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Fast and accurate prediction of drug
induced proarrhythmic risk with sex
specific cardiac emulators
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In silico trials for drug safety assessment require many high-fidelity 3D cardiac simulations to predict
drug-induced QT interval prolongation, which is often computationally prohibitive. To streamline this
process, we developed sex-specific emulators for a fast prediction of QT interval, trained on a dataset
of 900 simulations. Our results show significant differences between 3D and 0D single-cell models as
risk levels increase, underscoring the ability of 3D modeling to capture more complex cardiac
responses. The emulators demonstrated an average error of 4%compared to simulations, allowing for
efficient global sensitivity analysis and fast replication of in silico clinical trials. This approach enables
rapid, multi-dose drug testing on standard hardware, addressing critical industry challenges around
trial design, assay variability, and cost-effective safety evaluations. By integrating these emulators into
drug development, we can improve preclinical reliability and advance the practical application of
digital twins in biomedicine.

Arrhythmiasmanifest as irregular heart rhythms stemming from abnormal
cardiac electrical activity, ranging from benign palpitations to severe con-
ditions like ventricular fibrillation1. A pivotal biomarker associated with
increased arrhythmic risk is a prolonged QT interval, as measured on
electrocardiograms (ECGs) from the beginning of the QRS complex to the
end of the Twave. The change frombaselineQT, theΔQT, is notably linked
to torsades de pointes (TdP), a potentially lethal, polymorphic ventricular
tachycardia2. Prolongationof theQT interval, causedbymanydrugsbeyond
cardiac treatments, often arises from unintended ion channel blockades
such as the hERG potassium channel, crucial for cardiac repolarization.
Such blockade delays repolarization, thereby prolonging the QT interval.
The gold standard for assessing the proarrhythmic risk of a drug tradi-
tionally involvesmeasuring its effects on thehERGchannel in vitro, a single-
dose safety pharmacology study in dogs or monkeys, and evaluation of
potential effects on the QT interval in clinical trials. Despite substantial
research on this topic3–6, the precise relationship between drug-induced ion
channel blockade at the cellular level andQTprolongation at the organ level
remains poorly understood, complicating risk assessments.

Regulatory agencies, such as the US Food and Drug Administration
(FDA) and the European Medicines Agency, have recognized the potential
of computational models and digital twins to enhance drug safety evalua-
tions, as they offer a promising approach tobridge the gaps in the translation

of nonclinical assays to clinical outcomes in the drug discovery phase and in
the early preclinical stage6. The Comprehensive in Vitro Proarrhythmia
Assay (CiPA) initiative, for instance, promotes the use of in silico models
alongside in vitro and clinical data to complement proarrhythmic risk
assessment7.

Computational models for predicting proarrhythmic risk vary in
complexity8. At the simplest level, single-cell 0Dmodels (zero dimensional,
where the spatial dependence of variables is neglected in favor of time
dependence only) simulate the electrical activity of individual cardiac cells,
providing insights into ion channel behavior and drug effects. However,
these 0D models cannot capture QT interval prolongation as they do not
account for the holistic behavior of the heart. Given that QT interval
measurement is the gold standard for assessing proarrhythmic risk in
clinical practice, employing 3D cardiac models for in silico clinical trials is
essential. These models account for the intricate anatomy of the heart and
simulate cardiac function at the organ level, providing a more compre-
hensive and accurate representation of drug-induced effects on cardiac
electrophysiology. Several studies have predicted proarrhythmic risk using
0D models9–14, while others have advanced to 3D representations of the
heart for assessing ΔQT15–21. However, gaps persist in the literature in sys-
tematically determining the necessity of 3D models for accurate drug-
induced proarrhythmic risk prediction compared to 0D single-cell models.
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In addition, despite several advancements in 3D cardiac models, very
fewmodels account for sex-specific differences21–24, even though substantial
evidence indicates that female are more susceptible to arrhythmias25. While
incorporating sexdifferencesmay be less critical for drugs causing onlymild
QT prolongation at therapeutic doses, it becomes essential for evaluating
drugs with a high risk of TdP or substantially differing absorption rates
between sexes. This gapunderscores the urgent need to integrate anatomical
and phenotypical sex differences into proarrhythmic risk predictions.

Despite their high accuracy, detailed cardiac 3D models can pose sig-
nificant computational challenges for application in large-scale or real-time
contexts. For drug discovery and at the preclinical level, the ability to predict
ΔQT in real-time is crucial for gaining an early understanding of a drug’s
safety profile, identifying safety margins, and streamlining subsequent
development stages. This capability facilitates protocol modifications, dose
regimen adjustments, or prompt discontinuation of problematic drugs,
thereby optimizing resource allocation and ensuring that only the most
promising drug candidatesmove forward. Advancing the concept of digital
twins in biomedicine requires accelerating numerical simulations to achieve
real-time virtual representations of living systems26. In the context of clinical
trials, such advancements could enable rapid, real-time screening methods,
particularly during the preclinical stage. These digital twins could act as fast-
response systems for designing computational trials, allowing for faster and
more efficient evaluations of drug safety and efficacy.

To address these challenges, surrogate models based on artificial
intelligencemethods, offer a promising solution. These surrogatemodels, or
emulators, approximate the outputs of high-fidelity simulations at a fraction
of the computational cost. Previous works have demonstrated the utility of
emulators in cardiac modeling27–35 and drug safety assessment36,37. Notably,
Costabal et al.36 have pioneered the development of an emulator for ΔQT

prediction, trained on a combination of 3D and 1D electrophysiological
simulations.

In this study, we build on our previous work23 by developing two
emulators for real-time proarrhythmic risk assessment, specifically forΔQT
estimation. Each emulator is tailored for each sex, and is trained exclusively
using data from 3D simulations. This process involved 900 electro-
physiological runs, requiring approximately 2.1millionCPUhours globally.
Prior to developing the emulators, we compared results from the 3D and 0D
models. Our analysis demonstrated that 3Dmodeling is significantly more
sensitive than 0D modeling in capturing the onset of abnormal electrical
propagation in the context of proarrhythmic risk assessment for drugs,
especially as the risk level increases. Leveraging these insights, we developed
the emulatorswhich achievedhigh accuracywith an average relative error of
less than 4% compared to the simulator results, and a computational speed-
up of five orders of magnitude. We then applied the emulators to replicate
clinical trials for four benchmark drugs, comparing their predictions with
both simulator results from different anatomies and real clinical data. This
comparison validated the accuracy and generalizability of the emulators,
demonstrating also their reliability in practical scenarios.

Results
We present a schematic overview of the general methodology used to build
our emulators for real-time cardiac ΔQT prediction (see Fig. 1). The emu-
lators are generated using data derived from 3D high-fidelity electro-
physiological simulations (i.e., obtained with the simulator). To simulate the
drugs’ effect, we sample blockades of the seven most relevant ionic channels
for cardiac proarrhythmic assessment38: ICaL, INaL, Ito, IKs, IK1, INa, and IKr.We
account for sexdifferences by employingdetailedbiventricular geometries for
both male and female patients, and include respective phenotypes23. Using

Fig. 1 | Overview of themethodology employed to build theΔQT emulators. This
methodology uses a simulator and sex-specific emulators to predict QT prolonga-
tions based on blockade levels of seven ionic channels, derived from the Hill model.
The simulator performs 3D cardiac electrophysiological simulations for male and

female anatomies, generating ECG data to classify arrhythmia and producing ΔQT
outputs for training the emulators. The emulators consist of an ECG classifier fol-
lowed by a Gaussian Process Regression model for fast ΔQT predictions.
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Alya, our finite element simulator39, we performed 3D simulations to com-
pute the ECG and tomeasure QT interval prolongation relative to a baseline
configuration (ΔQT). This data is then used to train our emulators. We
develop two separate emulators, one for males and one for females, each
predicting ΔQT in real-time based on the blockades of the seven ionic
channels. Each emulator comprises a classifier and a Gaussian process
regression (GPR) model. The former classifies the data into non-arrhythmic
or arrhythmic; the latter predicts ΔQT. With the term “arrhythmic”, in the
context of these emulators, we refer to cases where the ΔQT cannot be
computed due to an abnormal electrical propagation pattern in the ECG or
where the ΔQT computed in silico exceeds a threshold40. The last criterion
excludes cases producing valuesmuch larger than those typicallymeasured in
clinical practice and associated with the presence of arrhythmic events.

