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Paternal exposure to high-fat diets or individual fatty acids (FAs) including arachidonic acid (AA) modifies progeny traits by
poorly understood mechanisms. Specific male reproductive system FAs may be involved in paternal inheritance, as they can
modify a range of cellular components, including the epigenome. Our objective was to determine FAs in compartments of the
male reproductive system that potentially affect ejaculate composition—right and left testicular interstitial fluid (TIF), vesicular
gland fluid (VGF), and epididymal adipose tissue (EAT)—in mice exposed to AA or vehicle daily for 10 days (n=9-10
/group). Whole blood (WB) and interscapular brown adipose tissue (IBAT) FA profiles were used as reference. AA
significantly affected only VGF FAs relative to vehicle, that is, increased and decreased levels of arachidic and docosahexaenoic
acid, respectively, versus vehicle (0.28% +0.01% and 0.23% + 0.03%, respectively, p =0.049, and 2.42% + 0.47% and 3.00% +
0.58%, respectively, p=0.041). AA affected distinct FAs in WB. Additionally, we uncovered AA-dependent and AA-
independent FA laterality. Myristic acid was higher in AA-exposed left versus right TIF (0.68% + 0.35% and 0.60% + 0.11%,
respectively, p = 0.004). Right TIF contained higher oleic and linoleic acid and lower stearic acid than left TIF (29.01% + 3.07%
and 24.00% + 2.18%, respectively, p=0.005; 9.14% + 1.88% and 7.05% + 1.36%, respectively, p=0.005; and 21.90% +2.92%
and 26.01% + 2.46%, respectively, p = 0.036), irrespective of exposure to AA. The TIF oleic/stearic acid ratio suggested higher
Stearoyl-CoA Desaturase 1 activity in the right versus the left testis (1.35+0.32 and 1.00 +0.17, respectively, p=1.0 x 107*).
Multitissue comparisons revealed that TIF and VGF FA profiles were distinct from WB, EAT, or IBAT counterparts,
suggesting tissue-specific FA fingerprints. In conclusion, AA modulated selected VGF long-chain FAs that may impact on
uterine inflammation and subsequent embryonic development. AA altered local FA synthesis or selective uptake, rather than
eliciting passive uptake from WB. Additionally, we uncover a significant laterality of testis FAs that may result in asymmetric
sperm cell phenotypes.
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1. Introduction and biological viewpoint in humans. AA can be synthesized

from the essential fatty acid (FA) linoleic acid or can be
The 20-carbon omega-6 polyunsaturated fatty acid (PUFA)  obtained from the diet, mainly from eggs, chicken, and fish
arachidonic acid (AA) is highly relevant from a nutritional [1]. Additionally, breastmilk is an important source of
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dietary AA [2]. AA is the precursor of eicosanoids that both
mediate and resolve inflammation: prostaglandins, leukotri-
enes, and thromboxane [3, 4]. The dysregulated synthesis of
those factors is associated with impaired immune response
and increased risk for a plethora of diseases. The latter
includes cardiovascular disease, obesity, and cancer [5-8].
On the other hand, AA is crucial for infant development
(reviewed in [9]).

