship

between coffee consumption and the risk of DN, showing a positive

correlation (OR: 1.939, 95% CI: 1.012 to 3.712, P = 0.045) (75).

Therefore, based on the results of MR analysis and genetic

perspective, it is suggested that coffee does not provide a protective

effect against the occurrence of DN. Moreover, excessive intake of

coffee may increase the risk of DN. This review suggests that this is

because caffeine, as an adenosine receptor antagonist, binds to

adenosine receptors upon intake (76), influencing adenosine’s anti-

inflammatory properties and glomerular hemodynamics, leading to

glomerular remodeling, sclerosis, and the occurrence of

proteinuria (77).

Sleep plays a crucial role in the regulation of endocrine functions

(78).Previousobservational studieshave foundsignificant associations

betweenboth longand short sleepdurationsand theoccurrenceofDN,

as well as increased levels of urinary albumin-to-creatinine ratio

(UACR) (79, 80). To further clarify the role of sleep in DN, Mazidi

et al. (81) selected 78 SNPs closely related to sleep duration from the

Biobank as instrumental variables for MR analysis. The final results,

however, revealed no causal relationship between sleep duration and

eGFR levels in T2DM patients. However, the study also found that, in

non-diabetic populations, longer sleep durations were causally

associated with lower eGFR levels (IVW: b: -0.024, SE = 0.011, P =

0.020). This suggests that prolonged sleep may have potential adverse

effects on renal function. Our analysis suggests that sleep duration is

closely related to the levels of various inflammatory factors (tumor

necrosis factor-alpha, IL-1, CRP, etc.) (82). At the same time,

disruption of sleep rhythms can negatively impact the RAS, sodium-

potassium excretion system, and thereby damage renal function (83).

A study in animal models has found that circadian disruption

(including prolonged, shortened, or interrupted sleep) leads to

proteinuria, glomerulosclerosis, tubular hyperplasia, and renal

fibrosis (84).
4 Limitations and prospects of using
MR in DN etiology research

Although MR analysis has been widely applied in the field of

DN etiology research, providing definite advantages for exploring

DN risk factors, there are still certain limitations and challenges in
frontiersin.org

https://doi.org/10.3389/fendo.2024.1444808
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Huang et al. 10.3389/fendo.2024.1444808
its future application. The summary is as follows: First of all, MR is

dependent on the gene-exposure-disease chain, and if the effect of one

link is weak, the effectiveness of the overall analysis will be affected.

GWAS is a genome-wide association study of genes and phenotypes,

and therefore, large samples and high representativeness of GWAS

data are required for the genetic data to have authenticity and

persuasive power. However, the number of cases of GWAS data is

relatively small, resulting in fewer instrumental variables tobe included

in the study, which will reduce the effectiveness and specificity of the

analysis. Furthermore, most of the current GWAS data are derived

from UK Biobank, whose study population is predominantly of

European origin, which may further limit the extrapolation of the

results. Therefore, the generalizability of the results and the impact of

possible sample overlap on the results need to be considered when

conductingMR. In future studies, GWASdatawith larger sample sizes

should be preferred for analyses, and the sample sizes of different

populations and cohorts with relevant exposures and DN should also

be continuously expanded to guarantee the authenticity and reliability

of the study.Secondly,due to the inconsistencyofdiagnostic criteria for

DN, the gold standard for pathology is still needed to assess whether

CKD is due to diabetes. Therefore, further improvement of DN

phenotype information as well as data on its genetic variants is

needed in the future. Finally, although MR can reveal the causal

relationship between exposure and outcome, it is still unable to

elaborate and analyze the specific mechanism of action, so in the

future, it is still necessary to combine with basic studies, RCT, etc. to
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explore the specific pathways and targets of exposure so as to better

guide the prevention and control of disease and toprovidehigh-quality

evidence-based evidence for the diagnosis and treatment of disease in

the later stage.
5 Conclusion

The article provides a review of recent studies on the application of

MR analysis in DN epidemiology research, summarizing the causal

relationships between various exposure factors and the risk of DN.

Ultimately, this review found that gut flora such as Akkermansia and

Verrucomicrobia, serum albumin levels, inflammatorymediators such

as IFN-g and CRP, leukocyte telomere length, protein, diabetic

retinopathy, thyroid dysfunction, obesity, coffee intake, and sleep

were all causally associated with the development of DN (Figure 6).