Simulator results
In Fig. 2, we present the simulation data that we obtain, and that we then
use to train our emulators. This dataset comprises 900 simulations, with

450 simulations per sex, encompassing both arrhythmic and non-
arrhythmic cases. To create our dataset, we excluded all the cases in
which the 0D O’Hara-Rudy (ORd) initialization model41 did not converge,
i.e., it did not produce a periodic solution in terms of calcium concentration
of each cell type (0 cases for males, 37 for females). Figure 2a displays the
ECG signals, while Fig. 2b presents the distributions resultant from the
computation of ΔQT values for the entire dataset. Notably, the presence of
arrhythmia precludes the computation of ΔQT; consequently, these cases
are not included in the ΔQT distributions but their ECG patterns are
depicted in grey in Fig. 2a. The results in this plot suggest that, on average,
women tend to have longer QT interval durations. Additionally, Fig. 2b
shows a broader range of ΔQT values for men, likely because women are
more prone to developing arrhythmic behavior under the same drug con-
ditions. As a result, their data aremore often excluded from the distribution.
Figure 3 showcases examples for both males and females, highlighting
differences through electrical propagation maps and corresponding ECG
patterns based on the presence and absence of arrhythmias. It is worth

Fig. 2 | ECG signals and ΔQT distributions com-
puted with the simulator. a ECG lead I signals for
male and female subjects, with grey signals repre-
senting arrhythmic cases. b ΔQT distributions for
male and female subjects.

Fig. 3 | Examples of 3D electrophysiological
simulations obtained with detailed biventricular
anatomies. Both for the male (a) and female (b)
anatomies, we report on the left the baseline simu-
lation (without drug), and on the right the simula-
tion in ventricular fibrillation conditions (due to
drug). The signals represent the computed ECG lead
I for each simulation and the red point on the ECG
curve denotes the time in which the 3D images
are taken.
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noting that 11% of the female cohort exhibited arrhythmic behavior,
compared to only 2% of the male cohort. The higher prevalence of non-
convergent and arrhythmic cases among female subjects resulted in a
reduced female sample size, accounting for the difference in distribution
areas between males and females in Fig. 2b.

Modeling proarrhythmic risk in 0D and 3D
3D cardiacmodels, while computationally expensive, capture spatial details
and allow for the computation of ΔQT, aligning with clinical outcomes. In
contrast, 0Dmodels rely onmetrics that cannot bemeasured clinically, such
as the action potential duration (APD) or qNet (computational biomarker
based on the sum of the net ionic currents over the course of the action
potential42). To assess the value added by 3D models, we analyze the rela-
tionship between 3D and 0D simulation outcomes for evaluating proar-
rhythmic risk, as depicted in Figs. 4 and 5. The 0D results are obtained from
the initialization of the 3D simulation with the 0D ORd model run in
endocardial, mid-myocardial, and epicardial cells.

Figure 4 illustrates a comparison of biomarkers from 3D and 0D
simulations,withFig. 4aandbdepicting the relationshipbetweenΔAPD(i.e.,
the difference betweenAPDafter and before drug administration, computed
fordifferent cell types) andΔQTfor females andmales, respectively.Thedata
points are differentiated according to the cell types: endocardial (Endo),mid-
myocardial (Mid), and epicardial (Epi) cells. The colored areas represent low
and high-risk regions. The high-risk threshold forΔQT is set at 10ms as it is

commonly accepted that changes in QT interval of less than this value are
generally considered to be within the normal physiological range43, and for
ΔAPD at 13.4 ms. This threshold is based on the established relationship
where QT change is approximately 1.34 times the APD change, as reported
by Mirams et al.44. Linear regression lines are fitted for each cell type, along
with an overall average. The relationship between ΔAPD and ΔQT appears
linear at lower values, but the data points spread as the values increase,
indicating that the linear regression model’s fit decreases with higher risk.
This trend is quantifiedby theR2 scores45,which show the extent towhich the
model fits the data linearly. The R2 scores for the overall average and indi-
vidual cell types highlight thatwhile there is a general linear trend, significant
deviations occur at higher risk levels. To further investigate this, we per-
formed a cumulative sum test to assess the loss of linearity in the 0D model
predictions compared to the 3D predictions. The test revealed that for ΔQT
values of 100 ms in females and 125 ms in males, the residuals increase
significantly and begin to diverge. This divergence suggests a significant
difference in behavior between the 0D and 3D models beyond these
thresholds, marking the onset of what we refer to as the arrhythmogenic
window. The analysis suggests that while 0D models can reliably predict
outcomes below this arrhythmogenicwindow, their ability todetect electrical
propagation abnormalities diminishes considerably within the window as
the risk level rises, when compared to the 3D model.

Figure 4c and d illustrate the relationship between qNet and ΔQT for
females andmales, respectively. qNet is intended to classify the risk of drug-

Fig. 4 | Comparison of biomarkers from 3D and 0D simulations to assess
proarrhythmic risk. The top panels show a comparison of ΔQT and ΔAPD for
males (a) and females (b). The bottom panels illustrate the relationship between
ΔQTand qNet formales (c) and females (d). Data points are colored according to the
cellular type: endocardial (Endo cell), mid-myocardial (Mid cell) and epicardial (Epi

cell) types. Average represents the average of the three cellular types. Linear
regression lines for each cell type indicate the general trend, and corresponding R2

scores are reported in the legends. The shaded areas mark the low, intermediate, and
high-risk regions.
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induced arrhythmias into low, intermediate, and high-risk categories by
evaluating the net charge carried by ions during the cardiac action potential.
The plots delimit these three risk categories (intermediate risk: qNet ∈
[0.0581, 0.0671] μF/μC and ΔQT ∈ [10, 50] ms), by coloring the different
corresponding regions. These thresholds are based on the FDA’s CiPA
initiative guidelines46 and statistics on drug-induced risk of life-threatening
arrhythmias47. Despite its utility for risk classification, qNet shows limited
accuracy and fails to predict risk correctly for any female cell type. This
constraint is evident in the plots, where the classification boundaries do not
align well with the actual data points for females: our results suggest that
qNet often misclassifies female cell types into incorrect risk categories.

Figure 5a and b show the action potentials for two subjects with
abnormal mid-cell behavior. Despite similar cellular-level events, the
ECG signals in Fig. 5c and d demonstrate significantly different out-
comes: case 1 exhibits QT prolongation, while case 2 experiences ven-
tricular fibrillation. These comparisons highlight that even with similar
cellular behaviors, the overall cardiac outcomes can vary greatly. QT
prolongation of case 1 suggests a significant but non-lethal proar-
rhythmic risk, whereas ventricular fibrillation characterizing case 2
indicates a life-threatening condition. The shortcomings of 0D models
become particularly apparent under conditions of high QT prolonga-
tion, where they fail to capture the complexities of whole heart inter-
actions and tissue-level electrical impulse propagation that are crucial
for accurate risk assessment.

Accuracy of the emulators compared to simulator results
First, a preliminary version of the emulators is introduced and used for
database design with a conservative approach to the ion channels’ blockade
range. Then, a global sensitivity analysis (GSA) is performed to understand
the main ion channels that influence ourmodel response and consequently
to expand and refine our database. This provides the ability to create an
enhanced version of the emulators based on this last dataset, which are
evaluated for their accuracy and computational performance in comparison
to the simulator.With this, the emulators are capable of predicting theΔQT
responses even with higher blockades of the ion channels, promoting the
occurrence of arrhythmic events.

Emulator preliminary version. We begin by designing the dataset for
predicting ΔQT using a GPR model. Denoting by N the sample size, the
input of the GPR model are vectors xi 2 R7, containing the current

blockades of the seven ionic channels:

xi ¼ 1� βCaL; 1� βNaL; 1� βto; 1� βKs; 1� βK1; 1� βNa; 1� βKr
� �

i;

with i ¼ 1; . . . ;N:

ð1Þ

The output yi 2 R, is the corresponding QT prolongation :

yi ¼ QTi; with i ¼ 1; . . . ;N: ð2Þ

In Eq. (1), we consider blockades βk of the seven channels βk ∈ [0.0, 0.6],
with k=CaL,NaL, to,Ks,K1,Na,Kr, as done in ref. 36.The input vectors are
selected by performing Latin hypercube sampling48 asN varies in {150, 250,
350}. To compare the results obtained for the different values of N and
determine the ideal sample size, we fix the test set asDtest ¼ fðxi; yiÞg42i¼1 for
all the three cases, where 42 represents the 28% of the data when N = 150.
The training setDtrain consists of 72% of the remaining part of the dataset
DnDtest. Then, for each N, we tune the sex-specific optimal hyperpara-
meters through an automatic exhaustive search thatmaximizes theR2 score.
Table 1 presents the variation in the sample sizeN of the R2 score, the mean
absolute error εMAE, the mean absolute percentage error εMAPE, and the root
mean squared error εRMSE. The scores are high for both sexes, regardless ofN.
In the male case, the errors show less sensitivity to N, while they exhibit a
considerable improvement as N increases for females.