We have shown that paternally or maternally supple-
mented AA exerts intergenerational effects in mice. Paternal
AA supplementation for three generations induces cumula-
tive metabolic effects. Along the paternal line, that is, foun-
der and three successive paternally exposed generations,
AA induced an increase in body weight in the last genera-
tion. Furthermore, the cumulative supplemented paternal
AA dose correlated with several organ weights including
liver. In the liver, milligrams of maternal and paternal AA
supplement correlated positively with global DNA methyla-
tion and negatively with Stearoyl-CoA Desaturase 1 (Scdl)
promoter methylation. Consistent with the involvement of
SCD1, paternal and maternal AA dose was directly associ-
ated with liver cis-hexadecenoic acid, an anti-inflammatory
omega-9 isomer of palmitoleic acid that is synthesized by
SCD1 [10]. In a separate study, the effect of paternally sup-
plemented AA on progeny’s behavioural phenotype was
addressed following exposure to lipopolysaccharide (LPS).
Paternal AA primed progeny for behaviour consistent with
increased anxiety in a sex-specific manner. In particular,
high AA doses mimicked LPS exposure in males. Again
underlining the relevance of SCD1, high AA doses interacted
with LPS by modulating the expression of that enzyme in the
hypothalamus [11]. Consistent with the above data, pater-
nally supplemented fish oil, a surrogate of specific FA, ame-
liorated the metabolism of the progeny in a mouse model
[12, 13]. The data imply that molecular information trans-
mitted via the sperm induces a memory of an individual’s
paternal exposure to AA. This is in essence the concept of
paternal intergenerational inheritance, which has been
shown in a variety of metabolic and behavioural models
[14, 15]. The nature of the sperm-borne molecular informa-
tion that determines paternal inheritance is poorly under-
stood. That information can be carried by the sperm cell
or by other components or the ejaculate. For example, a
high-fat diet alters specific sperm cell noncoding RNAs that
impact transcription in the zygote and potentially in the foe-
tus and postnatally [16]. Additionally, nongenetic inheri-
tance mechanisms based on transmission of FA-rich
cellular structures have been proposed [17]. Additionally,
the vesicular gland plays a role in inter- and transgenera-
tional metabolic effects following paternal exposure to a
low-protein or high-fat diet in rodents [18-21]. Likewise, a
study in invertebrates has highlighted a role of seminal fluid
in “transgenerational immune priming”—that is, the trans-
fer of a cellular memory of immune exposure from fathers
to offspring [22]. A further layer of complexity is that pater-
nal exposure can generate changes in other components of
the male reproductive system that, in turn, signal the sperm.
Those include the germline-hosting testicular environment
and the epididymal adipose tissue (EAT). EAT may produce
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signals that affect the surrounding male reproductive system
akin to the regulation of vascular tissue inflammation by the
adjacent pericardial or perivascular fat [23, 24]. In particular,
the tight proximity of EAT to the testis suggests the possibil-
ity that proinflammatory factors are transferred from EAT
to the testis either by diffusion or through local vasculature
as proposed for perivascular fat [25].

Relatively few studies have addressed the role of sperm
FA in intergenerational effects. High-fat diet exposure in
male mice imposes a proinflammatory omega-3/omega-6
FA ratio in the sperm of grandsons [26]. The short FA val-
proic acid affects the sperm DNA methylation [27]. Broadly,
the case for lipids in intergenerational epigenetic inheritance
has been presented [28]. FA may be both the signal and the
mark of AA-induced intergenerational effects. As signals,
AA or its metabolite(s) may alter the transcriptional pro-
gram of the sperm cell, given that FA and circulating lipids
can modify DNA methylation and the chromatin in several
eukaryotic models and in humans [29-34]. Additionally,
AA may induce a mark consisting of an ejaculate FA pool
that affects the uterine wall or the zygote. In accordance with
those hypotheses, peroxisome proliferator-activated recep-
tors (PPARs) mediate the intergenerational effects of pater-
nal traumatic stress or cadmium exposure in mouse
models, and selected FAs are well-characterized PPAR
ligands [35, 36].

In the light of the above considerations, we determined
total FA in both the right and left testicular interstitial fluids
(TIFs) separately, in the vesicular gland fluid (VGF) and the
EAT—in mice exposed to AA or vehicle daily for 10 days.
The rationale for surveying the TIF was that it reflects the
FA composition of the testicular environment, thus repre-
senting a readout of FA profile that the germline is exposed
to [37]. We analyzed left and right TIF separately, as gonadal
asymmetry has been appreciated in biology, human medi-
cine, and art since Classical Greece [38-41]. In particular,
the right testis has been reported to be heavier than the left
counterpart in mice, pointing to nonrandom but strain-
specific asymmetric determinants of growth and develop-
ment [42]. To our knowledge, the mechanism and func-
tional consequence of testicular asymmetry have not been
addressed. As FAs are associated with organ weight, we
speculate that testis FA, whether modified by AA supple-
mentation, may show laterality and provide preliminary
hints on mechanisms. Whole blood (WB) and interscapular
brown adipose tissue (IBAT) FA profiles were used as refer-
ence, to assess interorgan similarities of FA pools and to
what extent passive intake from WB determines organ FA.
We discuss the data in the light of the current knowledge
on the bioactivity of FA and paternal intergenerational
effects.

