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cancer immunotherapy
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Dalian, China
Cervical cancer (CC) is a common malignant tumour of the female reproductive

system that is highly harmful to women’s health. The efficacy of traditional

surgery, radiotherapy and chemotherapy is limited, especially for recurrent and

metastatic CC. With continuous progress in diagnostic and treatment

technology, immunotherapy has become a new approach for treating CC and

has become a new therapy for recurrent and metastatic CC. However,

immunotherapy is not effective for all patients with CC. Therefore, factors

related to immunotherapy efficacy in CC patients have become the focus of

researchers. High-risk human papillomavirus (HPV) infection is an important

factor that drives CC development and affects its progression and prognosis.

Increasing attention has been given to the mechanism of the E5, E6 and E7

proteins, which are encoded by the HPV gene, in the occurrence and

development of CC and their interaction with programmed cell death ligand-

1/programmed cell death-1 (PD-L1/PD-1). Although some preliminary studies

have been conducted on these topics, a comprehensive and systematic review of

these topics is not available. This review comprehensively summarizes related

articles from journals with impact factors greater than 3 and published in the past

5 years; it also reviews studies on themechanism of HPV and CC, the mechanism

of PD-L1/PD-1 axis regulation in CC, and the mechanism by which the

interaction between HPV-related oncoproteins and the PD-L1/PD-1 pathway

affects the development and prognosis of CC. This study provides theoretical

support for the use of immunotherapies for CC, provides a basis for the selection

of specific medications that target different HPV-related proteins, and provides a

new perspective for the discovery of new immunotherapy targets for CC.
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1 Introduction

Cervical cancer (CC) is one of the most dangerous female

cancers worldwide, with more than 604 000 cases of CC reported

in 2020 (1, 2). Although various screening methods for CC and the

availability of human papillomavirus (HPV) vaccines have made

this type of cancer largely preventable (2, 3), the incidence of CC has

not decreased significantly (4). HPV is thought to be a cause of CC

(5). Previous studies have reported that persistent HPV infection

might increase the persistence of cervical intraepithelial neoplasia

(CIN), subsequently leading to invasive CC (6–8). HPVs are divided

into high-risk and low-risk types according to their level of

carcinogenicity (8). Many studies have evaluated the correlation

between HPV subtypes and CC progression (9–11) and the

prevalent species causing the development of CC. The genes

encoding HPVs produce proteins that promote viral DNA

replication, cell cycle control, and tumorigenesis in the initial

stages of infection (12). The E5 and E6/E7 oncogenes have the

most pronounced transformation characteristics (13). Moreover, E6

and E7 are the main regulators of virus pathogenicity (14) and exert

carcinogenic effects (15). E6 inhibits cell apoptosis by binding to

and marking the p53 protein for degradation. This process results in

an inability to repair damaged DNA in infected cells, promoting cell

proliferation. E7 binds to the retinoblastoma (Rb) protein and

inhibits its function, thereby releasing the inhibition of the cell

cycle, allowing cells to enter S phase, and promoting cell

proliferation (14, 16, 17). Failure to clear HPV infection in a

timely manner can lead to the development of CC (18). Various

immunotherapies against CC have been tested for their ability to

eliminate viral infections and enhance the immune response.

Immunotherapy targeting the programmed cell death ligand-1/

programmed cell death-1 (PD-L1/PD-1) axis offers new ideas for

treating a wide range of advanced human cancers (19).

In contrast to traditional tumour therapies that directly kill

tumour cells, immunotherapy activates the immune system to kill

tumour cells by overcoming the immunosuppression caused by

tumours and the tumour microenvironment (TME). The tumour

microenvironment provides abundant tumour antigens for antigen-

presenting cells (APCs) to bind, which promotes their maturation

(20). Activated APCs stimulate CD8+ T cells to respond to the

presented tumour antigens (20, 21). When CD8+ T cells are

activated, they discover and kill tumour cells, which are

subsequently converted into cytotoxic T lymphocytes (CTLs) (22,

23). Notably, when a recognizable antigen expressing the major

histocompatibility complex (MHC) is present, T cells are activated,

and cytokine-producing cells are recruited, which triggers the

inflammatory response (24). Activation of the PD-1/PD-L1

pathway is a key cause of HPV-associated CC immune escape

(25). By interacting with PD-L1, PD-1 activates signalling pathways

that inhibit efferent T-cell activity and act as intermediaries that

facilitate tumour cell escape from T-cell killing and thus facilitate

tumour cell survival (26, 27). PD-1/PD-L1 inhibitors have proven to

be major new advances in anticancer drug treatment, and multiple

drugs that block the PD-L1/PD-1 axis have been used to treat 13

types of cancer (28). For example, pembrolizumab has been shown
Frontiers in Oncology 02
to prevent cancer cells from inhibiting T-cell activation and is the

only anti-PD-1 drug approved in the US as a second-line treatment

for recurrent CC (29). In addition, a single-group phase 2 trial

revealed antitumour activity in patients with PD-L1-positive

tumours (combined positive score ≥1) but not in patients with

PD-L1-negative tumours (30). Moreover, multiple clinical trials are

exploring combination treatment strategies involving

immunotherapy (30, 31). Studies have shown that when HPV

infection worsens and leads to cervical cytopathy, PD-L1

expression is increased (32), suggesting that HPV infection may

suppress the body’s immunity and increase resistance to

immunotherapy (Figure 1).