However, based on current genetic data, MR analysis failed to prove

that vitamin D, uric acid, inflammatory bowel disease, sarcopenia,

periodontitis, etc. are risk factors for DN (Table 2). MR analysis plays a

groundbreaking role in enhancing researchers’ understanding of DN

etiology and developing new treatment approaches. Based on this,

early intervention and prevention of relevant risk factors in clinical

diagnosis and treatment processes can be conducted. The ultimate

goal is to help prevent DN in high-risk populations while slowing the

progression of the disease in people with DN.
FIGURE 6

Risk factors for DN in the MR analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1444808
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 2 Mendelian randomization studies of various exposures with DN as the outcome.

SNPs, n Effect P-value

12 OR = 1.390
(1.10–1.75);

P= 0.005

12 OR=1.390(1.10–1.75) P= 0.005

14 OR=1.284(1.03–1.59) P= 0.012

16 OR = 1.261
( 1.02–1.55)

P= 0.031

4 OR=1.278(1.02-1.59) p=0.030

10 OR = 1.369
(1.04–1.79)

P= 0.022

n 9 OR=1.822
(1.241-2.676)

P=0.013

n 13 OR=0.407
(0.241-0.688)

P=0.002

pean 3 OR=0.587
(0.03 -11.458)

P=0.726

pean 3 OR=1.517
(0.114-20.208)

P=0.752

ean 3 OR=0.039
(0.114-20.208)

P=0.109

ean 3 OR=1.870
(0.389-8.990)

P=0.435

23 OR=2.24
(-17.29-21.77)

P= 0.631

188 OR=1.06(0.91-1.24) P=0.428

an 19 OR=0.990
(0.984-0.995)

P=2.33×10-4

13 OR=1.33(1.09-1.63) P=0.005

9 OR=1.25(1.02-1.52) P=0.027

17 OR=0.92(0.85-0.98) P=0.022

10 OR=0.89(0.81-0.99) P=0.043

4 OR=1.67(1.40-1.98) NOT REPORT
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Exposures Year Authors Population of exposure Population of outcome

Verrucomicrobia 2023 Yan W et al. (11) 18,340 adult individuals, European DN, 210463 controls and 3283 cases, Europea

Akkermansia 2023 Yan W et al. (11) 18,340 adult individuals, European DN, 210463 controls and 3283 cases, Europea

Peptreptococcaceae 2023 Yan W et al. (11) 18,340 adult individuals, European DN, 210463 controls and 3283 cases, Europea

Butyricimonas 2023 Yan W et al. (11) 18,340 adult individuals, European DN, 210463 controls and 3283 cases, Europea

Catenibacterium 2023 Yan W et al. (11) 18,340 adult individuals, European DN, 210463 controls and 3283 cases, Europea

Marvinbryantia 2023 Yan W et al. (11) 18,340 adult individuals, European DN, 210463 controls and 3283 cases, Europea

Class Verrucomicrobiae 2024 Yan S. et al. (14) 18,340 adult individuals, European T2DN, 283224 controls and 2394 cases, Europe

Eubacterium protogenes 2024 Yan S. et al. (14) 18,340 adult individuals, European T1DN, 283224 controls and 1441 cases, Europe

25(OH) vitamin D 2023 He M. et al. (17) 79,366 adult individuals, European T1DN (early), 67452 controls and 3399 cases, Euro

25(OH) vitamin D 2023 He M. et al. (17) 79,366 adult individuals, European T1DN (later), 67452 controls and 4352 cases, Euro

25(OH) vitamin D 2023 He M. et al. (17) 79,366 adult individuals, European T2DN (early),2238 controls and 1989 cases, Euro

25(OH) vitamin D 2023 He M. et al. (17) 79,366 adult individuals, European T2DN (later), 2372 controls and 1339 cases, Euro

Serum uric acid 2017 Ahola AJ. et al. (7) >140,000 adult individuals ,European T1DN (eGFR), 2720 cases, European

Serum uric acid 2022 Feng B. et al. (20) 336619 adult individuals, European DN, 210463 controls and 3282 cases, Europea