2. Materials and Methods

2.1. Animal Supplementation. The protocol was approved by
the Institutional Committee for Ethics in Research of the
University of Guanajuato (CEPIUG) with Approval No.
P44-2022. Mice were fed chow (LabDiet No. 5001) and
had free access to water. Twelve-week-old C57BL/6 male
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mice were orally supplemented with a daily dose of 1.2 ug
AA (98.5% pure, Sigma-Aldrich Cat. No. A3611) mixed
with soybean oil (vehicle; Nutrioli) in a total of 5 4L or vehi-
cle alone for 10 days (n=10/group). Two to six mice for
each of five litters were randomly assigned to either experi-
mental group, and each litter was equally represented in
the two groups. The vehicle has no detectable AA and con-
tains 0.01% tert-butylhydroquinone, an antioxidant that
should prevent AA chemical modification (the FA composi-
tion of vehicle previously obtained by us is shown in
Table S1 [10]). Additionally, vehicle contains the
physiological AA precursor linoleic acid at a concentration
of 7.5g per serving (15.4mL) (http://www.nutrioli.com) or
a maximum of 24mg per 5-uL supplement. Vehicle
linoleic acid is expected to modestly impact the final
endogenous concentration of AA, as supplemented linoleic
acid contributes to tissue AA one order of magnitude less
than supplemented AA (reviewed in [9].) Furthermore,
dietary linoleic acid levels are not associated with tissue
AA [43]. The AA dose was chosen based on our previous
study that demonstrated intergenerational effects of AA
[10, 11]. That dose represents 0.45% of total FA (or 0.05%
of total daily energy) and is within values recommended
for infant nutrition and reflects actual dietary patterns [1,
44]. AA or vehicle was supplemented by gently depositing
the 5-uL solution into the side of the mouth with a
blunted pipette tip as previously reported [10].

2.2. Tissue Obtention and Processing. Mice were sacrificed by
decapitation under isoflurane anaesthesia. The WB was
obtained during decapitation. The testis, vesicular gland,
IBAT, and EAT were dissected, and subsequent tissue
manipulation was performed in ice. The TIF was obtained
from each testis separately (i.e., left and right TIF) as previ-
ously reported [37]. Briefly, each testis was decapsulated by
careful removal of the tunica albuginea, weighed, and
immersed in the same volume of cold phosphate-buffered
saline (PBS) (1:1 ratio between milligrams of decapsulated
testis and milliliters of PBS) for 45min to allow diffusion
of the TIF. The mix of testis and PBS was centrifuged at
1000 x g for 5min; the supernatant was recovered and
cleared by centrifugation at 1660 x g for 15 min. The super-
natant was carefully separated from the pellet to obtain the
TIF. To isolate the VGF, each horn of the vesicular gland
was cut into three segments and the VGF was carefully
squeezed out with a spatula. The IBAT was identified and
dissected as reported [45]. All samples were stored at
—80°C until used.

2.3. Total FA Determination. Total FAs were determined
from lyophilized 25-50-mg tissue or total VGF obtained
from an individual mouse (variable volume), or 200 uL WB
or TIF, by gas chromatography-mass spectrometry as previ-
ously described [10].

2.4. Statistics and Data Visualization. To compare individual
FA of the same tissue between AA-supplemented and con-
trol groups, percentage values were compared by the
Mann-Whitney U test. To assess laterality, within-

individual-mouse paired comparisons of right and left TIF
were conducted for each individual FA using the Wilcoxon
paired test. For all other multitissue comparisons of individ-
ual FA, overall significance was tested with the Kruskal-
Wallis ANOVA followed by the Wilcoxon paired test. FA
profiles (i.e., average percent values for each of the deter-
mined FAs) between two given tissues were compared with
the chi-square test. Violin plots were created with the
ggplot2 package for the R software [46]. Heat maps were
drawn with the gplots package for the R software, using Z
-score-normalized FA percent data [47].

