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Abstract: Image enhancement is an important step in image processing to improve contrast and
information quality. Intelligent enhancement algorithms are gaining popularity due to the limitations
of traditional methods. This paper utilizes a transformation function to enhance the global and
local information of grayscale images, but the parameters of this function can produce significant
changes in the processed images. To address this, the whale optimization algorithm (WOA) is
employed for parameter optimization. New equations are incorporated into WOA to improve its
global optimization capability, and exemplars and advanced spiral updates improve the convergence
of the algorithm. Its performance is validated on four different types of images. The algorithm not
only outperforms comparison algorithms in the objective function but also excels in other image
enhancement metrics, including peak signal-to-noise ratio (PSNR), feature similarity index (FSIM),
structural similarity index (SSIM), and patch-based contrast quality index (PCQI). It is superior to
the comparison algorithms in 11, 6, 11, 13, and 7 images in these metrics, respectively. The results
demonstrate that the algorithm is suitable for image enhancement both subjectively and statistically.

Keywords: image enhancement; grayscale images; whale optimization algorithm

1. Introduction

Images are a primary source of human perception of the world and a key method for re-
ceiving and transmitting digital information [1,2]. Due to the influence of sensors, weather,
and other factors, images are susceptible to issues such as clarity, contrast, and bright-
ness degradation, which seriously affect subsequent information extraction and pattern
recognition [3]. Therefore, image enhancement is essential for improving image quality.

Image enhancement is an important factor in the preliminary stage of image processing
as it emphasizes the region of interest (ROI) within images [4]. Currently, it is widely
used in medicine, agriculture, marine research, and more [5]. Given the importance of
image enhancement, researchers have developed many algorithms. These methods are
currently divided into spatial domain enhancement and transform domain enhancement.
In the spatial domain, contrast enhancement utilizes nonlinear functions for gray-level
transformation, including logarithmic transformations, gamma functions, histogram-based
techniques, and nonlinear quadratic filtering.

Histogram equalization (HE) is a common spatial domain method for improving
image quality because of its effectiveness and simplicity [6]. HE maps the grayscale levels
of an image to new levels based on the image’s histogram and cumulative distribution
function (CDF). However, a major drawback of traditional HE is its tendency to modify
image brightness, leading to unwanted visual artifacts in the processed image. Various
extensions of HE have been proposed to address these issues, but their effectiveness has
been constrained [7].

Besides HE-based methods, image enhancement can also be performed using other
techniques such as contrast stretching, low-pass and high-pass filters, Retinex models,
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and swift algorithms [8]. These techniques often fail to produce satisfactory results for a
wide range of low-contrast images. In this regard, metaheuristic algorithms have received
extensive attention due to their randomness and robustness [9–12], and particle swarm op-
timization (PSO), genetic algorithm (GA), differential evolution (DE), and other algorithms
have been employed to automatically enhance image contrast [13–15].

Image enhancement algorithms, including traditional optimization methods and
metaheuristic-based approaches, iteratively adjust parameters to explore the solution space
and maximize the objective function. However, without robust exploration strategies,
these algorithms may prematurely converge to suboptimal solutions. In this paper, we
improve the whale optimization algorithm (WOA) for image enhancement, and the main
contributions are as follows:

1. One limitation of the traditional WOA is its slow convergence rate, especially in
high-dimensional or complex optimization tasks. The modifications introduced to
the whale optimization algorithm (AWOA), including advanced search strategies and
population update, significantly enhance convergence speed without compromising
the quality of solutions in grayscale image enhancement tasks.

2. A prevalent challenge in WOA is achieving an effective balance between explo-
ration and exploitation. We utilize novel exemplars and advanced spiral updates to
strengthen this balance, and the algorithm can effectively explore new regions of the
solution space while fine-tuning existing solutions.

3. The proposed method outperforms existing algorithms in peak signal-to-noise ratio
(PSNR), feature similarity index (FSIM), structural similarity index (SSIM), patch-
based contrast quality index (PCQI), and convergence curves.