Serum Albumin 2023 Cai YW. et al. (25) 115,060 adult individuals, European T2DM, 439,238 controls and 22,340 cases, Europ

IFN-g 2024 An L. et al. (28) 8293 adult individuals, European DN, 210463 controls and 3282 cases, Europea

SCF 2024 An L. et al. (28) 8293 adult individuals, European DN, 210463 controls and 3282 cases, Europea

MIP-1b 2024 An L. et al. (28) 8293 adult individuals, European DN, 210463 controls and 3282 cases, Europea

IL-16 2024 An L. et al. (28) 8293 adult individuals, European DN, 210463 controls and 3282 cases, Europea

hs-CRP 2023 Lin CC. et al. (29) 2332 adult individuals, Chinese DN, 2332 controls and 256 cases,chinese
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n

n

n
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n
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TABLE 2 Continued

SNPs, n Effect P-value

16 OR=1.51(1.12-2.12) P=0.007

4 OR=2.89(1.76-4.75) P<0.001

39 OR=1.44(1.04-2.41) P=0.033

16 OR=0.830.67-1.03) P = 0.093

4 OR=1.17 (0.57-2.38) P = 0.672

NOT REPORT OR 1.28(1.11-1.45) P = 0.001

NOT REPORT OR 1.43(1.20-1.72) P < 0.001

NOT REPORT OR 1.33(1.17-1.51) P < 0.001

376 OR=1.74(1.47-2.07) P=0.000000000217

315 OR=2.03(1.62-2.55) P=0.0000000011

441 OR=1.99
(1.47–2.69)

p = 7.89 × 10−6

214 OR=2.48
(1.40–4.42)

p = 1.93 × 10−3

34 OR=1.80
(1.28–2.53)

p = 6.84 × 10−4

56 OR=3.76(1.88-7.53) P < 0.001

129 OR=1.01(1.00-1.02) P=0.5

424 OR= 0.863
(0.767-0.971)

P = 0.014

147 OR=1.119
(0.688-1.820)

P=0.650

164 OR=0.847
(0.552-1.300)

P= 0.447

56 OR=0.495
(0.206-1.189)

P=0.116

6 OR=1.02(0.91–1.14) P=0.77
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Exposures Year Authors Population of exposure Population of outcome

Leukocyte
telomere length

2021 Gurung RL.
et al. (4)

25,273 East Asians and 37,505 European T2DN, 2005 controls and 498 cases,East Asians

Diabetic retinopathy 2023 Duan J. et al. (52) 95752 adult individuals, European DN, 210463 controls and 3283 cases, European

TSH 2023 Li H. et al. (56) 39282 adult individuals, European DKD, 3,676 cases and 283,456 controls, European

FT4 2023 Li H. et al. (56) 72,167 adult individuals, European DKD, 3,676 cases and 283,456 controls, European

TPOAb 2023 Li H. et al. (56) >40000 adult individuals, European DKD, 3,676 cases and 283,456 controls, European

Obesity 2015 Todd JN. et al. (6) 249796 adult individuals, European T1DN macroalbuminuria, 2347 cases and 6049
controls, European

Obesity 2015 Todd JN. et al. (6) 249796 adult individuals, European T1DN ESDR,2347 cases and 6049 controls, European

Obesity 2015 Todd JN. et al. (6) 249796 adult individuals, European T1DKD ,2347 cases and 6049 controls, European

Body Mass Index 2023 Huang Y.
et al. (59)

461460 adult individuals, European DN, 3283 cases and 210463 controls, European

Waist circumference 2023 Huang Y.
et al. (59)

462166 adult individuals, European DN, 3283 cases and 210463 controls, European

Body Mass Index 2022 Wang M.
et al. (60)

681275 adult individuals, European DN, 3,283 ncase 181,704 controls, European

Waist circumference 2022 Wang M.
et al. (60)

232101 adult individuals, European DN, 3,283 ncase 181,704 controls, European

Trunk fat mass 2022 Wang M.
et al. (60)

454588 adult individuals, European DN, 3,283 ncase 181,704 controls, European

Body Mass Index 2022 Lu J. et al. (61) 158284 adult individuals,Japanese DN,1314 cases and 2658 controls,chinese