The GPR model, tuned with N = 350, represents the preliminary
version of the emulators used to perform the GSA49. The objective is to
identify the ionic channels that most significantly impact the output, spe-
cifically focusing on inputs that predominantly induce a high risk of QT

Fig. 5 | Comparison of two cases with similar action potentials leading to dif-
ferent ECG outcomes. These cases correspond to the following choices of the input
parameters (see Eq. (1)): x = [1.00, 0.44, 1.00, 1.00, 0.45, 0.55, 1.00] and x = [0.94,
0.42, 0.90, 0.44, 0.63, 0.42, 0.91], for Case 1 andCase 2, respectively.Action potentials
in (a, b) with abnormal behavior of the mid cell, are obtained from the last 3 beats of

the 0D model (serving as initialization of the 3D simulation). However, the ECGs
show different responses: (c) presents QT prolongation (170 ms) and ST elevation,
while (d) manifests ventricular fibrillation. This illustrates that very similar cellular-
level events can produce different effects on overall cardiac electrophysiological
function.

Table 1 |R2 scoresandprediction errorson the test setDtest for
males (M) and females (F) using different values of N

N R2 score εMAE [ms] εMAPE [%] εRMSE [ms]

M F M F M F M F

150 0.999 0.995 1.409 3.052 3.364 5.851 1.680 3.961

250 0.999 0.998 1.384 1.895 3.575 3.997 1.750 2.557

350 0.999 0.998 1.349 1.877 3.411 3.829 1.705 2.412
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prolongation. Based on47 (as we also do in the analysis of Fig. 4), we fix the
high-risk threshold to 50 ms and use the GSA to examine the channels that
primarily contribute to achieving aΔQTexceeding this threshold.As shown
in Table 2, the three most influential ionic channels for both males and
females are IKr, INaL, and IKs, with IKr providing the most substantial con-
tribution, both individually and through interactions with other channels.

In light of this, we leverage the results of the GSA to expand our
database. Specifically, we conduct an additional 100 simulations per sex,
focusing on the blockades of these three critical ion channels βk∈ [0.4, 0.9],
with k = Kr, NaL, Ks, while setting the remaining blockades to zero.

Throughout the rest of the paper, we present results from these enhanced
emulators.

Emulator enhanced version. Expanding the dataset with higher
blockade levels leads to an increase in arrhythmic cases. To predict ΔQT,
we design our enhanced emulator using a classifier followed by a GPR
model. The classifier enables us to filter out inputs that lead to arrhyth-
mias so that we train the regressor only on relevant data.

The first step of the emulators consists of a classifier to determine
whether the ECG is arrhythmic: it is characterized by an abnormal signal—
for which the ΔQT is not computable—or the QT prolongation exceeds a
fixed threshold τ. Specifically, following40, we set τ = 240ms and τ = 196ms
for males and females, respectively. This choice allows us to limit the QT to
the threshold value of 600ms for both sexes.

Considering the same inputs of Eq. (1), the output of the classifier is
y class
i 2 f0; 1g; i ¼ 1; . . . ;N , where a value of 0 (negative) indicates a non-
arrhythmic case, while 1 (positive) indicates an arrhythmic one. In our data,
92%of the outputs are negative formales, compared to 85% for females.We
randomly divide our data into a training and test set, allocating 72% of data
for training and 28% for testing. Note that the data is split in a way that
preserves the proportion of positive and negative values in both the training
and test sets. We use XGBoost Classifier (XGBC)50 and k-Neighbors Clas-
sifier (KNC)51 for males and females, respectively. We tune the optimal
hyperparameters on the training set through an exhaustive search, looking
for those that maximize the F1 score52, as shown in Table 3. The perfor-
mance of the classifier is reported in Table 4. The evaluation of accuracy,
precision, recall, and F1 score metrics52 on the test set reveals perfect scores
for males and consistently high scores for females. The classifier’s strong
performance is further illustrated in Fig. 6, which presents the confusion
matrix of predicted versus actual values.Hereweobserve perfectpredictions
for males and only one false positive for females.

The second step of the emulators is basedonaGPRmodel that predicts
the ΔQT values. Inputs and outputs of this model are the same as those
defined in Eq. (1) and Eq. (2), respectively.We split our data as done for the
classifier and we exclude inputs that are identified as positive (arrhythmic).
Similarly to the preliminary version of the emulators, we first tune the
optimal hyperparameters through an exhaustive search on the training set.
These hyperparameters are selected tomaximize the R2 score of predictions
and are reported in Table 5.

Table 2 | GSAwith the preliminary version of the emulators (βk
∈ [0.0, 0.6], with k = CaL, NaL, to, Ks, K1, Na, Kr)

Index IKr INaL IKs INa ICaL IK1 Ito

GSA on males

S1 0.713 0.020 0.005 0.024 0.007 0.005 0.000

ST 0.943 0.170 0.134 0.130 0.126 0.102 0.007

Index IKr IKs INaL IK1 ICaL INa Ito

GSA on females

S1 0.652 0.013 0.011 0.017 0.012 0.002 0.000

ST 0.920 0.195 0.193 0.165 0.101 0.074 0.011

S1 and ST are the first and total Sobol’ indices49, respectively.

Table 3 | Optimal hyperparameters for XGBC and KNC
methods

Sex Model Hyperparameter Tuned value

M XGBC colsample_bytree 0.7

gamma 0.5

subsample 0.7

learning_rate 0.1

max_depth 3

n_estimators 100

F KNC metric manhattan

weights distance

n_neighbors 7

Table 4 | Test scores of the classifiers across the considered
metrics for males (M) and females (F)

Accuracy Precision Recall F1 score

M F M F M F M F

1.00 0.99 1.00 0.94 1.00 1.00 1.00 0.97

Fig. 6 | Confusion matrices of classifiers. Plots
(a, b) show the results for males and females,
respectively. True positives (negatives) represent the
number of correctly predicted positive (negative)
cases. False positives (negatives) indicate the num-
ber of incorrect positive (negative) predictions.

Table 5 | Optimal hyperparameters for the GPR model, for
males (M) and females (F)

Model Hyperparameters Tuned value

M F

GPR kernel Matérn 1.5 Matérn 2.5

gamma 10−3 10−3

subsample 20 5
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The tunedGPRmodel is used topredict theΔQTvalues corresponding
to the ionic channel blockades of the test set. Figure 7 shows that the ΔQT
predictions are highly accurate both for males and females, a result that is
also confirmed in Table 6, where we report the R2 score and the prediction
errors.

Outcomes of global sensitivity analysis
After fine-tuning our emulators, we perform again the GSA to address two
key questions:
• Which ionic channels mainly influence the output?
• Which ionic channels primarily contribute to aQTprolongation that is

classified as high-risk?

The first question is directly determined by the emulator output, while
the second is assessed based on whether the predicted ΔQT exceeds the
high-risk threshold of 50 ms47.

Figure 8 shows the GSA results, separated by sex, with the first
analysis displayed on the top and the second one on the bottom. In
each plot, the solid bars represent the S1 indices, indicating the main
individual effects, while the striped bars indicate the ST indices,
reflecting the total effects, i.e., describing the interactions between
different ion channel blockades. Confidence intervals are also included
to show the uncertainty in the estimation of the Sobol’ indices. From
the top plots, we observe that IKr is the most relevant channel in pre-
dicting QT prolongation, regardless of sex. It is important to note that
IKr refers to the rapidly activating delayed rectifier potassium current,
which is largely mediated by the hERG (human Ether-à-go-go Related
Gene) channel, often referred to simply as IKr channel. The other
channels have considerably less influence on the output, as indicated
by their much smaller Sobol’ indices and the absence of overlap in their
confidence intervals with IKr. Additionally, interactions between them
are negligible since S1 and ST are very similar for each channel con-
sidered. On the other hand, the second analysis highlights that IKr,
INaL, and IKs are the threemost influential channels in contributing to a
high-risk QT prolongation. Notably, interactions between different
channel blockades are significant, particularly for the most influential
input, IKr.