This paper reviews a large body of literature and discusses the

expression of HPV-related oncoproteins and the important role of

HPV in preventing CC progression through PD-L1/PD-1

immunotherapy. This review aims to provide additional insights

for future applications of immunotherapy for CC.
2 Signalling pathways associated with
major HPV oncoproteins

With continuous in-depth research on the molecular

mechanism of HPV carcinogenesis, the strong correlation

between the activation of HPV oncogenes and cervical lesions has

been further revealed. Among them, the most widely studied HPV

oncoproteins are the E5, E6 and E7 oncoproteins.
2.1 E5 protein

Notably, we summarized many new ways in which CC is

affected by HPV oncoproteins, mainly E5, E6 and E7. Kim et al.

studied the role of E5 in the progression of CC and reported that the

HPV16 E5 oncoprotein promotes CC by upregulating

cyclooxygenase-2 (COX-2) expression via the EGFR signalling

pathway, in which NF-kB and AP-1 play key roles (33).

Moreover, E5 induces EGFR signalling, thus increasing the

expression of vascular endothelial growth factor (VEGF), which

plays an important role in cancer progression (34, 35). The increase

in VEGF expression induced by E5 is also mediated by the

activation of MEK-ERK1/2 and PI3K/Akt downstream of

EGFR (33).
2.2 E6 protein

HPV E6-mediated activation of c-Jun N-terminal kinase (JNK)

drives EGFR signalling to promote CC cell proliferation. In this

pathway, JNK activated by HPV E6 subsequently phosphorylates

and activates c-Jun, which in turn induces the expression of host cell

regulatory genes, including EGFR. The pathway is activated when

the EGFR-driven signal, in turn, activates JNK. As a result, a

complex positive feedback loop is formed in HPV-positive CC

cells (36). Furthermore, Shu et al. analysed another regulatory
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pathway for HPV16 E6, which inhibits p53 transcription by

recruiting the coinhibitory factor NCOR1 to activate octamer-

binding transcription factor 4 (OCT4) expression (37).

Additionally, E6 can promote the degradation of p53 by

interacting with the cellular ubiquitin ligase E6AP. This pathway

has a neoplastic effect, resulting in escape from cell death (38, 39).
2.3 E6 and E7 proteins

Another study analysed another regulatory pathway of p53

through WB assays to detect the expression of p53. Hypoxia-

inducible factor-1 alpha antisense RNA-2 (HIF1A-AS2) was

found to significantly induce CC cell apoptosis via the P53/

caspase9/caspase3 axis mediated by HPV16 E6/E7 (40).

Surprisingly, many other possible therapeutic targets are also

regulated by the high-risk HPV oncoproteins E6/E7. For example,

in knockdown and overexpressing cell culture models, the role of T-

box transcription factor 3 (TBX3) in promoting the proliferation

and migration of HPV-positive cells was validated, and the tumour-

promoting activity of TBX3 in CC was shown to be influenced by

HPV E6 and E7 signalling (41). In addition, using RNA-Seq data,

Trujillo-Cirilo et al. confirmed that IL-2 receptor (IL-2R) expression

was significantly higher in CC tumours than in normal tissues. The

HPV E6 and E7 genes increase the activity of the functional IL-2R

on CC cells, promoting the onset of CC (42).

Many microRNAs (miRs), which are noncoding regulatory RNA

molecules, interact with high-risk HPV oncoproteins (43, 44). For

example, miR-34a may be upregulated in E6/E7-expressing cells to

promote the development of CC (45). Additionally, E6/E7 may

increase the expression of miR-18a to induce SKT4 expression (46).

In contrast, another miR, miR-424, is underexpressed in CC tissues

and high-grade cervical intraepithelial neoplasia (47, 48).
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Interestingly, Hong S et al. reported that miR-424 levels were

reduced by a factor of 10 in cells expressing E6 and E7. In

addition, they confirmed that high expression of miR-424 led to

decreased checkpoint kinase 1 (CHK1) levels. A previous study

highlighted the important role of CHK1 activation in the genome

using general inhibitors (49). Therefore, HPV E6/E7 indirectly leads

to high CHK1 expression by inhibiting miR-424, thus affecting viral

replication (50). Furthermore, Olmedo-Nieva, L et al. first reported

that E6/E7 inhibited RHO 2 family-interacting cell polarization

regulator (RIPOR2) expression and increased PFKFB4 expression.