The main structure of this paper is as follows: Section 2 introduces related works on
image enhancement, and Section 3 describes the image enhancement model based on WOA.
The image enhancement experiments and analysis are presented in Section 4, and Section 5
provides a summary and outlook of the work.

2. Related Works

Image enhancement techniques improve the appearance of images to achieve bet-
ter visual interpretation. They also boost the performance of subsequent tasks such as
computer vision, image segmentation, image processing, and object detection and track-
ing. This section provides a brief overview of image enhancement research based on
metaheuristic algorithms.

Image enhancement aims to enhance visual quality by increasing the contrast of images
that may have been distorted or diminished during capture. HE is the most commonly used
method for this task. However, the exhaustive methods used in HE are algorithmically
complex. Ahmed et al. used grayscale mapping techniques to transform images into
solutions for an optimization problem and employed barnacles mating optimizer (BMO)
to find the optimal solution for this problem [16]. Woldamanuel provided an improved
HE method using the water cycle algorithm (WCA) to enhance image contrast while
preserving brightness [17]. The experimental results indicate that the proposed technique is
superior to traditional methods in terms of objective function values and perceived visual
quality. Kamoona et al. introduced a novel enhanced cuckoo search (ECS) algorithm for
image enhancement [18]. In order to address problems caused by local/global enhancement
transformations that strengthen edges and cause image distortion, they suggest a new range
for searching for transformation parameters that produce better-enhanced images. Qin et al.
proposed an improved PSO algorithm and applied it to infrared image enhancement [15].
They develop a new exponential central symmetric inertia weight function and introduce a
mechanism for escaping local optima. Additionally, they propose a new method for image
enhancement by combining the advantages of HE with a dual-domain image decomposition
algorithm. The proposed PSO algorithm is used to optimize the parameters to determine
the enhanced image’s characteristics. Veluchamy et al. proposed a weighted gamma
correction method based on the artificial bee colony (ABC) to improve the visual quality of
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contrast-distorted images [19]. First, image expansion and compression are individually
applied to expose and restrict image intensity levels. Then, a weight method is used to
add necessary details in dark regions. Finally, ABC is employed to calculate the optimal
weight parameters to maintain brightness. Ashish et al. divided the input image into
low and high exposure regions and controlled the degree of over-enhancement through
clipping and optimal weighting processes before applying HE [20]. They use a krill herd
(KH) optimization algorithm to enhance the contrast of dark areas. Finally, they integrate
the two sub-histograms to produce an enhanced image while maintaining the naturalness
and fine details of the original image.

In modern healthcare, precise diagnosis and treatment require accurate medical image
segmentation. Saifullah et al. conducted a comprehensive study on the effectiveness of
combining PSO with HE for image segmentation [21]. The optimal cost values reveal
the strong performance of the PSO algorithm, while the HE preprocessing demonstrates
significant stability, especially for complex lung CT scan images. Jiang et al. utilized the
mathematical concepts of symmetric group theory to tackle the optimization challenge of
image enhancement [22]. Their approach optimizes a hybrid objective function for multiple
measurements in medical images and improves the contrast of intensity distribution.
The enhanced ROI contributes to early diagnosis and patient survival rates, and it has a
strong impact on the intermediate features and final results of computer-aided diagnosis
(CAD) systems. Golabian et al. introduced a new medical image contrast and edge-
sharpening enhancement framework based on the KH algorithm [23]. The approach trims
the histogram using the minimum, maximum, mean, and median values with adjustable
parameters. KH is used to optimize these parameters, and residual pixels are reallocated to
the relatively empty bins in the histogram. Digital imaging technology has been widely
applied in various fields. These technologies significantly improve the efficiency of medical
image processing and ensure the accuracy of clinical diagnoses. Ye et al. investigated the
WOA algorithm [24] to optimize the gamma correction parameters for image enhancement
and presented the detailed visualization of medical images. Elnaz et al. applied the black
hole algorithm and PSO (BHOPSO) to adjust the parameters of the mapping function for
generating new pixel intensities [25]. The proposed framework overcomes the limitations
of traditional enhancement techniques. Saifullah et al. proposed an improved U-Net image
enhancement using PSO to address the complexity of brain tumor segmentation [26]. By
employing the adaptive capabilities of PSO-based image enhancement, this technique
achieves excellent performance on brain MRI images and enhances medical image analysis
by providing accurate segmentation.