Evaluating emulator and simulator outcomes for
benchmark drugs
In Fig. 9, we present the concentration-QT prolongation (C-ΔQT) pre-
dictions of the emulators, simulator and clinical data under the influence of
dofetilide. The slope of the C-ΔQT relationship is the state of the art,
therefore crucial and extensively used in regulatory practices, as it measures
the rate of change in theQT interval per unit increase in drug concentration.

Our emulators are developed using single reference geometries that
represent healthy adult anatomies, as they are derived from data from
middle-aged adult deceased donors with no history of cardiac disease and
anatomically normal ventricles. Consequently, the simulator results shown
in Fig. 9a are based on the same anatomies used for training the emulators.
Leveraging the performance of the emulators, we extend the concentration
range beyond the typical experimental limits. This illustrates their potential
to predict drug effects at higher concentrations in immediate response time,
as we will better discuss in Section Computational performance. Results
demonstrate a strong similarity between the outputs of the emulators and
the simulator, confirming the accuracy of the emulators. We calculate the
slopes of theC-ΔQTrelationships for clinical, simulator, and emulator data,
and then compute the relative errors between these slopes as percentages.
For females, the relative error between the emulator and simulator slopes is
9.0%, the error between the simulator and clinical slopes is 31.1%, and the
error between the emulator and clinical slopes is 19.2%. For males, the
relative error between the emulator and simulator slopes is 7.7%, the error
between the simulator and clinical slopes is 2.4%, and the error between the
emulator and clinical slopes is 5.2%. These results underscore the consistent
alignment among all datasets, especially considering the limited female
representation in the clinical trial53.

Then, to assess the robustness of our emulators, we compare their
predictions against simulator results from six different donor cases (three
per each sex) incorporating different anatomical characteristics, BMI and
age, see Fig. 9b. Despite being trained on a single average anatomy, the
emulator predictions remain highly accurate across different anatomies.
Specifically, for female anatomies, the emulator predictions show relative
errors ranging from 1.8% to 8.0% compared to the simulator. For male
anatomies, relative errors range between 7.2% and 9.6%. When comparing
the emulator slopes to clinical data, we observe relative errors of approxi-
mately 20.6% for females and 7.0% for males. The larger error in females is
closely tied to the fact that a really small number of womenwere included in
the clinical trial. These results suggest that, even when trained on a single
average geometry, the emulators provide predictions that are comparable to
the simulator alignment with the usually sparse clinical data. This suggests
that the emulators are effective and capable of generalizing well across
various anatomical conditions, offering valuable insights despite the
inherent variability in clinical data.

Fig. 7 | Comparison of ΔQT predictions between the simulator and emulators.
Both for males (a) and females (b), the x-axis represents the ΔQT values computed
with the simulator and the y-axis the corresponding predictions from the emulator.

The close alignment along the diagonal indicates strong agreement between the
simulator and emulator predictions.

Table 6 | R2 scores and prediction errors on the test set for
males (M) and females (F)

R2 score εMAE [ms] εMAPE [%] εRMSE [ms]

M F M F M F M F

0.998 0.996 1.491 2.107 3.063 4.433 2.582 3.083
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To further evaluate the accuracy of the emulators, we predict ΔQT for
four benchmark drugs: moxifloxacin, ondansetron, dofetilide, and ver-
apamil. We compare the emulator results with clinical data and with
simulator results from our previous study23, which used six different ana-
tomies.Toensure consistency andavoidbias,weuse the sameconcentration
protocol for each drug, involving three ascending concentrations, except for
verapamil, which is tested at four concentrations. The calculated C-ΔQT
relationships are shown in Fig. 10. Our analysis shows that the slopes of the
emulator regression lines are remarkably similar to those produced by the

simulator across all benchmark drugs. This similarity is observed alongside
the expected differences among sexes. Table 7 provides a comprehensive
summary of the regression analysis results for each drug, comparing clinical
data with the simulator and emulator results. The latter closely mirror the
simulator results for all drugs. Specifically, the slopes of the emulator pre-
dictions fall within the confidence intervals of the simulated slopes,
achieving critical concentrations within a 0.25-fold range of simulated
results. This alignment extends to most clinical trends as well, supporting
the emulator reliability and accuracy in predictingQT interval prolongation

Fig. 9 | Application of the emulators to predict C-ΔQT response for dofetilide.
Results in (a) are obtained from the same anatomy used to train the emulators, while
different anatomies are considered in (b). ΔΔQTc clinical, ΔQT simulated and ΔQT
emulated as a function of plasma concentration. The grey dots denote the observed

ΔΔQTc with respect to plasma concentration for each measurement taken in the
clinical trial extracted from Darpo et al. (2015)53. The magnified region in plot (b)
highlights six dashed lines, three per sex, corresponding to the three distinct ana-
tomies considered.

Fig. 8 | First (S1) and total (ST) Sobol’ indices from the GSA on the influence of
ionic channel blockades on ΔQT predictions. The top plots show the influence on
the predicted ΔQT for males (a) and females (b). The bottom plots illustrate the

influence in determining if the QT prolongation is of high-risk level for males (c)
and females (d). Each bar represents the impact of a specific ionic channel blockade,
highlighting channels that most affect QT prolongation and high-risk outcomes.
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Fig. 10 | Comparison of ΔΔQTc clinical, ΔQT simulated and ΔQT emulated as a
function of plasma concentration for different drugs. Plot (a) shows the results for
moxifloxacin, plot (b) for ondansetron, plot (c) for dofetilide, and plot (d) for

verapamil. The grey dots denote the observed ΔΔQTc with respect to plasma con-
centration for each measurement taken in the clinical trial extracted from Darpo
et al. (2015)53 and Vicente et al. (2019)92.

Table 7 | Summary of regression analysis results for four benchmark drugs

Drug Data Type Slope Intercept Std Err Confidence Critical

Interval Conc. [ng/mL]

Dofetilide Clinical 23.252 0.387 1.653 ± 3.239 0.413

Simulator Female 24.720 1.131 0.886 ± 1.737 0.359

Simulator Male 24.925 0.201 0.979 ± 1.918 0.393

Emulator Female 28.983 1.254 0.768 ± 1.505 0.302

Emulator Male 26.185 1.650 1.059 ± 2.076 0.319

Moxifloxacin Clinical 0.007 1.094 0.000 ± 0.001 1356.450

Simulator Female 0.007 7.125 0.000 ± 0.001 427.089

Simulator Male 0.008 4.625 0.001 ± 0.001 699.382

Emulator Female 0.009 7.216 0.001 ± 0.001 325.114

Emulator Male 0.008 5.766 0.001 ± 0.001 546.715

Ondansetron Clinical 0.035 −0.033 0.004 ± 0.007 290.285

Simulator Female 0.080 −0.489 0.003 ± 0.005 130.858

Simulator Male 0.077 −0.560 0.003 ± 0.006 136.854

Emulator Female 0.095 0.090 0.000 ± 0.001 103.977

Emulator Male 0.083 0.455 0.002 ± 0.003 114.323

Verapamil Clinical 0.035 1.863 0.003 ± 0.006 232.144

Simulator Female 0.044 −0.150 0.002 ± 0.005 231.871

Simulator Male 0.046 −1.810 0.002 ± 0.003 259.001

Emulator Female 0.045 0.009 0.001 ± 0.003 223.479

Emulator Male 0.043 0.684 0.001 ± 0.001 216.686

For each drug, we present the following metrics: Slope, which quantifies the rate of change in QT prolongation with respect to drug concentration; Intercept, the baseline QT prolongation when drug
concentration is zero; Std Err, the standard error of the slope, indicating the precision of the regression estimate; Confidence Interval, providing the range within which the true slope is expected to fall with
95% confidence; and Critical Conc., the drug concentration at which the QT prolongation reaches 10 ms. Results are provided for both clinical data and predictions from the simulator and emulators,
differentiated by sex, when applicable.
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under the effect of different drugs. Ondansetron and moxifloxacin present
some discrepancies with respect to the clinical data in slope and intercept,
respectively, leading to differences in critical concentrations. Drug experi-
mental variability and clinical data intrinsic biases may justify the observed
differences, as also discussed in ref. 23.

Finally, in Fig. 11 we include an analysis that compares ion channel
IC50 and Hill coefficient values from three different publicly available
sources for verapamil38,54,55. This comparison demonstrates the ability of our
tool to assess the impact of drug-related parameter variability withminimal
computational cost. While we recognize that these values can vary sig-
nificantly across different laboratories, our emulators enable a thorough
exploration of such variations efficiently. This capability is particularly
valuable, as it allows researchers to evaluate the potential effects of inter-
laboratory differences without the need for extensive computational
resources.