These findings, supported by multiple experimental methods,

demonstrated that the E6 oncoprotein inhibits RIPOR2

transcription and promotes its ubiquitination, leading to RIPOR2

downregulation (51). Moreover, in a Mexican cohort, RIPOR2

expression decreased with the progression of precancerous cervical

lesions, suggesting that downregulated RIPOR2 expression was

closely associated with shorter overall survival (OS) (51).
2.4 E7 protein

Another study revealed that pyruvate kinase M2 (PKM2) is

regulated by the E7 oncoprotein to affect the occurrence of CC (52).

HPV16 E7 increases the expression of PKM2 and enhances its

nonglycolytic function to promote CC growth, which was

confirmed by data from The Cancer Genome Atlas (TCGA) and

cell models (52).

With the discovery of an increasing number of targets, the role

of HPV oncogenic proteins in CC at the molecular level has been

confirmed. This finding also reemphasizes the decisive causative

role of HPV in CC. The oncogenic proteins E6 and E7 of HPV could

influence the process of malignant progression via several common

cancer pathways, as shown in Figure 2.
FIGURE 1

Interactions between HPV oncoproteins and PD-L1/PD-1 in CC patients. In the tumour microenvironment, the interaction between PD-1 and PD-L1
results in the secretion of inhibitory signals and induces T-cell apoptosis. Blocking this pathway is beneficial for activating T cells, reshaping the
tumour microenvironment, and preventing immune escape.
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3 Factors affecting the PD-1/PD-L1
axis in CC

In recent years, breakthroughs in immunotherapy have been

achieved in patients with a variety of malignant tumours.

Immunotherapy has been used to activate the immune response,

which is conducive to the elimination of HPV infection and the

early prevention of cancer (53–56). PD-1 and its ligand PD-L1 are

immune checkpoints that inhibit tumour-induced immunity (27,

57). PD-1 is found on the surface of diverse immune cells (58). PD-

L1 interacts with PD-1 on T lymphocytes and transmits an

inhibitory signal (59–61). The inhibition of PD-L1/PD-1 can

effectively rescue T cells and improve the prognosis of patients

with tumours.

A direct correlation has been reported between elevated PD-L1

expression and shorter overall survival of patients with CC (62). In

addition, CC patients who have poor survival outcomes express the

PD-L1 protein at high levels; specifically, approximately 96% of

tumour samples express PD-L1 (63). In addition, compared with

that of PD-1, the expression of PD-L1 can increase in a wider range of

cell types in response to inflammatory cytokines and other stimuli. In

the TME, PD-L1 expression is regulated by a variety of factors,

including inflammatory stimuli and carcinogenic pathways, at the

transcriptional, posttranscriptional, and posttranslational levels (64).

The therapeutic effects of current immune checkpoint inhibitors can

be further enhanced by modulating PD-L1 expression. Exploring the

factors affecting the expression of PD-1 and PD-L1 could provide

broader ideas for immunotherapy (Table 1).
Frontiers in Oncology 04
3.1 SPOP

Nuclear spotted poxvirus and zinc finger protein (SPOP) affects

the development of multiple malignancies, including but not

limited to lung, colon, stomach, and prostate cancers (65). The

downregulation of SPOP helps prevent the metastasis of CC and is

beneficial for improving the prognosis of CC patients, as shown

through in vivo and in vitro experiments (26). SPOP plays a dual

role in CC. SPOP mutations may lead to a decreased ability to

degrade the HPV E6 and E7 oncoproteins, thereby increasing

genomic stability and allowing cancer cells to survive (66, 67).

