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comorbidities [5]. Network medicine offers a complemen-
tary analytical framework that aims to leverage this inher-
ent heterogeneity [6]. By analyzing relationships between 
multiple diseases/conditions simultaneously, these methods 
can reveal patterns that may not be immediately apparent 
in conventional epidemiological studies [7]. This network-
based view aligns with the growing understanding of HF 
as a systemic disorder rather than a purely cardiac condi-
tion [8, 9]. In this review, we examine the current state of 
disease and comorbidity networks studying HF, discussing 
the methodological foundations, key findings, and poten-
tial clinical implications of the literature. We also critically 
assess the limitations of these approaches and consider 
future directions that may enhance their utility in research 
and clinical practice.

Comorbidities in Heart Failure

Comorbidity is the presence of additional complicating dis-
orders in patients with a primary disease of interest [10]. 
In heart failure (HF) and its subphenotypes, comorbidity 
is common in patient populations across the world [11]. In 

Introduction

The emergence of big data in the cardiology field has pre-
sented an unprecedented opportunity to unravel the com-
plexities underlying cardiovascular diseases [1]. Heart 
failure (HF), characterized by its high prevalence, hetero-
geneous nature, and diverse clinical presentations, repre-
sents an ideal candidate for the implementation of new big 
data-derived approaches [2–4]. While traditional reduc-
tionist methods have provided valuable insights into our 
understanding of the disease so far, they often struggle to 
fully capture the systemic nature of HF and its associated 
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Purpose of Review  Heart failure (HF) is often accompanied by a constellation of comorbidities, leading to diverse patient 
presentations and clinical trajectories. While traditional methods have provided valuable insights into our understanding of 
HF, network medicine approaches seek to leverage these complex relationships by analyzing disease at a systems level. This 
review introduces the concepts of network medicine and explores the use of comorbidity networks to study HF and heart 
disease.
Recent Findings  Comorbidity networks are used to understand disease trajectories, predict outcomes, and uncover potential 
molecular mechanisms through identification of genes and pathways relevant to comorbidity. These networks have shown 
the importance of non-cardiovascular comorbidities to the clinical journey of patients with HF. However, the community 
should be aware of important limitations in developing and implementing these methods.
Summary  Network approaches hold promise for unraveling the impact of comorbidities in the complex presentation and 
genetics of HF. Methods that consider comorbidity presence and timing have the potential to help optimize management 
strategies and identify pathophysiological mechanisms.
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some studies, more than 85% of patients reported having at 
least two conditions in addition to HF [12, 13]. Despite this, 
there is no agreed-upon definition of comorbidity in terms 
of causal relationship to the primary disease of interest [14], 
and studies use different definitions, which place varying 
degrees of importance on the index disease [15], causality, 
and presence of additional conditions [16]. When multiple 
diseases are present in addition to the condition of interest, 
the term multimorbidity is frequently used [17].

Patients with HF can experience a wide variety of comor-
bid conditions. However, most investigations have focused 
on a small number of the most common comorbidities. 
Commonly assessed comorbidities include coronary artery 
disease, hypertension, diabetes, atrial fibrillation, chronic 
obstructive pulmonary disorder, kidney disease, and obesity, 
amongst others [18–22]. In patients with HF, comorbidity is 
associated with poorer quality of life [23], increased com-
plications, and higher rates of readmission and death [18, 
24–26]. Noncardiovascular comorbidities especially have 
been more strongly associated with risk of death and hos-
pitalization [27, 28].