Computational performance
We present the results in terms of the computational performance of both
the simulator and the emulators. Table 8 shows the computational times
required to build the emulators: running 900 simulations took approxi-
mately 123days ofCPU time.The time tofind the optimal hyperparameters
was about 48 minutes, while the emulator training took only seconds. It is
important to note that these operations are performed only once.

In Table 9, we present the computational costs associated with
reproducing a single case and conducting clinical trials with benchmark
drugs using both the simulator and the emulators. A single simulation
took, on average, 3.43 h, whereas the emulators can predict the ΔQT in
mere centiseconds, providing a speed-up of five orders of magnitude.
Generating a clinical trial for a single drug required approximately 9
days of CPU time using the simulator. In contrast, the emulators sig-
nificantly reduce this cost, delivering accurate results in less than a
second.

Discussion
We introduced sex-specific emulators capable of predicting drug-induced
proarrhythmic risk. Developed separately for each sex, these emulators
leveraged a comprehensive dataset derived from high-fidelity 3D electro-
physiological simulations, capturing crucial anatomical and phenotypical
differences. By taking ionic channel blockades as input, they provided real-
time predictions of QT prolongation, ensuring accurate and sex-specific
assessments.

To construct our dataset, we leveraged the computational power of
Alya39,56 to perform 900 electrophysiological simulations (450 per sex),
sampling the space of seven ionic channel blockades as input, which totaled
approximately 2.1million CPUhours. This comprehensive dataset, entirely
composed of high-fidelity 3D simulations, was essential for developing
accurate emulators. Notably, our dataset is comparable in size to that built
by Costabal et al.36, who used a mix of 400 low-fidelity (1D) and 45 high-
fidelity (3D) simulations.

The usage of 3D cardiac models introduces additional complexity and
computational cost compared to 0D single-cell models. However, our
analysis demonstrated the clear advantages of 3D modeling for predicting
drug-induced proarrhythmic risk, underscoring its importance despite the
higher computational demands. 3D models provide greater physiological
relevance by capturing spatial heterogeneity and anatomical details crucial
for simulating drug effects on cardiac electrophysiology. These models can
compute ΔQT, which makes them comparable to clinical trial outcomes,
thus enhancing the reliability of computational models for cardiac safety
assessment. In contrast, 0Dmodeling relies on in vitrometrics such as APD
or qNet, which are not directly translatable to clinical settings. Another
significant advantage of 3D models is their capacity to incorporate disease
states and comorbidities, particularly through detailed anatomical repre-
sentations. This is especially valuable because such patients are often
excluded from real clinical trials. By using cardiac models, we can ensure
that these underrepresented groups are considered in the assessment of drug
safety. Our comprehensive dataset allowed us to systematically compare 3D
versus 0Dmodeling in drug proarrhythmic risk assessment. By comparing
ΔQT and ΔAPD, we found that while 0D models can generally predict
outcomes accurately, their ability to identify electrical propagation
abnormalities decreased significantly as the risk level increased. This high-
lights that the 0Dmodelmaynot provide the same clinical insights as the 3D
model. While it is challenging to determine which model is more accurate
without common ground truth data, the clinical gold standard for assessing
proarrhythmic risk is the quantification ofΔQT.Therefore, amodel capable
of computing this measure is preferable for establishing credibility and
validation. Since the 0D and 3D models yield different outcomes beyond a
certain risk threshold, we believe the 3D model may be more suitable for
assessing drug-induced proarrhythmic risk, particularly in higher-risk
scenarios. Furthermore, our comparison between ΔQT and qNet revealed
that the latter frequently misclassifies female cell types into incorrect risk
categories. This limitation stems from qNet being derived from the original
ORd model, which is based on a generalized, endocardial model41. As a
result, qNet is more accurate for male endocardial cells but fails to account
for the sex-specific differences in cardiac electrophysiology that are crucial
for accurately assessing risk in females. Additionally, comparing action
potentials (from the 0D model) with the ECGs (from the 3D simulation)
revealed that similar patterns at the 0D level can lead to different outcomes
at the 3D level, especially within the arrhythmogenic window, again

Fig. 11 | Application of the emulators to predict C-ΔQT response for verapamil
with input data from three different sources38,54,55. The emulated ΔQT values are
shown as a function of plasma concentration.

Table 8 |Computational times tobuild theemulators:CPU time
to run 900 simulations, time to find the optimal
hyperparameters of the emulators, and time to train the
emulators

Simulator
(900 cases)

Emulator optimal
hyperparameters

Emulator training

123 d 48 min 23 s

Male and female results are summed. The simulator time has been computed excluding the cases
where the initialization of the cellular model did not converge to a periodic solution.

Table 9 | Comparison of the simulator and emulator
computational performance to predict ΔQT for a single case
and to reproduce in silico clinical trials of benchmark drugs
(average cost for the clinical trial of a single drug)

Simulator Emulators Speed-up

Single case 3.43 h 8 ⋅ 10−2 s 1.5 ⋅ 105

Benchmark
drugs

Moxifloxacin
Dofetilide
Ondansetron
Verapamil

9 d 3.2 ⋅ 10−1 s 2.4 ⋅ 106

The speed-up is computed as the ratio between reported simulator and emulator times.
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emphasizing the importance of 3D models in proarrhythmic risk
assessment.

Our study underscored the critical importance of incorporating sex
differences in computational models, aligning with previous research
findings21–24. Our results showed that females are more susceptible to
arrhythmias, consistent with earlier studies25,57. The use of 3D electro-
physiologicalmodels enabled a comprehensive approach to account for sex-
specific anatomies and phenotypes. Thus, although 3D cardiac models
demand greater computational resources compared to 0D models, their
capacity to capture complex physiological details and sex differences—
thereby providing more accurate and personalized risk assessments—jus-
tifies their use in predicting drug-induced proarrhythmic risk. Thus, our
findings emphasized the necessity of high-fidelity 3D simulations to
enhance the reliability and accuracy of computational cardiac safety eva-
luations. One way tomitigate the computational expense of 3D simulations
is by developing emulators, or surrogate models, which can predict the
outcomes of computationally costly 3D simulations at a fraction of the
computational cost.

To compute QT prolongation induced by drugs in real-time, we
developed two emulators that utilized a two-step approach: a classifier fol-
lowed by a GPR model. The classifier is used to filter cases, improving the
robustness and accuracy of our emulators by addressing the challenges
inherent in cardiac electrophysiological models, which often display bifur-
cations and discontinuous responses. Ghosh et al.58 noted that such dis-
continuities could complicate predictions when using GPRmodels, as they
assume smooth and continuous responses to changes in parameters. By
implementing the classifier, we effectively segregated non-arrhythmic from
arrhythmic cases, thereby minimizing the complexity and discontinuities
presented to the GPR model. Additionally, sex-specific ΔQT thresholds
were crucial to avoid the introduction of physiological anomalies that could
mislead the training process and predictions. This consideration is parti-
cularly relevant for Thorough QT studies, where identifying significant QT
prolongation is essential for further clinical development. Literature high-
lights that aQTprolongation exceeding 20ms is often significant enough to
warrant extra monitoring and labeling59. Furthermore, patients experien-
cing TdP usually showmore pronouncedQT prolongation before its onset.
Sex differences add another layer of complexity, with women being more
sensitive to QT prolongation25. Expert guidelines suggest that QT intervals
longer than 550 ms are associated with a high arrhythmic risk40. Conse-
quently, our chosen thresholds—240ms formales and 196ms for females—
are set conservatively to account for cases that could lead to aQT interval of
600ms, ensuring that rare but critical extreme cases are also identified. This
approach allowed the regressor to work with a more homogeneous and
relevant dataset, thereby enhancing the accuracy and reliability of our
predictions.

The sex-based emulators demonstrated high accuracywhen compared
to simulator results, with errors in the range of 2.6 ms, a relatively minor
discrepancygiven themagnitudeof drug-induced changes. These emulators
enabled us to replicate clinical trials for four benchmark drugs and validate
ourfindings against in vivodata. This consistencyunderscored the emulator
reliability in forecasting drug-induced QT prolongation across varying
concentrations and compounds. The emulators effectively captured the sex-
based differences in drug response observed with the simulator, which is
crucial for developing sex-specific therapeutic strategies, especially when it
comes to high QT-prolonging drugs. Notably, emulators facilitated an in-
depth exploration of dofetilide responses at higher concentrations without
additional computational expense. Standard in silico clinical trials typically
require around 9 days of CPU time, but the emulators reduced this time to
mere fractions of a second, achieving a speed-up of six orders of magnitude
in predictingQTprolongation. To assess the robustness of ourmodel across
different anatomical contexts, we compared emulator predictions—trained
on fixed anatomy—with simulator results using different anatomical
models. In addition, different from the emulators, the simulator results are
obtained by combining phenotypical variability60. The emulators produced
results with errors ranging from 1.8% to 9.6%, a level of error we considered

acceptable in comparison to the existent interstudy variability in clinical
practice61. This demonstrated that our emulators maintain robustness and
reliability, even when tested against data with a larger variability.