Additionally, m-IF and HALO analyses revealed that aberrant

expression of SPOP reduces the expression of PD-L1 on the cell

surface, promoting spatial separation between PD-1 and PD-L1 and

thereby promoting immune suppression in the tumour

microenvironment (26). CXCL16-related rescue experiments

verified that CXCL16 is an intermediate by which SPOP mediates

PD-1 immune tolerance (26).
3.2 GSK-3

Glycogen synthase kinase 3 (GSK-3, isoforms a and b) is a

serine-threonine kinase associated with tumour growth, cell

invasion and metastasis (68). Surprisingly, the PI3K-AKT

pathway is involved in the regulatory process of GSK-3, further

leading to its inactivation (69). Importantly, Taylor et al. reported

that inhibition of the enzyme GSK-3 activates the transcription
FIGURE 2

Three major oncoproteins (E5, E6 and E7) affect multiple potential targets involved in the progression of cervical cancer. E5 upregulates EGFR,
thereby regulating the expression of COX2 and VEGF; E6 also affects the EGFR pathway by upregulating the expression of JUK1/2 and c-Jun/AP1. In
addition, E6 upregulates OCT4/E6AP, and E6 and E7 upregulate HIF1A-AS2, TBX3, IL-2R and miR-18a/34a. OCT4/E6AP and HIF1A-AS2 both affect
p53. In addition, E6 and E7 inhibit PIPOR2 and miR-424, whereas E7 upregulates the expression of PKM2, ultimately regulating the progression of
cervical cancer.
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factor Tbx21 (Tbet), which is responsible for the downregulation of

PD-1 (70). Therefore, GSK-3 inhibitors may be widely used to

modulate immune responses because of their powerful regulatory

effect on PD-1. These findings suggest that GSK-3a/b is a regulatory
factor involved in PD-1 transcription.
3.3 MicroRNA-21

MicroRNA-21 (miR-21) inhibits the STAT1 signalling pathway

required for the IFN-g-induced M1 polarization of macrophages by

targeting JAK2 and STAT1, which also regulate apoptosis and

carcinogenic transformation (71). Therefore, miR-21 depletion

enhances the efficacy of PD-1 antibody immunotherapy through

the M1 polarization of TAMs (71). In addition, STAT1 signalling

has been shown to transcriptionally modulate PD-L1 expression via

IFN-g in head and neck cancers (72). JAK2/STAT1 signalling is a

major coregulator of PD-L1 transcription that is driven by the IFN-

g and EGFR pathways (72).
3.4 IL-1b

Xu et al. reported that lactic acid released by tumours can

trigger the secretion of IL-1b from Mjs by activating the NLRP3

inflammasome; in turn, Mj-derived IL-1b suppresses the immune

response by activating the NF-kB signalling pathway to drive an

increase in PD-L1 levels (73). IL-1b can reduce PD-L1 levels in

tumour cells and suppress the infiltration of Mjs in vivo, increasing

the antitumour efficacy (73).
3.5 Yin-yang 1

Overexpression of the transcription factor Yin-yang 1 (YY1) is

directly or indirectly involved in the regulation of PD-L1

expression. Many signalling pathways, such as the p53 pathway,

are involved in the regulation of YY1 and PD-L1 expression (74).
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Therefore, targeting YY1 directly or through various pathways

engaged in crosstalk may lead to the downregulation of PD-L1

expression in tumour cells, thereby enhancing the cell-mediated

antitumour response (74).
3.6 DENR

The expression of PD-L1 can be regulated by targeting DENR,

which is an RNA-binding protein (RBP) that affects RNA

metabolism. Control experiments have shown that in cancer cells

lacking DENR expression, the translation of JAK2 and the

interferon-g-JAK-STAT signalling pathway are disrupted, and the

level of PD-L1 expression is decreased (75). In summary, DENR is a

factor regulating PD-L1 that promotes tumour immune escape. The

possibility of DENR as a potential target is an important discovery

in immunotherapy.
3.7 TAZ

The Hippo pathway interferes with immune cell function and

promotes tumorigenesis (76, 77). Transcriptional regulatory factor

1 (TAZ) plays a role in the Hippo pathway. TAZ mRNA expression

was significantly increased in the CC group compared with the

control group. In addition, a high level of TAZ in CC increases the

activity of the PD-L1 promoter (78). The PD-L1 mRNA level in

HeLa cells transfected with the TAZ gene was also significantly

increased (78). A statistically significant positive correlation was

detected between TAZ and PD-L1 protein expression in CC tissues.

TAZ targeting of PD-L1 promotes the proliferation and invasion of

cancer cells, and TAZ is a major regulator of PD-L1 expression.
3.8 FAT4

FAT atypical cadherin 4 (FAT4) functions as a tumour

suppressor and has been detected on the cell membrane of
TABLE 1 Different types of regulators of the PD-L1/PD-1 axis.

Target Regulators Upstream
signals

Effects References

PD-1 SPOP CXCL16 SPOP mediates PD-1-induced immune tolerance. Overexpression of SPOP promotes the invasion
and metastasis of CC cells in vitro and in vivo.