Comorbidities have been particularly important in the 
context of subtypes of HF.Patients with HFare commonly 
grouped by left ventricular ejection fraction, with patients 
with an LVEF ≤ 40 identified as HF with reduced ejection 
fraction (HFrEF) and those with an LVEF ≥ 50 categorized 
as HF with preserved ejection fraction (HFpEF) [29]. The 
differences in comorbidity in these two groups have been 
posited as impacting changes in the heart before disease 
[30], and guidelines for managing specific comorbidities, 
such as hypertension or diabetes, play a particularly cru-
cial role in tailoring treatment strategies for patients with 
HFpEF, as these comorbidities often contribute signifi-
cantly to the pathophysiology and symptom burden in this 
subtype of heart failure [31, 32]. Some literature has found 
that HFpEF patients have higher rates of comorbidity [28], 
and especially non-cardiac comorbidities, than their HFrEF 
counterparts [33–35], while others have found prevalence 
rates across EF-based subtypes to be fairly consistent [36]. 
Comorbidities common in HFrEF have been described as 
more likely to be cardiac diseases [37] than those in HFpEF 
patients. There is also some evidence that the relationship 
between comorbidity and negative outcomes such as mor-
tality [38] differs between EF-based subtypes [36, 39, 40]. 
The relationship between comorbidities and HF subtype can 
be complicated by age and sex [41]. For example, anemia is 
a more frequent comorbidity in HFpEF compared to HFrEF, 
and is more common in women with HF regardless of sub-
type than men [42].

Leveraging Network Medicine to Understanding 
Comorbidities in Disease

The desire to understand the complex relationships between 
comorbidity and HF, and the availability of big data 
resources [43] has resulted in embracing methods that can 
leverage this information. Network medicine can be defined 
as the application of network methodologies to approach the 
study of human diseases [6]. First applied to study physical 
interactions at the molecular level within the cell [44, 45], 
investigators soon adapted these methods to explore human 
disease relationships by hypothesizing that diseases shar-
ing molecular characteristics might also display phenotypic 
similarities [46]. Network medicine relies on the hypoth-
esis that if two diseases are related, changes in the network 
that cause one disease will likely affect the manifestation of 
other diseases as well [47].

Conceptually, a network is a collection of nodes con-
nected by edges [47]. Networks can be undirected, directed, 
and/or weighted, with edges providing information about 
the directionality and strength of the relationship between 
the nodes [48] (Fig.  1A). In the case of comorbidity net-
works, the network nodes represent diseases and the edges 
depict connections between two nodes, often representing 
a correlation between or an observed-to-expected ratio of 
two diseases [46, 49, 50]. Several types of measures includ-
ing degree characterize networks, measuring the number of 
connections in a node, betweenness, a measure of the num-
ber of nodes a node can influence, closeness, measuring the 
average from a node to the rest of the nodes in the network 
[48]. A list of network-related vocabulary can be found in 
the included Glossary of Terms.

To construct a comorbidity network, the definition of 
nodes and edges must align with the research question. In 
comorbidity networks, the nodes are typically based on a 
disease ontology. Since many ontologies exist (e.g. MESH, 
HPO, ICD, PheWAS, DO), each developed for different 
purposes and with different levels of resolution, selecting 
the appropriate one requires careful consideration of the 
research question. Sensitivity analyses have shown that 
ontology choice significantly influences network topology 
[51]. Then, statistical tests are often applied to assess whether 
two diseases co-occur more frequently than expected based 
on their prevalence [49]. These models can be enhanced in 
various ways including incorporating temporal relationships 
[52, 53] or multivariate analyses to control for confounders 
[54, 55]. From these models, edges are filtered, usually by 
selecting cutoffs based on effect sizes or p-values globally 
(on network level) or locally (e.g. on node level [56]). In tra-
ditional comorbidity networks, diseases serve as the nodes, 
and statistical associations between them form the edges. 
However, alternative approaches, such as patient networks, 
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can be used for patient stratification or classification, where 
the nodes represent patients and the edges reflect the simi-
larity [57, 58]of their comorbidity profiles [59]. A central 
challenge in both approaches is designing a network that 
accurately captures the relationships under study, particu-
larly in defining meaningful edges that reflect comorbid 
associations.