From the above literature, we can find that metaheuristic algorithms are superior to
traditional algorithms in image enhancement. Still, they also have the problem of easily
falling into local optima and often neglect to preserve fine details or edges in images. This
paper proposes a method for enhancing the contrast of grayscale images based on the
AWOA algorithm that utilizes its advantages of fast search speed and effective results. It
maintains image details and suits for image enhancement tasks.

3. Proposed Image Enhancement Methodology

Image enhancement is accomplished by utilizing a transformation function, and
AWOA fine-tunes its four parameters. The whole process is illustrated in Figure 1.



Biomimetics 2024, 9, 760 4 of 20

Evaluate the image

Transformation

Output the enhanced 
image

Grayscale 
image

AWOA optimize the 
four parameters

Figure 1. The process of image enhancement.

3.1. Objective Function

The transformation function in Equation (1) is utilized for image enhancement [18,27],
which considers both global and local information.

g(x, y) = k × G
σ(x, y) + b

[ f (x, y)− c × m(x, y)] + m(x, y)a (1)

where (x, y) represents a pixel of an image, and f and g mean the input and the enhanced
images. m and σ are the local mean and standard deviation over an n × n window, as
depicted in Equations (2) and (3).

m(x, y) =
1

n × n

n−1

∑
x=0

n−1

∑
y=0

f (x, y) (2)

σ(x, y) =

√√√√ 1
n × n

n−1

∑
x=0

n−1

∑
y=0

[ f (x, y)− m(x, y)]2 (3)

The global mean (G) of the input image is given by:

G =
1

M × N

M−1

∑
x=0

N−1

∑
y=0

f (x, y) (4)

where M and N are the size of the input image.
The transformation function enhances image contrast by using the local mean as the

enhancement center. The parameter a adjusts the brightness and smoothness of an image,
while b introduces a shift based on the standard deviation of the surrounding pixels. c
determines the fraction of the mean value subtracted from f (x, y), and k controls global
enhancement. These four parameters significantly influence the processed image, so they
need to be set precisely. The proposed AWOA must find the optimal combination to provide
the best enhancement for the given images. According to [18,27], a ∈ [0, 1.5], b ∈ [0, 0.5],
c ∈ [0, 1], and k ∈ [0.5, 1.5], respectively.

An objective function is necessary to evaluate the quality of the enhanced images
without human intervention. A well contrast-enhanced image should have high-intensity
edges, a large number of edges (edge pixels), and a high entropy value. We use Equation (5)
as the objective function [18].

F(g) = log(log(E(g)))× edgels(g)
M × N

× eH(g) (5)

where edgels(g) represents the number of edge pixels in the enhanced image obtained
through the Sobel edge detection algorithm. E(g) is the sum of pixel intensities in the
M × N enhanced image, and H(g) is the entropy of the enhanced image.
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3.2. Advanced Whale Optimization Algorithm

The WOA is a metaheuristic optimization algorithm based on whale hunting behav-
ior [28]. Whales randomly choose between spiral motion and circling their prey. The update
equation for spiral motion is as follows:

Xi(t + 1) = |X∗(t)− X(t)| · el · cos(2πl) + Xi
∗(t) (6)

where Xi(t + 1) represents the position of i at t + 1 iteration, and X∗ represents the global
optimal solution.

l = (a2 − 1)× rand() + 1 (7)

where a2 decreases linearly from −1 to −2 .
When circling prey, the search direction is determined by the value of A.