(26, 65–67)

GSK-3 Tbet Loss of GSK-3 inhibits tumour growth by downregulating PD-1 expression. (68–70)

PD-L1 miR-21 STAT1 MiR-21 depletion significantly upregulates the expression of PD-L1. (71, 72)

IL-1b NF-kB IL-1b promotes an increase in PD-L1 expression by activating NF-kB. (73)

YY1 p53 High expression of YY1 promotes PD-L1 expression through a variety of signalling pathways. (74)

DENR JAK-STAT Overexpression of DENR regulates PD-L1 through the JAK-STAT signalling pathway. (75)

TAZ – TAZ activation in vivo promotes tumorigenesis and increases PD-L1 expression. (76–78)

FAT4 b-catenin/STT3 FAT4 is responsible for the maladjustment and downregulation of PD-L1 in CC. (79–81)

TFAP2A PI3K-AKT TFAP2A positively regulates PD-L1 levels in CC. (82–84)
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mammalian cells (79). FAT4 is abnormally expressed in many

tumours due to mutation or deletion, especially in squamous cell

carcinoma. The antagonistic effect of FAT4 on the nuclear

localization of b-catenin inhibits the b-catenin/STT3/PD-L1

signalling pathway, which is necessary for activating antitumour

immunity. In addition, FAT4 induces CTL activation after

downregulating PD-L1 expression (80). These findings increase

our understanding of PD-L1-related regulation in tumours at the

molecular level (81).
3.9 TFAP2A

The transcription factor AP−2 alpha (TFAP2A) plays a role in

promoting apoptosis in CC. In vitro and in vivo experiments

confirmed that the expression of the TFAP2A gene in CC is

higher than that in normal people and is related to the tumour

stage and local metastasis. IHC staining was performed for 30

normal cervical tissues and 91 CC tissues, and a higher percentage

of PD-L1-positive cells was observed in cancer tissues than in

normal tissues (82). The binding of TFAP2A to the PD-L1

promoter region is beneficial for its high expression, thereby

forming a positive feedback loop during tumour growth. In colon

cancer, the PI3K‒AKT pathway has been shown to be an

intermediary for positive feedback (83). However, TFAP2A is also

a tumour suppressor; for example, it is underexpressed in

hepatocellular carcinoma (84). Therefore, additional studies on

the dual role of TFAP2A need to be performed.

Due to the complexity of CC progression and the highly

challenging nature of the immunotherapy field (85), the discovery

of new therapeutic targets may improve the response rate to

immunotherapy. Research on the expression of the PD-1/PD-L1

axis in severe viral infections andHPV-induced CC will be a hot topic.
4 Potential roles of HPV oncoproteins
in the response to PD-L1/PD-
1 immunotherapy

Research on the importance of the PD-L1/PD-1 axis in the

aetiology of CC has become increasingly extensive. A study of 25

patients with cervical lesions revealed higher PD-L1 expression in

HPV-positive CC patients than in HPV-negative CC patients

according to an analysis of a tissue microarray of tumour cores

from 25 patients with cervical lesions (P<0.05) (86). In addition, the

significant correlation between HPV positivity and high PD-L1

expression has been widely studied (32, 87, 88). HPV oncoproteins

affect the expression of PD-L1 through a variety of molecular

signals (Figure 3).
4.1 The E5 oncoprotein

Lee et al. reported that yes-associated protein (YAP) affects the

activation of the PD-L1/PD-1 pathway by regulating the
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transcription of PD-L1 (89). The E5 oncoprotein activates EGFR,

which in turn enhances the in vivo regulation of YAP, thereby

increasing the therapeutic potential of YAP and illuminating the

complex impact of the EGFR–YAP signalling pathway on PD-L1 in

CC progression. In summary, therapy targeting this pathway may

downregulate PD-L1 expression and may be a potential mechanism

for inhibiting T-cell apoptosis and persistent HPV infection (85,

89–92). Interestingly, Ping-Chih Hsu et al. reported that in NSCLC,

PD-L1 expression is also regulated by the EGFR pathway.

Activating the EGFR kinase domain is beneficial for further

inducing PD-L1 expression, possibly through the activation of the

Hippo/YAP signalling pathway, which causes T-cell apoptosis (93).

These studies could guide studies of the E5 oncoprotein.
4.2 E6 and E7 oncoproteins

The pathways that affect the expression of the PD-L1/PD-1 axis

through the E6 and E7 oncoproteins have been studied

more extensively.
4.2.1 The HIF-1a pathway
Hypoxia, a physiological stimulus, induces hypoxia inducible

factor 2a (HIF-2a) to upregulate the EGFR protein (94, 95). In

almost all cancers, the presence of a hypoxic environment increases

HIF-1a expression (96, 97). In hypoxic HPV-transformed cells, the

expression of the E6 and E7 oncoproteins is downregulated at the

transcriptional level via the selective regulation of the PI3K/

mTORC2/Akt axis (98–100). More importantly, the E6 and E7

oncogenes increase HIF-1a levels and stability, respectively, in

anoxic environments (101). Interestingly, more than one study

illustrated that hypoxia increases the expression of PD-L1, and a

positive correlation has been observed between HIF-1a and PD-L1

expression in tumours (90, 102, 103).