Once built, networks can be layered with other types of 
network data to create “multi-layer” networks [60](Fig. 1B). 
These can be homogeneous if only one node type is used, 
or heterogeneous when different types of networks are com-
bined. Heterogeneous multi-layer networks have been sug-
gested to integrate clinical information, omics, and more to 
identify genes and proteins involved in pathological pro-
cesses [57, 58]. Prior knowledge is one important source of 
information that links phenotypic data to biological knowl-
edge [61]. Resources such as DISGENET [62], Malacards 
[63], UniProtKB [64], and ClinVar [65], amongst others, 
can provide important information about linking pheno-
typic information to disease level knowledge, and disease 
ontologies [66, 67] and language systems [68] can help 
combine knowledge from different data sources with differ-
ent nomenclatures.

Comorbidity networks often use large numbers of comor-
bidities, and therefore, most analyses are performed in data-
sets from electronic health records or administrative data. 

These data sources allow the capture of a broad spectrum 
of comorbid conditions in populations who have actively 
sought care. However, some network analyses only ana-
lyze a small spectrum of comorbidity, creating a phenotype 
algorithm for each one [69, 70]. At the core, though, these 
methods focus on the interconnectedness of comorbidities, 
aiming to provide insights into the complex web of comor-
bid relationships and potential pathways between different 
diseases [6, 71] rather than make patient-level statements.

Other common computational methods in the study of 
the heterogeneity of HF, such as clustering [72, 73], latent 
class analyses [74, 75], and factor analyses [13], have been 
used as alternatives to, or in combination with, comorbid-
ity network analysis as they can provide easily interpreta-
ble insights about patient sub-populations. These methods 
focus on patients to group individuals based on their shared 
characteristics without necessarily exploring the intricate 
relationships between the variables themselves [76]. We 
will only loosely touch on these methods as they intersect 
with using networks to study HF comorbidities. We recom-
mend these reviews for readers interested in the methodol-
ogy behind clustering in HF [77–80].

Fig. 1  Overview of methods of network construction. Networks can 
be constructed (A) from data where information on each disease is 
present for each patient. In these networks, diseases are represented by 
nodes and the connections between diseases by edges. After network 

construction they can be used for a variety of study types or can be 
(B) integrated with data or prior knowledge resources that allow the 
linking of different levels of information about medicine and biology
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disease and T2DM was exclusive to men. Moreover, a sig-
nificant correlation between chronic kidney disease and val-
vular disease was observed only in HFrEF patients, while 
the strength of the correlation between T2DM and chronic 
kidney disease in HFpEF almost doubled the one in HFrEF.

Finally, at least one example has shown that in popula-
tions of patients with HF grouped over chronological time, 
the relationship between comorbidities in HF has changed 
over time, but the disease communities have remained sta-
ble [85].

Communities in Comorbidity Networks have been 
Associated with Outcomes

Comorbidity networks have also been leveraged to pro-
vide information about the risk of clinically relevant out-
comes. A large study of the Swedish Heart Failure Registry 
used graphical models to assess the relationship between 
comorbidities and metrics of patient health including 
patient-reported outcomes. It found non-cardiovascular 
comorbidities were a major driver of patient health and that 
for some patients might be driving the burden of symptoms 
normally assessed in HF [86]. Networks have also been 
used to study the usage of clinical services by patients with 
HF, demonstrating a diffuse flow of patients between clini-
cal resources, but one that changed depending on whether a 
patient had been admitted [87].

Regarding “hard” clinical outcomes, Zheng et al. used 
latent class analysis to subgroup patients with HFpEF and 
HFrEF by comorbidities. Then, they used network methods 
to examine the relationships between the comorbid condi-
tions in each cluster. They found that different connections 
between common comorbidities were important in each 
cluster, but the relevant comorbidities were highly overlap-
ping. Comorbidity-based populations were associated with 
differential outcomes rates, including all-cause mortality 
and readmission, despite otherwise similar clinical charac-
teristics. They used this to argue for hierarchical comorbid-
ity management in chronic heart failure patients [88].

Similarly, a study in IHD used network analyses and 
machine learning to predict which disease clusters would 
put patients at risk of progression to heart failure. They 
built a disease co-occurrence network for IHD and personal 
networks for individual patients. They used network mea-
sures as features in machine learning models, concluding 
that network measures were more important as features than 
demographic information such as age and sex [89]. Finally, 
at least one study used networks to identify diagnoses and 
procedures associated with increased hospital costs for 
affected patients [90].