3. Results

3.1. Effects of AA on Male Reproductive System Organ FA. A
total of 24 FAs were detectable across tissues. All FA data are
available in Table S2.

Among the male reproductive system-related fluids or
tissues TIF, EAT, and VGF, only VGF showed a significant
effect of supplementation with AA on FA profile: Arachidic
acid (C20:0) was higher, and docosahexaenoic acid (C22:6)
was lower in the AA-supplemented group compared with
control mice (Figures 1(a) and 1(b)). Additionally, VGF pal-
mitoleic acid (C16:1n-7) was lower in the AA-supplemented
group relative to controls but at borderline significance
(0.29% and 0.39%, respectively; p =0.077). None of those
FAs was affected by AA supplementation in WB, where eico-
sadienoic acid (C20:2) and eicosapentaenoic acid (C20:5)
were significantly higher in the AA-supplemented group
(Figure 1(c)). Conversely, no FA was affected by AA supple-
mentation in the IBAT.

3.2. Laterality of TIF FA. Our study design allowed for the
assessment of asymmetry in FA between left and right testis
TIFs. We uncovered both AA-dependent and AA-
independent lateralities of TIF FA. As for AA-dependent dif-
ferences, myristic acid (C14:0) was significantly higher in the
left compared to the right TIF, but only in the AA-
supplemented group (Figure 2(a)). On the other hand, three
FAs showed asymmetry between left and right TIFs from
both AA-supplemented and control mice. These were stearic
acid (C18:0) that was significantly higher in the left com-
pared to right TIF and oleic (cisC18:1) and linoleic (C18:2)
acid that changed in the opposite direction (Figures 2(b)
and 2(c)). The data suggested a higher desaturation of
C18:0 to cisC18:1 in the right compared to the left TIF,
indicative of increased SCD1 activity [48]. Accordingly, the
cisC18:1/C18:0 ratio was significantly higher in the right
compared to left TIF, when compounded TIF from AA-
supplemented and control TIF were compared (right TIF:
1.35+0.32; left TIF: 1.00 +£0.17; p=1.0x 107*; Wilcoxon
paired test). SCD1 can also desaturate palmitic acid to pal-
mitoleic acid (C16:0 and C16:1n-7, respectively), yet their
ratio was not significantly different between the left and right
TIFs (0.04+0.03 and 0.04 £ 0.02, respectively, p=0.526;
Wilcoxon paired test); that result could be explained by pref-
erential elongation of C16:0 to C18:0 [49]. Incidentally, we
observed a tendency for the right testis to be heavier than
the left counterpart as previously reported, but the difference
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did not reach significance and AA supplementation had no
effect (AA-supplemented and control testes compounded:
right: 103.0+20.0mg; left: 95.9+24.7mg p=0.362;
Mann-Whitney U test) [42]. Our study design also allowed
for comparisons of SCDI activity among tissues. The
cisC18:1/C18:0 ratio was highly different among tissues
(p<1.0x107'° Kruskal-Wallis ANOVA). The EAT
showed markedly high values that were significantly differ-
ent from all other tissues, although relatively more similar
to the IBAT. The remaining tissues were relatively close
although significantly different in most cases (Figure 2(d)).

3.3. Tissue Specificity of FA Profiles. We expanded the com-
parison across tissues to assess whether FA profiles differed
between the male reproductive system and the reference
counterparts WB and IBAT. Paired comparisons of com-
pounded AA-supplemented and control mouse FA identi-
fied tissue groups with nonsignificantly different FA
profiles: one group was composed by the two TIFs and the
VGF and the other group by the WB, EAT, and IBAT
(Figure 3(a)). To identify individual FA that accounted for
that grouping, we performed cluster analysis in the AA-
supplemented and control group separately. The data
revealed that abundant FAs such as cisC18:1, C16:0, C18:0,
and C18:2 were highly variable across tissues while low-
abundance FAs display relatively similar patterns and low
variation among tissues (e.g., most long-chain PUFA and
branched FA). We also found that FA abundance varied

between the two tissue groups previously identified irrespec-
tive of AA supplementation (i.e., TIF and VGF on the one
hand and WB, EAT, and IBAT on the other hand), particu-
larly for AA (C20:4) (Figures 3(b) and 3(c)). Indeed, AA, in
addition to C18:0 and C18:2, showed significant differences
between the two tissue groups (p range: 4.3x 1073
-1.2 x 10712; Kruskal-Wallis ANOVA and Wilcoxon paired
test).