Under hypoxic conditions, transforming growth factor b (TGF-b)
also participates in the HIF-1a signalling pathway and increases the

level of PD-L1 in HPV-driven cancers (104). TGF-b can indirectly

promote the transcription and upregulation of PD-L1 by activating

various non-SMAD-dependent signalling pathways, such as the

PI3K/Akt, MAPK/ERK, and JAK/STAT pathways (105). Similarly,

in late-stage tumours, the increase in the levels of the HPV E6 and E7

oncoproteins can also activate TGF-b signalling in CC, leading to

immunosuppression and tumour progression (106). TGF-b has a

dual role. In the early stages of tumour development, E6 and E7

enhancement interferes with the growth inhibition of transformed

cells by TGF-b (107). Ultimately, an immunosuppressive

microenvironment is established that is conducive to tumour cell

escape from the supervision of the immune system. Inhibitors

targeting the TGF-b pathway are being used in combination with

PD-1/PD-L1 inhibitors to achieve the precise application of

immunotherapy. Drugs such as the anti-TGF-b/PD-L1 bispecific

antibody YM101 (108) and BITP have seen increased clinical

application (109). However, whether HIF-1a-mediated upregulation

of PD-L1 is associated with a poor prognosis for CC patients has yet

to be investigated.
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4.2.2 The Wnt/b-catenin pathway
Overactivation of the Wnt signalling pathway in the

progression of CC has been shown to occur in previous studies

(110–112). Furthermore, the important role of HPV E6 in this

activation pathway has been recognized with the help of cellular

models (113). T-cell factor 4 (TCF-4) has been shown to exhibit

abnormal mutations in various types of cancer (114). Both E6 and

E7 promote Wnt/b-catenin expression and increase TCF-mediated

transcription (115, 116). Similarly, Munoz-Bello et al. reported that

E6 and E6*I upregulate the TCF-4 transcription factor to regulate

the activity of the Wnt/b-catenin pathway, promote the

proliferation of cancer cells, induce the stabilization of TCF-4,

and help maintain the transformation and immortalization of

cancer cells (116). After b-catenin enters the nucleus, it binds to

TCF-4, activating the transcription of downstream genes, including

MYC (117), which is an important step in driving high PD-L1

expression. Furthermore, both Wnt/b-catenin and PD-L1/PD-1

inactivate CD8+ T-cell function by influencing the c-MYC gene

during carcinogenesis and tumour formation, enabling tumour cells

to evade the immune system (118). Therefore, inhibition of the Wnt

signalling pathway in cancer cells can disrupt PD-L1 expression by

affecting MYC signalling, thereby enhancing the immune defence

against tumours (119). By targeting various components of the

TCF-4-Wnt/b-catenin-MYC-PD-L1 pathway, new diagnostic and

therapeutic strategies can be developed to enhance the immune

defence against tumours.
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4.2.3 The JAK-STAT pathway
CXC motif chemokine 10 (CXCL10) is an important mediator

of cancer intracellular signalling pathways and cell transport (120).

CXCL10 is secreted by CC cells after HPV infection and

subsequently binds to CXCR3 in surrounding fibroblasts (121).

Along with the activation of the JAK-STAT pathway, the CXCL10-

CXCR3 axis increases extracellular PD-L1 levels (86). These

mechanisms may promote virus incubation and help HPVs

escape the immune response. Moreover, in gene-edited cells,

knocking out E6/E7 leads to a significant reduction in CXCL10

expression, indicating the regulatory effect of HPV E6/E7 on

CXCL10 expression in human cervical cells (86, 122).

Furthermore, another study revealed that the serum CXCL10

concentration is significantly higher in patients than in healthy

controls, which is consistent with previous conclusions (123).

Therefore, CXCL10 may be a predictive biomarker for

diagnosing CC.
4.2.4 The c-GAS pathway
The upregulation of topoisomerase I (TOP1) triggers DNA

repair, acting as a key DDR protein (124). In CC, TOP1 promotes

an increase in NF-kB expression by regulating cyclic GMP-AMP

synthase (c-GAS), which is an important step in increasing PD-L1

expression. Conversely, a low level of TOP1 inhibits tumour cell

growth. Therefore, TOP1 and c-GAS together form a signalling
FIGURE 3

The pathways through which HPV affects the levels of PD-L1/PD-1 in CC include the YAP, HIF-1, Wnt/b-catenin, JAK-STAT, MAPK, c-GAS, PI3K/AKT,
and STING-TBK1 pathways. These pathways are involved mainly in promoting PD-L1 mRNA expression. HPV oncoproteins are positive regulators of
these downstream factors, except Memo-1, whose expression is downregulated by E7. E6 and E7 inhibit the expression of miR-142-5p, upregulate
the expression of PD-L1, and induce the expression of PD-L1. In addition, the upregulation of METTL3 by HPV can increase the expression of PD-L1.
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pathway that promotes tumour cell growth (125, 126). Interestingly,