Comorbidity Networks of Heart Failure and Heart 
Disease

Networks have been used to investigate different aspects 
of HF. In the following sections, we discuss networks 
developed in HF and one of its most frequent underlying 
etiologies, ischemic heart disease (IHD). We have loosely 
grouped literature by the underlying purpose for which the 
network was developed.

Networks have Evaluated Comorbidity Relationships in HF 
and IHD

An important use of disease networks is to explore the con-
nections between comorbidities in disease subpopulations. 
Carmona-Perez et al. evaluated the comorbidity patterns 
in HF and COPD patients, specifically comparing men and 
women [81] with one or both diseases. Some diseases, such 
as kidney disease and respiratory disorders, were amongst 
the 10 most highly connected nodes in the HF network of 
both males and females. Others were more sex specific, with 
arthritis one of the 10 nodes with the highest links in the 
HF network in women only and peripheral vascular disorder 
only in the male-only HF network.

Networks developed within age and sex-based subgroups 
have shown that comorbidity relationships may be differ-
ent in independent populations. In an IHD network, males 
had a more complex network than females, and the connec-
tions between comorbidities were also different [82]. For 
example, conditions relating to cerebrovascular disease 
were more common in men, while kidney failure and related 
alterations of metabolism were more comorbid in females. 
Across age-stratified networks, they found overall consis-
tency of prevalent comorbidities, but that comorbidity rela-
tionships changed, becoming more complicated in older 
patients. A study by Martins et al. used clustering as the pri-
mary method to determine groups of associated comorbid-
ity, but leveraged network methods to visualize the results 
of these clusters [83]. The network visualization revealed 
differences in comorbidity prevalence and complexity 
between clusters and allowed important disease pairs in the 
clusters to be identified. The relationship between anemia 
and hypertension and anemia and CKD was important in 
one cluster, while in another the connections of AF, to obe-
sity and hypertension were important.

This was also evident in a study from the Colombian 
heart failure registry [84]. In this study, sex- and LVEF-
stratified networks revealed significant differences in the 
relationships between comorbidities, highlighting signifi-
cant correlations between valvular disease and atrial fibril-
lation, as well as valvular disease and coronary heart disease 
exclusive to women, while the correlation between valvular 
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in patients with complex healthcare trajectories. Querying 
these networks may provide valuable insights for identify-
ing at-risk patients or interventional opportunities before the 
onset of heart failure.

Morbinet, while focused on type 2 diabetes, captured 
heart failure, heart disease, and ischemic heart disease as 
important nodes [94]. Heart failure was most strongly 
linked with diabetes and pulmonary heart disease, though it 
was also less strongly linked to non-cardiovascular comor-
bidities, including gout and liver disease. A second network 
built for type 2 diabetes also identified HF as an important 
node in a cardiovascular disease-heavy cluster and found 
that diseases in the cluster were less common in the net-
works of non-diabetics [95]. This cluster contained comor-
bidities such as anemia, lymphoma, and rheumatoid arthritis 
in addition to circulatory and vascular disorders. These net-
works demonstrate the complicated relationship between 
diabetes and HF and the breadth of comorbidities associated 
with both. In contrast to the importance of HF in diabetes 
networks, in a study of lung cancer patients, the authors 
found that while the patients with HF all had multiple other 
comorbidities, HF itself did not play a strong role in the 
development of the comorbidity pattern an individual had 
[96]. This demonstrates that networks of other HF-relevant 
phenotypes will also recapitulate knowledge relevant to HF. 
Similarly, a network focused on hypothyroidism identified 
HF as a well-connected node that directionally led to hypo-
thyroidism in the directed network [97].