In addition, these emulators are also tools to identify and prioritize
influential inputs by carryingoutGSA.This analysiswasused to achieve two
main objectives: first, to study the influence of each input on the ΔQT
response; and second, to identify the key inputs that determine whether
there is a high risk of QT prolongation. We found that IKr is the primary
predictor ofΔQT, consistentwith thefindings reported in ref. 36.The results
also demonstrate that the seven inputs can be linearly combined to recon-
struct the QT prolongation. However, when evaluating clinically relevant
quantities, such as assessing whether the inputs lead to a QT prolongation
that is classified as high-risk, requires accounting for high-order interactions
between the channels, with IKr, INaL, and IKs being the most significant
contributors. These findings underscore the importance of considering
multichannel interactions in proarrhythmic risk evaluation, suggesting that
a sole reliance on hERG in vitro assessment may be insufficient.

It is important to highlight that the high accuracy of our emulators is
largely attributable to the quality and reliability of the underlying 3D cardiac
simulator39. This simulator is the result of nearly two decades of continuous
development, research, and an extensive validation process across multiple
studies62–68. Its development has involved close collaboration with clinicians
and pharmaceutical experts, ensuring that it reflects the complexity of
human cardiac physiology anddrug interactions23,69. Achieving suchprecise
emulator performance would not have been possible without this founda-
tion of well-established computational models, which have been refined
through years of iterative improvements and cross-disciplinary
expertise39,56,70–72. As such, while the emulators significantly reduce com-
putational costs, their effectiveness is intrinsically linked to the robustness
and accuracy of the simulator from which they are derived.

This study has some limitations. Firstly, we relied solely on ΔQT to
estimate proarrhythmic risk, whereas other electrocardiogram features,
such as the Tpeak-Tend interval73, might provide additional insights into
drug effects. Secondly, our dataset does not account for variability in phe-
notypic expression or anatomical differences, which could be crucial for a
more comprehensive risk assessment. Future research should focus on
incorporating these variabilities to better represent the spectrum of patient
responses and further improve the accuracy of our results when compared
to simulator results. Furthermore, this study assessed theQTeffects of drugs
without considering the potential impact of theirmetabolites, whichmay be
the primary contributors to these effects. However, in the drug discovery
phase, detailed information of metabolites is rarely available and a reason-
able starting point is therefore to test the effect of the parent drug. An
interesting direction for futureworkwould be to performsensitivity analysis
to account for potential changes in ionic currents triggered by active
metabolites. Additionally, our current models use a uniform activation
protocol across all cases.

A key aspect highlighted by our study is the observed sensitivity to
calcium alternans across female cells, which may be partially attributed to
the interplay between sex-specific ionic channel conductances proposed by
Fogli Iseppe et al.74 and ionic channel blockages. This combination of factors
could increase the likelihood of calcium alternans, impacting cardiac action
potential stability and raising susceptibility to arrhythmic events.Webelieve
that hormonal variations like progesterone and estrogen might modulate
these differences, given their significant influence on cardiac ionic channel
expression and function. Future work should aim to quantify these effects,
allowing for a deeper understanding of female ionic channel modulation
contribute to the observed arrhythmic sensitivity in females.

Moreover, clinical trials include placebo groups to eliminate con-
founding effects that allow them to compute placebo-corrected ΔQT. Fur-
ther developments consist of including placebo corrections within the
computational models. Future directions also involve performing uncer-
tainty quantification, especially on parameters such as IC50, h and the free
fraction of the drug. Incorporating variability in these parameters couldhelp
refine uncertainty ranges in model predictions and enhance the overall
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robustness of the emulators. An interesting application of the emulators
would be to integrate ionic channel margin distributions into QT pro-
longation risk assessments, as suggested by Leishman et al.75. This approach
would enable the definition of safety margins by accounting for the varia-
bility observed in in vitro assay-measured parameters. By doing so, it could
serve as an effective filter in early drug development, providing a robust
sensitivity analysis that informs decision-making processes and better
characterizes the risk landscape.

To conclude, our emulators provide a valuable tool for evaluating QT
prolongation from the discovery phase and the very early stages of drug
development, offering high accuracy in simulating drug-induced effects on
cardiac physiology. Serving as an fast-response preliminary design tool for
computational clinical trials, these emulators create a virtual trial environ-
ment where outcomes can be predicted and concentration ranges refined—
all before committing to computationally expensive full-scale simulations.
However, it is crucial to underscore that the emulators do not replace the
simulator. The simulator remains indispensable, especially in later stages of
development, due to its ability to account for a wider array of physiological
factors that the emulators, particularly given their current limitations,
cannot fully capture. This distinction is vital, as the emulators are primarily
intended to complement the simulator by accelerating early-stage assess-
ments, not to substitute the comprehensive analyses that only the simulator
can provide. Moreover, the use of surrogate models allows for the com-
prehensive execution of studies with uncertainty quantification across all
variable drug-related parameters, enabling thorough compound evaluation,
informed early-stage decision-making, and the efficient design of 3D virtual
trials with a larger control over experimental conditions. Furthermore,
emulators also address the growing concern of climate impact linked to
preclinical and clinical studies, an item that is gettinghigheron the agendaof
large pharmaceutical companies. The emulators unleash the potential to
analyze, investigate, and innovate at a marginal/insignificant cost for the
environment, representing a negligible carbon footprint. By integrating
high-fidelity simulations with immediate prediction capabilities, our emu-
lators advance the concept of digital twins in biomedicine, improving the
efficiency and sustainability of drug development.

Methods
The electrophysiological simulator
Anatomical models. We collect retrospective data from the Visible
Heart Lab library at the University of Minnesota76. Specifically, we con-
sider two biventricular cardiac geometries (male and female) recon-
structed from high-resolution MRI scans. We use human heart
anatomies from adult deceased donors with no history of cardiac disease
and anatomically normal ventricles in order to represent average healthy
individuals.

The electrophysiological model. To model cardiac electrophysiology,
we consider the monodomain model77 coupled with the ORd cellular
model41. We selected the ORd model because it is recognized as the
consensus in silico model by the CiPA initiative54. Specifically, we used
a modified version of the ORd model by Passini et al.78 with modified
conductances as described in Dutta et al.54. The location of the acti-
vation points was instead set following the work byDurrer et al.79, as we
explained in our previous study64. Cardiac fibers are modeled using the
outflow tract rule-based method80. This method is particularly suited
for our study due to its ability to accurately assign fiber directions
within high-resolution biventricular geometries, which include com-
plex structures such as trabeculae and papillary muscles64,80. We
incorporate transmural myocyte heterogeneity by assigning distinct
electrophysiological and cellular properties to various regions of the
myocardium: endocardial (inner, 30%), mid-myocardial (middle,
40%), and epicardial (outer, 30%) cells. A larger diffusion is assigned to
a one-element layer on the endocardial surface to account for the fast
conduction of the Purkinje fibers. We set a constant heart rate
of 60 bpm.

To generate male and female phenotypes, we apply sex-specific ion
channel subunit expression as described in refs. 23,74,81 to the two sex-
specific anatomies considered in the study.

Modeling drugs. To model the effect of drugs, we use a multi-channel
conductance-block formulation9,23. Given the conductance gk of one of
the sevenmost influent ionic channels ICaL, INaL, Ito, IKs, IK1, INa, and IKr

38,
we define the ion channel conductance after the drug administrationwith
the following Hill model9:

gdrugk ¼ gk βk; with βk ¼ 1þ C
IC50k

� �hk
" #�1

; ð3Þ

with k = CaL, NaL, to, Ks, K1, Na, Kr. In the equations above, gdrugk is the
conductance of the k–th channel after drug administration, C the drug
concentration, IC50k the concentration required to have a 50% current
blockadeof thek–th channel, andhk the correspondingHill exponent.Thus,
the blockadeβk of channel k is identifiedby theHill parametershk, the IC50k
and the drug concentration C. Notice that C is defined as the concentration
of the drug in the plasma that is not bound to plasma proteins and is
therefore available to exert a pharmacological effect. Therefore, it is
expressed as

C ¼ f u
100

eC;
where eC is the total concentration of the drug in the plasma and fu—
expressed in percentage—is the free fraction of the drug: the ratio of the
unbound drug concentration to the total drug concentration.