the HPV oncogenic protein E6 has been shown to regulate c-GAS

(127). Luo et al. further highlighted the roles of the oncogenic

proteins E6 and E7 in increasing TOP1 expression. The use of

specific shRNAs to suppress the expression of the oncogenic

proteins HPV E6 and E7 in CC cells led to the inhibition of

TOP1 and PD-L1, with E7 resulting in a greater response rate.

Additionally, co-IP experiments revealed that E6 and E7 can

promote the interaction between cGAS and TOP1, leading to the

accumulation of the PD-L1 protein in cervical cancer patients (128).

Furthermore, studies have confirmed that the inhibition of TOP1,

such as with topotecan (TPT) or camptothecin (CPT), has

antitumour effects (124), driving the activation of the cGAS-NF-

kB-PD-L1 pathway in cancer therapy.

4.2.5 The PI3K/AKT pathway
In HPV-induced cancers, NF-kB induces an increase in PD-L1/

PD-1 expression, and PI3K/AKT signalling is activated by the E6

and E7 genes (129–131). The continuous NF-kB and PI3K/AKT

pathways connect HPV oncogenes with the PD-L1/PD-1 pathway.

In vitro, the association between the loss of Na+/H+ exchanger

regulatory factor-1 (NHERF-1) in CC and ERK signalling

stimulated by EGFR has been preliminarily verified (132, 133).

Moreover, persistent activation of EGFR by NHERF-1 also results

in a poor prognosis for CC patients (133). Moreover, NHERF1 is

degraded by E6 and E7, which triggers the PI3K/AKT pathway

(134). The direct binding of E2F1 to the nonstructural maintenance

of chromosomes (SMC) condensin I complex subunit H (NCAPH)

gene promoter provides evidence that E7 increases the expression of

the NCAPH gene. When the expression of NCAPH decreases, the

expression of PDK1 decreases, which indicates that the activation of

the AKT pathway by NCAPH may depend on the upregulation of

PDK1 expression (135). Furthermore, NCAPH can transmodulate

the transcription of E7 (135).

Unlike NCAPH, Trejo-Cerro et al. discovered the effect of

HPV16 E7 on Memo1 through proteomic research and reported

that the inhibition of Memo1 promoted the growth of HPV-positive

cervical cancer cells, which was accompanied by the activation of

the Akt pathway (136). Moreover, the effects of heat shock protein

90 (HSP90) overexpression on E6/E7 cells have been widely

analysed. Specifically, HSP90 does not interact directly with E6/

E7 but rather stabilizes the viral proteins E6/E7 to exert its effects

(137). Furthermore, by exploring the expression pattern of HSP90,

Zeng, J et al. confirmed the inhibitory effect of HSP90 knockdown

on the proliferation of CaSki and SiHa cells (138). Notably, these

findings are consistent with those of previous studies in this field

(139). Notably, the downregulation of HSP90 inhibits the HER2/

PI3K/AKT pathway, thereby effectively inhibiting the proliferation

and migration of HPV16+ cancer cells (138).

4.2.6 The STING-TBK1 pathway
Interferon-gamma inducible factor 16 (IFI16) is an essential

protein involved in DNA virus infection that stimulates cGAMP

expression (140, 141). HPV E7 facilitates the ubiquitin‒proteasome-

mediated degradation of IFI16 through the E3 ligase TRIM21,
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inhibiting pyroptosis during infection (142). Furthermore, Cai, H

et al. injected SiHa cells into NOD/SCID mice to establish tumour

xenografts and verify the roles of PD-L1 and IFI16 in CC

development. Both PD-L1 and IFI16 knockdown significantly

suppressed the growth of SiHa-derived tumours in vivo (143).

The expression and distribution of IFI16 were analysed using

different methods, such as western blotting. The cytoplasmic

translocation of IFI16 was affected by IFN-g stimulation, and

IFI16 participated in STING pathway activation through this

pathway (144). IFI16 activated STING-TBK1-mediated

immunoregulation and the downstream NF-kB pathway, which

upregulated PD-L1 in the immune microenvironment, thus

promoting CC progression (143). Therefore, STING-TBK1 may

constitute a new pathway to inhibit the metastasis of CC cells, which

is worth exploring.