General multimorbidity networks have also assessed 
mortality and hospitalization due to HF. A multimorbidity 
network in Veterans found differential rates of deceased 
persons 8 years after HF in different subclusters of the HF 
temporal network [98]. This demonstrates that comorbidity 
networks may be a valid way to identify high-risk popu-
lations. Other studies found differences in the number and 
length of stay in patients who develop HF depending on the 
order of CVD development [99]. However, another tem-
poral network study found that hypertensive heart disease 
and heart failure were important nodes for predicting future 
heart failure, a result potentially at odds with some known 
developmental pathways for HF [100]. Data assessing mul-
timorbidity in multiple racial/ethnic populations from the 
UK found that HF was associated with high multimorbidity 
coefficients in all populations [101]. They also found that 
many of the most common comorbidities in HF popula-
tions were exclusion criteria for clinical trials, providing an 
important assessment of the real-world applicability of trial 
data.

Networks to Connect HF to Genes

While the number of studies that have analyzed ejection 
fraction-based subtypes of HF using clustering methods is 
quite large, few studies were primarily network-based. In 
our previous work, we built a comorbidity network from 
patients with HF visiting a German university hospital 
[91]. Ejection fraction data was then used to subphenotype 
HFpEF and HFrEF patients and learn discriminant comor-
bidity profiles. Statistical methods were employed to con-
trast disease communities more representative of the HFpEF 
and HFrEF populations. We found that the characteristics of 
HFpEF patients were overrepresented in the endocrine and 
pulmonary disease clusters. Moreover, using existing data 
about the relationship of diseases to genes, we developed 
a heterogeneous multi-layer network and used a random 
walk to predict which genes were closer in the network con-
text to the comorbidity profiles discriminant for HFpEF or 
HFrEF. As a result, we identified genes involved in fibrosis, 
hypertrophy, oxidative stress, and endoplasmic reticulum 
stress, which were significantly overrepresented in a murine 
transcriptomic disease signature of HFpEF, providing addi-
tional support for their relevance in this context. This work 
serves as a proof of concept, suggesting that not only can 
comorbid diseases share molecular profiles, but multi-organ 
syndromes like HFpEF may be linked to recurrent molecu-
lar patterns across organs. However, studying systemic dis-
eases remains challenging, and experimental strategies are 
particularly needed to evaluate organism-wide changes in 
response to disease.

On the other hand, Cruz-Ávila et al. built comorbidity 
networks for a CVD population and divided the population 
into age brackets as determined by 10-year increments [92]. 
In their network, they found that arrhythmias, heart failure, 
and kidney disease had the greatest number of connections. 
They noted that many possible links between comorbidities 
were absent and that comorbidity relationships were hetero-
geneous. Additionally, they reported that congenital disor-
ders had a prominent place in the network in children, while 
in adults, complex diseases became the central nodes. To 
identify comorbidity-associated genes, they used ClinVar 
to link diseases to genetics and then performed a pathway 
analysis. HF was well connected in age-stratified networks 
from age 11 on.

Heart Failure in Networks Focused on Other Diseases

Although not designed to assess HF specifically, networks 
focused on other diseases or generally on multimorbid 
patients without a specific index disease have also captured 
HF and its subtypes. This may be important for highlight-
ing comorbidities before HF [93] and understanding HF 
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are often built using data from specific systems or regions 
[6].

Notably, the methodological aspects of network analyses 
also present challenges. The structure and insights derived 
from these networks can be highly sensitive to the specific 
metrics and algorithms used in their creation [102]. An 
example of this is provided in Fig. 2. This sensitivity makes 
comparisons across studies difficult and raises questions 
about the reproducibility of findings [105]. Unfortunately, 
external validation of network-derived insights in indepen-
dent cohorts or through prospective studies is often lack-
ing, limiting confidence in the generalizability of findings. 
Additionally, the focus on pairwise disease relationships 
in many analyses may oversimplify the complex interac-
tions between multiple conditions [51], potentially missing 
important higher-order relationships [106].