Initialization of the electrophysiological model. The 3D simulation is
initialized by solving the 0D ORd model for each cell type until the
intracellular calcium concentration converges to a periodic solution.
Periodicity is determined when the RMSE between consecutive beats is
smaller than 10−7 μmol for three consecutive beats. The results from the
0D model then serve as initial conditions for the 3D simulation. Cases
where periodicity is never achieved due to the presence of calcium
alternans are excluded from our analysis (0 cases for males, 37 for
females).

For the analysis in SectionModeling proarrhythmic risk in 0D and 3D,
wecompared theoutput fromthe initializationof the0DORdmodel against
the ΔQT obtained in the subsequent 3D simulation.

Pseudo ECG andΔQT computation. To compute the ECG, we assume
isotropic electrical conductivity in the torso andwe rely on a pseudo-ECG
approach, for which the potential in a given generic point x* of the body
(where the electrode is positioned) is computed as82:

uðx*; tÞ ¼
Z

D∇vðx; tÞ � ∇ð 1
jjx � x*jj

Þdx;

where Ω × (0, T) is the spatio-temporal domain, Ω represents the
biventricular geometry and T is the simulation final time. The function
v : × ð0;TÞ ! R is the transmembrane potential andD is the orthotropic
tensor of local diffusivities. Three leads are then computed as64:

leadIðtÞ ¼ uðxLA; tÞ � uðxRA; tÞ;
leadIIðtÞ ¼ uðxLL; tÞ � uðxRA; tÞ;
leadIIIðtÞ ¼ uðxLL; tÞ � uðxLA; tÞ;

where xLA, xRA, and xLL are the positions of the electrodes at the left arm
(LA), right arm (RA), and left leg (LL), respectively. We refer the interested
reader to64 for additional information onhowwe compute the pseudo-ECG.
The latter is used to compute the QT interval duration at a baseline
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configuration (QTbsl) and after drug administration (QTdrug). This
computation is done automatically for all the cases using an automatic
algorithm as we explain in ref. 23. The QT prolongation is then defined as

ΔQT ¼ QTdrug �QTbsl: ð4Þ

Our computational approach isolates and quantifies the direct impact of
drugs on ΔQT, eliminating the confounding effects present in clinical trial
cohorts, such as varying patient demographics, concomitant medications,
and individual physiological differences. Consequently, our computational
data does not require placebo correction, as it inherently excludes these
variables. This approach ensures that the observed ΔQT effects are solely
due to the drug itself, providing a clearer comparison to clinical data where
placebo adjustments account for such confounders43. Additionally, by using
a fixed heartbeat period of 1 second (60 bpm), the ΔQT values computed
from both the simulator and emulators do not require heart rate correction,
as no variability in heart rate is present. Typically, QT interval measure-
mentsfluctuatewith changes in heart rate, necessitating correctionmethods
like the Fridericia formula, which are often population-based83. Instead,
maintaining a constant heart rate allowed us to directly compare the QT
effects of different drugs without relying on such corrections, which we see
as a significant advantage. This means that the ΔΔQTc from clinical data is
directly comparable to the ΔQT from the simulator and emulators.

Computational aspects. The computational model is implemented in
themultiphysics andmultiscale finite element library Alya39,56, developed
at the Barcelona Supercomputing Center and ELEM Biotech SL. Alya is
optimized for efficient execution on supercomputers within a high-
performance computing framework. Our study uses biventricular
meshes comprising approximately 58million tetrahedral linear elements,
with an average mesh size of 300 μm, and a constant time-step size of 20
μs. Simulations are conducted on the Nord3 machine at the Barcelona
Supercomputing Center, simulating three beats with a period of 1 s each.
The computational cost of a single simulation, utilizing 672 cores, is
approximately 3.5 h. To develop our emulators, we perform 450 simu-
lations per sex, totaling 900 simulations and corresponding to 2.1million
CPU hours globally.

The emulators
To assess real-time QT prolongation caused by drugs, we develop sex-
specific emulators that integrate a classifier followed by a regressor. The
classifier enhances the robustness and accuracy of our emulators by filtering
out non-arrhythmic and arrhythmic cases, reducing dataset complexity and
discontinuity. This is crucial given the bifurcations and discontinuous
responses in cardiac electrophysiological models, as noted by Ghosh et al.58.
We also employ sex-specific ΔQT thresholds to avoid physiological
unfeasible prolongations that could mislead the training and prediction
processes.Our thresholds of 240ms formales and196ms for females,which
are designed to account for a QT interval of 600 ms, provide a conservative
approach to identifying at-risk individuals. This methodology ensures the
regressor operates on a more homogeneous subset of data, enhancing the
reliability of the predictions.

LetD ¼ ðX; yÞ be a dataset of sizeN, whereX= (x1,…, xN) is the input
matrix, and y = (y1,…, yN) is the output vector. The input of our model are
the current blockages (1− βk) defined in Eq. (3), with k = CaL, NaL, to, Ks,
K1, Na, Kr. The output consists of a binary vector for the classifier (where 1
denotes an arrhythmic ECG and 0 non-arrhythmic ECG) and the ΔQT,
computed as in Eq. (4), for the regressor. This results in a dataset of the
following size:X 2 R7×N ; y 2 RN .Webeginby splitting thedatasetD into
two parts: the training set Dtrain and the test set Dtest. The training set,
comprising 72% of the data selected randomly, is used to tune the hyper-
parameters of both the classifiers and the regressor. The remaining 28%
forms the test set, which is used to evaluate their performance. To ensure
reproducibility and consistency across the consecutive steps of the emula-
tors, we use the same setsDtrain andDtest for classifiers and regressors. The

input data are standardized in each step of the procedure, while the output
vectorsneed tobenormalizedonly for the regressor step.Datanormalization
is performed using the StandardScaler package from the scikit-learn Python
library84, which removes the mean and scales the data to unit variance.

To tune the optimal hyperparameters of the emulators, and to evaluate
their performance, we employ a nested k-fold cross-validation strategy on
the training set85, with k = 5.

Classifier. We considered several classifiers, ranging from Random
Forests, XGBC, Linear Regression, Support Vector Machine, and KNC.
Of these, XGBC provided themost accurate results for males, while KNC
performed best for females. For a detailed explanation of these meth-
odologies, refer to50,51.

The tuning of the optimal hyperparameters for the XGBC and the
KNC methods is performed through the scikit-learn library and the Grid-
SearchCV package. For XGBC and KNC we seek to determine the optimal
hyperparameters among the possibilities reported in Table 10.

To define the evaluation metrics, we first introduce the following ter-
minology to categorize the classifier outcomes:

True Positive (TP): predicted values correctly identified as positive.
True Negative (TN): predicted values correctly identified as negative.
False Positive (FP): predicted values identifiedas positive, while the actual
ones are negative.
False Negative (FN): predicted values identified as negative, while the
actual ones are positive.
Table 11 presents themetrics used for evaluation. Specifically, the optimal
hyperparameters are selected to maximize the F1 score, as it is the most
representative metric for our purposes. Indeed, the F1 score balances the
impact of both false negatives and false positives, which are critical factors
in medical applications, and offers greater robustness when dealing with
imbalanceddatasets86.After selecting theoptimalhyperparameters,weuse
the test set to evaluate the quality of predictions on unseen data.

Gaussian process regression model. Here we focus on the regression
model, whose goal is to capture the underlying relation between inputs
and outputs. This model is designed to provide efficient approximations
of the outputs for novel input data that are not contained in the training
set. We evaluated several machine learning methods, including GPR
model, multi-layer perceptron regressor, random forests, and XGBoost
regression. Among these, the GPR model yielded the most accurate

Table 10 | Hyperparameters description and set of selected
possible values to explore with the automated exhaustive
search for XGBC and KNC methods

Sex Model Hyperparameter Values to explore

M XGBC n_estimators {100, 200, 300}

max_depth {3, 5, 7}

learning_rate {0.01, 0.1, 0.3}

subsample {0.7, 0.9}

colsample_bytree {0.7, 0.9}

gamma {0, 0.1, 0.5}

n_neighbors {3, 5, 7, 9, 11}

F KNC weights {uniform, distance}

metric {Euclidean, Manhattan, Minkowski}

Table 11 | Metrics used to evaluate the classifiers’
performance52

Accuracy Precision Recall F1 score

TPþ TN
#predictions

TP
TPþ FP

TP
TPþ FN

2TP
2TPþ FPþ FN
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results. A GPR model is a supervised learning method that assumes that
the relation between inputs and outputs can be described by a Gaussian
distribution. This means that for any set of input values, the corre-
sponding outputs are assumed to follow a jointGaussian distribution.We
refer to87 [Chapter 2] for further information onGPRmodels and to27,29,31

for their application in cardiac modeling.
Consider again the training setDtrain and the test setDtest. GPRmodel

calibration consists of tuning the hyperparameters of the kernel function on
Dtrain. This is done by maximizing the log-marginal-likelihood, that is the
probability of reproducing the given output values with the emulators.