Our FA determination method also detected the
branched FA 14-methyl-C15:0 (isoC15:0) and 15-methyl-
C16:0 (isoC16:0). Branched FAs may play a role in repro-
duction and in general physiology, as they are decreased in
obese rodents and may have anti-inflammatory and antican-
cer activity [50-52]. Branched FAs were detected in the EAT
and IBAT and at relatively low levels in the VGF and WB
but were undetectable in TIF (Table S3). AA
supplementation did not affect branched FA in any of the
surveyed tissues.

4. Discussion

Our data confirmed the initial hypothesis that supplementa-
tion with AA modifies the FA content of the male reproduc-
tive system. Additionally, to our knowledge for the first time,
we documented selected testis FA laterality that was both
dependent and independent of AA supplementation. Multi-
tissue analysis of FA profiles revealed two clusters inde-
pendent of AA supplementation, one composed of the
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TIF and VGF and the other composed of the adipose tis-
sue and WB.

Selected long-chain FAs (>20 carbons) were altered by
AA supplementation in the male reproductive system. The
data highlighted notable features of the response to AA.
Firstly, we observed a marked tissue specificity as only
VGEF FAs were affected by AA. Secondly, AA affected differ-
ent long-chain FAs in the WB and in the VGF. The data
indicate that the VGF responded to AA by modifying FA
metabolism or uptake, rather than passively acquiring the
WB FA profile. The data presented here converge with our
previous studies of intergenerational effects of maternal
and/or paternal AA supplementation. Notably, C20:0
(increased by AA in the VGF in this study) showed a cumu-
lative change in livers across three consecutive offspring gen-
erations in a mouse model of paternal AA supplementation,
although the association with the amount of supplemented
AA was negative [10]. Likewise, C20:5 (decreased by AA in
WB) was increased in livers in the same study. In a separate
study of intergenerational effects of paternal AA supplemen-
tation, C20:5 content was higher in blood of AA-

supplemented compared to vector control offspring [11].
The latter study also documented a decline in brain PUFA,
which mirrors the decrease in C22:6 and C20:5 induced by
AA in the VGF and WB, respectively, observed in the pres-
ent study. Additionally, liver C16:1n-7 showed a borderline
significant negative association with paternal AA [10] and
was borderline significantly lower in the AA-supplemented
VGF. Overall, our data confirm the preferential effect of
AA on long-chain FA. The inconsistencies in the direction
of associations likely reflects differences between supple-
mented founders and their progeny, and tissue-specific
effects. Finally, it is noteworthy that the results of the men-
tioned studies generally converge with the present one,
despite being conducted in different mouse strains—that is,
BALB/c or C57BL/6, respectively [10, 11].

Our data suggest that VGF FA may participate in the
intergenerational effects induced by AA. That model is sup-
ported by the previously documented participation of the
seminal fluid in paternal intergenerational programming in
rodents [18-21]. Considering that AA decreases VGF
C22:6—an anti-inflammatory FA—we speculate that the
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exposure to AA blunts the inflammatory response of the
uterine wall via the sperm, impacting gene expression in
the oocyte, the zygote, and possibly the adult offspring [53,
54]. That view is supported by evidence that PPAR signal-
ling mediates the transgenerational effects of the paternal
exposure to traumatic stress in a rodent model and in
humans [35]. Notably, PUFAs such as C22:6 are endogenous
PPAR ligands [55, 56]. In fact, C20:5 (decreased by AA in
the WB) was among the circulating factors specifically
altered by paternal stress in mice [35]. PPAR signalling
may participate in the paternal effects of a variety of expo-
sures, and the relative contribution of pathways additional
to PPAR signalling may be responsible for type of
exposure-specific intergenerational effects. An additional
participating pathway may be the sphingosine-1-phosphate
receptor 1 signalling, which was recently shown to mediate
the biological effects of C20:5 [57]. AA-modified FA profiles,
particularly long-chain PUFA, are associated with epigenetic
changes that may explain intergenerational effects. In exper-
imental studies, consistent with the aforementioned data, in
a cell culture model, AA-induced DNA hypermethylation