Inflammatory
bowel disease

2023 Lian X. et al. (65) 86640 adult individuals, European DN, 3,283 ncase 181,704 controls,European

Appendicular lean mass 2023 Ren L. et al. (66) 244730 adult individuals, European DN, 3,283 ncase 181,704 controls,European

Grip strength left 2023 Ren L. et al. (66) 461026 adult individuals, European DN, 3,283 ncase 181,704 controls,European

Grip strength right 2023 Ren L. et al. (66) 461089 adult individuals, European DN, 3,283 ncase 181,704 controls,European

Walking speed 2023 Ren L. et al. (66) 459915 adult individuals, European DN, 3,283 ncase 181,705 controls,European

Periodontitis 2024 Yan P. et al. (67) 461031 adult individuals, European DN, 3,283 ncase 210463 controls,European
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lation of outcome SNPs, n Effect P-value

413 individuals with replication in up
o 42,166 individuals

5 beta=-0.00645 P=0.478

case 210463 controls,European 33 OR:1.939
(1.012-3.712)

P =0.045

nal complications, 1,296 cases and
European-descent controls

35 OR=2.787
(0.926-8.394)

P = 0.047

th renal complications, 963 cases and
183,185 controls

36 OR = 2.667
(0.796-8.929)

P = 0.112

to-creatinine ratio in diabetes, 5,825
1 controls of European individuals

30 OR=0.884
(0.395-1.802)

P=0.661

l population, n = 133,413 individuals
ion in up to 42,166 individuals

78 beta=-0.019 p = 0.047

opathy 1,032 case 451,248 control 12 OR=0.861 P=0.041

opathy 1,032 case 451,248 control 9 OR=0.842 P=0.018

nd females with 3283 cases and
181,704 controls

19 OR= 1.79 P = 0.01

h adult participants (3,676 cases and
283,456 controls)

23 OR=1.588
(1.284-1.963)

P=0.0000198

h adult participants (3,676 cases and
283,456 controls)

162 OR=1.141
(1.039-1.253)

P=0.00571

h adult participants (3,676 cases and
283,456 controls)

75 OR=1.284
(1.118-1.475)

P=0.000402

h adult participants (3,676 cases and
283,456 controls)

164 OR=1.179
(1.089-1.277)

P=0.0000506

N(:≤40YAsian participants)
ntrol=546, Case=321

1 OR=4.03
(1.28-12.68)

P = 0.017

ted glomerular filtration rate.
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Exposures Year Authors Population of exposure Popu

coffee intake 2021 Mazidi M.
et al. (74)

91462 adult individuals, European DM eGFR,n = 133

coffee consumption 2023 Fang J. et al. (75) 428860 adult individuals, European DN, 3,283

coffee consumption 2023 Fang J. et al. (75) 428860 adult individuals, European T2DM with re
183,185

coffee consumption 2023 Fang J. et al. (75) 428860 adult individuals, European T1DM diabetes w

coffee consumption 2023 Fang J. et al. (75) 428860 adult individuals, European Urinary albumin
cases and 4606

Sleep duration 2021 Mazidi M.
et al. (81)

446118 adult individuals, European eGFR in the tota
with replica

CTSC 2024 Zhou D. et al. (42) 31684 adult individuals, European Diabetic neph

PDE5A 2024 Zhou D. et al. (42) 19173 adult individuals, European Diabetic neph

inhibition of HMGCR 2024 Zhao R. et al. (48) NOT REPORT DN: males a

COL6A2 2024 Zhang W.
et al. (50)

49,708 individuals of Icelandic descent DN:287,132 Finni

CBLN1 2024 Zhang W.
et al. (50)

49,708 individuals of Icelandic descent DN:287,132 Finni

TGFBI 2024 Zhang W.
et al. (50)

49,708 individuals of Icelandic descent DN:287,132 Finni

ITIH3 2024 Zhang W.
et al. (50)

49,708 individuals of Icelandic descent DN:287,132 Finni

ANG 2024 Gurung RL.
et al. (51)

1,000 adult individuals,European+338
participants with Arab and Asian ethnicities.

YT2D D
C

DN, diabetic nephropathy; DKD, diabetic kidney disease; ESDR, End stage renal disease; YT2D, young onset of type 2 diabetes; eGFR, estima
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