4.2.7 MicroRNAs regulate the PD-L1/PD-1 axis
Researchers assume that microRNAs are intermediaries that

regulate the expression of other genes. In addition to the miRNAs

mentioned above, in recent studies, miR-142-5p has been found to

act as a tumour suppressor in CC, mediating the regulatory effect of

E6/E7 on PD-L1 (145, 146). The inverse relationship between miR-

142-5p and PD-L1 expression was confirmed by the transfection of

the E6 and E7 oncoproteins (146). In addition, the upregulation of

miR-142-5pweakens the effect of E6/E7 on PD-L1 and inhibits the

occurrence of tumours. These results were further confirmed via in

vivo experiments (146). Therefore, using miR-142-5p as a tumour

suppressor to increase the efficacy of tumour immunotherapy

is feasible.

4.2.8 Possible factors related to PD-L1 expression
in CC

Interestingly, another target that directly affects HPV infection

and PD-L1 expression was identified. METTL3 plays an

immunomodulatory role in HPV-associated cancers by inhibiting

the infiltration of immune cells (147). METTL3, a key regulator of

N6-adenosine methylation (m6A), is associated with the HPV

status and expression in tumours and is correlated with a poor

prognosis (147). A high level of METTL3 promotes the formation

of an immunosuppressive tumour microenvironment (147, 148).

Additionally, high levels of METTL3 and YTHDF1 may lead to a

poor prognosis for patients with CC (149, 150). Moreover, METTL3

accelerates the Warburg effect or aerobic glycolysis (149). Further

research by Ji H et al. revealed that METTL3 increased HK2 protein

expression by increasing the stability of the HK2 mRNA, thus

accelerating glycolysis. Notably, the expression of PD-L1 in CC was

negatively correlated with the expression of ALKBH5, FTO,

METTL3, RBM15B, YTHDF1, YTHDF3, and ZC3H1 (148). This

study has several limitations. For example, how HPV infection

affects METTL3 expression remains to be further elucidated. Thus,

additional possible interactions between HPV oncoproteins and

PD-L1 are worth exploring.

Building on previous research, the continuous enrichment of

pathways such as the YAP, HIF-1, Wnt/b-catenin, JAK-STAT, PI3K/
AKT, and STING-TBK1 pathways provides new perspectives for
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trends in personalized immunotherapy and holds promise for

addressing the issue of low response rates to immunotherapy.
5 Conclusions

HPV infection is one of the important factors leading to the

occurrence of CC, particularly high-risk HPV types 16/18, which

are the most common. Continuous viral infection is a driving factor

in tumour progression, and the HPV oncoproteins E6/E7 can evade

host immune surveillance in various ways, ultimately leading to

cancer. Numerous studies have confirmed that the expression of

PD-L1/PD-1 is related to the treatment and prognosis of CC.

However, verification of whether the expression of PD-L1/PD-1 is

associated with infection with different types of HPV related to CC

is urgently needed. Therefore, understanding the many

unelucidated pathogenic mechanisms of HPV, the untapped

potential of the PD-L1/PD-1 axis, and the impact of high-risk

HPV oncoproteins on the PD-L1/PD-1 pathway is crucial for

guiding clinical decisions in selecting effective immunotherapy

options for patients with CC. For this purpose, this paper

summarizes the high-quality literature published in the past 5

years and elaborates in detail how the E5, E6 and E7

oncoproteins affect the expression of PD-L1 through YAP, HIF-1,

Wnt/b-catenin, JAK-STAT, PI3K/AKT and STINT-Tbk1 signalling

and promote the occurrence of CC. EGFR, hypoxia, TCF-4,

CXCL10, NHERF-1, NCAPH, HSP90, IFI16 and other targets

involved in these pathways are positively regulated by

oncoproteins. In particular, the Memo1 and miR-142-5p

regulatory factors are negatively regulated by the E7 oncoprotein.

Targeting or knocking out these factors can effectively hinder the

progression of CC cells, significantly enhancing the effect of

immunotherapy. Moreover, the expression of PD-L1 itself might

predict the clinical outcomes of CC patients. Therefore, we believe

that infection with different high-risk HPV types leads to differences

in the sensitivity of patients with CC to PD-1/PD-L1

immunotherapy, which provides a reference for individualized

and specific clinical treatment and a basis for the development of

more effective immune checkpoint inhibitors. Elucidating the roles

of different regulatory pathways can help evaluate therapeutic

effects and facilitate the prediction of whether the use of a specific
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immunotherapeutic drug wil l be effect ive . Moreover,

immunotherapies are expected to largely avoid immune-related

side effects and overcome resistance mechanisms. Although the

current research is limited, HPV-positive patients are undoubtedly

more likely to benefit from the precise application of

immunotherapy. The identification of an increasing number of

pathways has expanded our understanding of HPV-related CC and,

more importantly, strongly validated that immunotherapy may

have a wider range of antitumour applications in the future.
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