was mediated by PPARa, possibly secondary to the genera-
tion of PPAR ligands [34]. Also, C22:6 and C20:5 induced
DNA hypermethylation in cell culture, although that
response was cell line dependent [58]. As for human inter-
vention studies, C22:6 supplementation was associated with
gene-specific and global DNA methylation alterations [59].
A similar conclusion has been reached by n-3 PUFA supple-
mentation [60-62]. Those data echo the observation that
endogenous C20:5 was directly associated with global DNA
methylation in humans [63]. This growing area of research
has been reviewed with an emphasis on human reproduction
and development [64, 65].

Our study identified a significant laterality in the testis.
Myristic acid (C14:0) was increased by AA, but not the vehi-
cle control, in the left relative to the right TIF. Notably, brain
C14:0 was modulated by paternal AA in the unsupplemen-
ted progeny in both males and females [11]. Another
observed testis laterality was the ratio between C18:0 and
its desaturation products cisC18:1 and C18:2, suggestive of
higher SCD1 activity in the right testis, irrespective of AA
supplementation. Both cases of testis laterality may impose



differential cellular phenotypes in the germline and in sperm
cells. C14:0 diminishes inflammation and oxidative stress in
the testis [66]. Regulation of C14:0 and C22:6 (see above) by
AA may therefore fine-tune the inflammatory potential of
the sperm. SCD1 activity shapes the cellular FA pool and
may induce heritable epigenetic marks by interacting with
the DNA methylation machinery [67, 68]. We acknowledge
that the lack of additional data on SCD1 activity is a limita-
tion of this study. Nonetheless, whether directly driven by
SCDI, the excess of oleic relative to stearic acid is expected
to exert an anti-inflammatory milieu in the right testis
[69]. Therefore, testis laterality may modulate the intergen-
erational information and performance of the sperm cell,
with possible consequences for the reproductive physiology
and assisted reproduction.

Beyond the effects of AA, we documented differences in
FA between the male reproductive system and nonreproduc-
tive tissues. FA profiles of the left and right TIF and the VGF
were more similar than the EAT, IBAT, and WB counter-
parts. Highly abundant FAs, particularly tissue AA, were dif-
ferentially present between those two clusters. The data
indicate that FA fingerprints are broadly associated with tis-
sue physiological functions, although our data cannot indi-
cate any direction of causality.

The observed distribution of branched FA was in part
expected, as they are endogenously synthesized in the adi-
pose tissue [52]. To our knowledge, the presence of
branched FA in the VGF has not been reported. Given that
we detected branched FA in the WB, we cannot conclude
whether the vesicular gland can synthesize branched FA or
uptakes them from the circulating pool. The absence of
branched FA in the TIF is noteworthy. A possible explana-
tion is that excluding branched FA from the germline envi-
ronment is evolutionarily advantageous. This speculative
idea is supported by the documented proapoptotic activity
of branched FA [70]. Further experimental work is war-
ranted to assess the functional significance of the absence
of branched FA in the TIF.

One weakness of our study is that we base our conclu-
sions on nominal p values. Nonetheless, the manyfold coin-
cidences between our data and the conclusions reached by
other models of intergenerational transmission, particularly
the sensitivity of long-chain PUFA to AA, assign biological
significance to our findings.

5. Conclusion

We highlight AA supplementation-dependent and AA sup-
plementation-independent FA profiles in the male repro-
ductive system that may broaden our understanding of the
molecular mechanisms of paternal inheritance and general
aspects of male reproductive biology.
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