Interpreting the clinical relevance of identified relation-
ships remains a critical challenge [107]. Not all statistically 
significant connections in a network may be meaningful 
in a clinical context, and distinguishing between spurious 
associations and truly important relationships requires care-
ful interpretation and validation. As networks become more 

Limitations of Network Analyses

Network analyses can offer valuable insights into the com-
plex landscape of comorbidities in HF; however, they also 
suffer from important limitations that researchers and clini-
cians alike must consider [6]. At their core, these approaches 
focus on disease-level relationships rather than individual 
patient characteristics, which can limit direct clinical appli-
cability [102]. Moreover, the heavy reliance on diagnostic 
codes from electronic health records or administrative data-
bases introduces potential biases and may not capture the 
full clinical picture, particularly for rare or underdiagnosed 
conditions [103]. The type of code and data preprocessing 
may also impact the network results (Fig. 2).

A significant challenge lies in the temporal and causal 
aspects of disease relationships. Many network analyses 
provide a static view, failing to account for the order of dis-
ease onset or the causal links between conditions. This limi-
tation can hinder our understanding of disease progression 
and the development of targeted interventions [105]. Fur-
thermore, the generalizability of these networks to diverse 
populations or healthcare settings may be limited, as they 

Fig. 2  Comparison of two networks built using the Morbinet shiny 
browser [104] demonstrates how small processing changes can affect 
networks. The network built using an odds ratio for association of at 
least 1.8 with (A) International Classification of Primary Care, 2nd 

edition (ICPC2) codes contains more nodes and connections than that 
built with (B) simplified ICPC2 codes. Comparison of (C) number of 
shared nodes and (D) edges are shown in Venn Diagrams with ICPC2 
data in blue and simplified ICPC2 data in purple
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Conclusion

Comorbidity networks can be leveraged to elucidate 
relationships between diseases that might otherwise go 
unrecognized. By harnessing disease heterogeneity at the 
individual level [58], network approaches have been impor-
tant for advancing our understanding of the intricate con-
nections between related diseases [111]. To fully exploit the 
potential of comorbidity networks, we must move beyond 
merely describing subpopulations and strive to make and 
validate claims about the epidemiology, pathophysiology, 
and potential avenues for treatment (Fig. 3). Linking net-
works to genomic data sources will be critical to under-
standing how the genetic heterogeneity in HF populations 
contributes to the variety of clinical trajectories patients 

complex, incorporating more diseases and relationships, 
they can become increasingly difficult to interpret and visu-
alize effectively, potentially obscuring key insights [105, 
108].

Finally, while theoretically possible, integrating diverse 
data types remains practically challenging. Combining clin-
ical, genetic, and molecular data in a meaningful way is an 
ongoing area of research that has yet to be fully realized in 
many network studies [109]. This is compounded by a lack 
of consensus about terminology, which may limit the ability 
to incorporate datasets and compare results [110].

Fig. 3  Schematic overview of potential of comorbidity network rep-
resentations to explore the complexity and implications of comorbidi-
ties in heart failure. The central panel highlights the complex interplay 
between heart failure and its most common comorbidities, beyond the 
mere coexistence of diseases to clinical impact. The upper right panel 
highlights the commonality of risk associations derived from epide-
miological studies between the different conditions surrounding HF. 
The network in the upper left panel represents the complex interplay 

between therapeutic classes and different outcomes across HF and 
related comorbidities, highlighting the differential impact of each 
therapy concerning the assessed outcome. Finally, the lower panel 
summarizes the pathophysiological interplay between HF, chronic 
kidney disease (CKD), and type 2 diabetes mellitus from a molecular 
perspective, highlighting bidirectional effects related to multisystemic 
pathways
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Phenotype	 Observable characteristics of 
an organism resulting from the 
interaction of its genotype with the 
environment

Multi-layer network	 A network with multiple types of 
relationships or data integrated into 
a single structure

Directed network	 A network where edges have a 
direction, indicating a causal or 
temporal relationship

Weighted network	 A network where edges have asso-
ciated values indicating the strength 
of relationships

Random walk	 A mathematical method used 
to explore network structures 
and identify important nodes or 
relationships
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