The tuning of the hyperparameters of the emulators is based again on a
nested 5-fold cross-validation strategy on the training set. We perform the
exhaustive search with the GridSearchCV class, which aims to find the
optimal hyperparameters among the possibilities shown in Table 12.

To define the metrics used to tune the optimal hyperparameters and
evaluate the model performance, we introduce some notation. Given the
input data Xtest, we denote by ypred the corresponding prediction of ΔQT
intervals. The ground-truth output vector is denoted by ytest. We select the
hyperparameters that maximize the R2 score, defined as

R2 ¼ 1�
PN test

i¼1 ðytesti � ypredi Þ2PN test

i¼1 ðytesti � �yiÞ2
;

where �y is the average of ytest. Evaluating the accuracy of the emulators
involves comparing the predicted values with the actual ones. To this end,
we use the following error metrics, namely themean absolute error (MAE),
the mean absolute percentage error (MAPE), and the root mean squared
error (RMSE), defined as:

εMAE ¼ 1
N test

PN test

i¼1 ytesti � ypredi

��� ���;
εMAPE ¼ 100

N test

PN test

i¼1
ytesti �ypredi

�� ��
ytestij j ;

εRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N test

PN test

i¼1 ytesti � ypredi

� 	2
r

:

Finally, we evaluate the performance of the model with the optimized
hyperparameters on the test set.

Performing global sensitivity analysis
In this work, we perform GSA49,88 twice: firstly to find the most influential
channels from the preliminary emulators, allowing us to later enhance the
database with higher blockades; secondly, to identify and prioritize influ-
ential inputs from our enhanced emulators. GSA is divided into the fol-
lowing steps:
1. Sampling with Sobol’ sequences: Sobol’ sequences are quasi-random

sequences that ensure a more even and thorough exploration of the
parameter space compared to traditional random sampling methods.
We use these sequences to generate a set of diverse input parameter
combinations (ionic channels’ blockades). Specifically, we sample 212 =
4096points in the parameter space (this number is typically chosenas a
power of 2 to ensure robust coverage and convergence properties).

2. Model evaluation: For each sampled parameter combination, we
evaluate our emulators to obtain correspondingmodel outputs (ΔQT).

3. Variance decomposition and sensitivity indices: Sobol’ sensitivity ana-
lysis decomposes the total variance of the model output into con-
tributions from individual parameters (first-order sensitivity indices,

Table 12 | Hyperparameters description and set of selected
possible values to perform the automated exhaustive search
for GPR model

Hyperparameter Values to explore

kernel {RBF, Matérn 1.5, Matérn 2.5}

alpha {10−5, 10−3, 10−2, 10−1, 1}

n_restarts_optimizer {0, 5, 10, 20, 50}

See 87 [Section 4.2] for more details on kernel functions.

Table 13 | IC50, expressed in nmol/L, is the concentration of the drug that inhibits 50% of its target ion channel activity; h (Hill
coefficient, dimensionless) describes the steepness of the drug’s concentration-response curve

Moxifloxacin Ondansetron Dofetilide Verapamil

ICaL IC50 – 22551 – 202 201.8 200

h – 0.8 – 1.1 1.1 0.8

IKr IC50 93041 1492 4.9 499 288 250

h 0.6 1.0 0.9 1.1 1.0 0.89

IK1 IC50 – – – – 349 ⋅ 106 –

h – – – – 0.3 –

Ito IC50 – – 18.8 – 13429.2 –

h – – 0.8 – 0.8 –

IKs IC50 50321 – – – – –

h 1.0 – – – – –

INaL IC50 382337 19181 – – 7028 –

h 1.1 1.0 – – 1.0 –

INa IC50 – – – – – 32500

h – – – – – 1.33

Ionic block profile 38 38 54 38 54 55eC [ng/mL] 700, 1500, 2900 (F)
500, 1000, 2100 (M) (Fig. 10)

30, 100, 300 (Fig. 10) 0.43, 0.92 (Fig. 9)
0.1, 0.3, 1 (Fig. 10)

99.6, 199.2, 398.4, 750
(Figs. 10 & 11)

fu [%] 65 27 35 12

The ionic block profile refers to the sources of these twoparameters. eC is the total concentration of the drug in the plasma, and fu is the free fraction of the drug. Formoxifloxacin, different concentrations are
used for males and females, according to the reported higher maximum concentrations observed in females91. The concentrations were selected based on reported plasma levels in clinical trials. Different
dofetilide concentrations are used for the study in Fig. 9 and thebenchmark analysis in Fig. 10. The former focuses on evaluating emulator performanceacross various physiological conditions,whereas the
latter aims to thoroughly assess drug safety profiles. The illustrated verapamil response in Fig. 10 incorporates data exclusively from Crumb et al.38, among the reported ionic block profile sources.
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S1) and their interactions (total-order sensitivity indices, ST). This
decomposition provides quantitativemeasures of the relative influence
of each parameter and interaction on the variability of the model
output.
We run GSA simulations using the SALib Python library89,90, per-
forming two key analyses. The first examines how input parameters
influence the emulator outputs (i.e., ΔQT), while the second identifies
the most influential factors contributing to QT prolongation risk. In
this case, after computing the ΔQT, we categorize the results into a
binary vector, labeling them as high or low risk based on whether the
predicted ΔQT exceeds the specified high-risk threshold of 50 ms47.
For the preliminary version of the emulators, we focus on the second

analysis. Using Sobol’ sequences, we perform the GSA to identify the three
ionic channels that have the most significant impact on the drug-induced
high risk of QT prolongation. The primary objective is to isolate regions
within the sample space that surround the thresholds for arrhythmic events,
thereby enhancing the training dataset in this critical area. Sobol’ sensitivity
analysis is particularly well-suited for this purpose due to its variance-based
approach, which systematically decomposes the total variance in model
output into contributions from individual parameters and their interactions.

After developing and tuning the final version of the emulators, we
repeat the GSA to further explore the impact of ionic channel blockades on
QTprolongation. The enhanced version of the emulators is used to perform
both the analyzes outlined above.

Comparison of in silico and in vivo clinical trials for
benchmark drugs
Weevaluate the emulatorperformance by comparing their predictionsofC-
ΔQT for various benchmark drugs with simulator results and publicly
available clinical data53. The simulator results, shown in our analysis, follow
the population approach outlined in ref. 60, which incorporates phenotypic
variability, as we presented in ref. 23. Additionally, the simulator incorpo-
rates anatomical variability using data from the Visible Heart Lab at the
University of Minnesota76, which features a comprehensive collection of
patient cases with varying BMI, age, and anatomical characteristics. In
contrast, our emulators donot account for anyof these sources of variability.

To assess the emulator accuracy, we perform linear regressions on the
C-ΔQT relationships derived from clinical data, simulator results, and
emulator results. For the clinical data, the linear regression is based on
ΔΔQTc. This validation analysis is divided into three parts, corresponding
to Figures 9, 10 and 11 respectively. Table 13 details the blockades and
concentrations used as input data for all of them.

Data availability
The data generated and analyzed during this study are proprietary to ELEM
Biotech and cannot be publicly shared due to commercial confidentiality.
However, access to the data may be considered on a case-by-case basis.
Requests for access can be directed to ELEM Biotech compliance depart-
ment, and will be subject to a data use agreement ensuring compliance with
relevant regulations and restrictions.

Code availability
ELEMBiotechowns the commercial rights toAlya, the computationalfinite
element solver employed in this study for the simulator. However, the
methodology can be replicated using any finite element solver given all the
parameterization information provided in this paper. The emulators are
implemented in Pythonusing the scikit-learn library, and all necessary steps
for replication are described in the Methodology section.
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