Xi(t + 1) =
{

X∗(t)− A · |2 × rand()× X∗(t)− Xi(t)| i f (|A| ≥ 1)
Xr − A · |2 × rand()× Xr(t)− Xi(t)| else

(8)

where Xr represents a random solution.

A = 2a · rand()− a (9)

where a decreases linearly from 2 to 0, and rand ∗ () is a random function.

1. New exemplars

Xr is a solution randomly selected from the population during the random search
phase in WOA. This method forces Xi to leave its prey and move towards Xr. It enhances the
algorithm’s exploration ability and reduces the probability of falling into a local optimum.
If Xr is an individual with a higher objective function value in the population, there is a
higher probability of generating a superior individual when Xi’s position is updated. If
Xr directly selects the best solution in the population, WOA’s global search ability is the
weakest. On the contrary, WOA’s local search ability is at its weakest when Xr selects the
worst solution. Therefore, by choosing solutions with better objective function values as
Xr for position updates, Xi can be closer to optimal solutions. In the proposed AWOA,
we utilize only the top-performing half of the individuals as exemplars for the worst
half to learn from. It not only increases the likelihood of producing excellent individuals
after the position update during the search phase but also gives WOA a certain level of
exploration capability.

2. Circling position update

WOA primarily relies on the fluctuation of the coefficient A to balance exploration and
exploitation. When |A| ≥ 1, the population is in the exploration phase, and WOA expands
its search area to find better solutions. When |A| < 1, the population enters the exploitation
phase, and WOA focuses on searching around the position vector of the best solution.

According to Equation (9), A ∈ [−a, a]. When the value of a reaches 1 (at half of the
maximum number of iterations), |A| remains less than 1, and WOA can no longer explore
new solutions. Figure 2 depicts the value range of A. WOA balances exploration and
exploitation during its early stages. To ensure that WOA still has global search capability
in the later stages, AWOA improves Equation (8) as follows.

Xi(t + 1) =


X∗(t)− A · |2 × rand()× X∗(t)− Xi(t)|

i f (|A| ≥ 1||(|A| < 1&rand() < t/MAX_IT))
Xrand − A · |2 × rand()× Xrand(t)− Xi(t)| else

(10)

where MAX_IT represents the maximum iteration. The new equation ensures that AWOA
has global search capability even when |A| is less than 1.
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Figure 2. The values of A.

3. Spiral position update

In WOA, the spiral update plays a key role in simulating the hunting behavior of
whales. The diversity of solutions during the optimization process is increased by this spiral
mechanism, which enhances the algorithm’s ability to escape local optima and improves
global search effectiveness. During the spiral phase, the population searches for the global
optimal solution. As illustrated in Figure 3, the term el · cos(2πl) in Equation (6) does not
exhibit a decreasing trend. To balance the global and local searches of the algorithm, the
new update position for spiraling is defined as follows:

Figure 3. The values of el · cos(2πl).

Xi(t + 1)


|X∗(t)− X(t)| · el · cos(2πl) + Xi

∗(t)
i f (|A| ≥ 1||(|A| < 1&rand() ≥ t/MAX_IT))

|X∗(t)− X(t)| · el · cos(2πl) · (1 − t/MAX_IT) + Xi
∗(t) else

(11)

4. The whole process of AWOA

If a new solution is superior to its parent solution, it will replace the parent solution in
the next population. Otherwise, it is immediately discarded, and the parent solution will
be retained. Figure 4 shows the process of AWOA, including circling position update and
spiral update strategies through new exemplars.
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Whether iteration?
Output the global optimal 

solution

End

No

Yes

Sort by objective function values
Generate new parents

rand() < 0.5

Generate offspring with Equation 
(10)

Yes

Generate offspring with 
Equation (11)

No

Execute the objective function
Combine parents and offspring

Start

Initialize the population

Execute the objective function
Sort by objective function values

Figure 4. The process of AWOA.

The main factors that determine the time complexity of AWOA are the population
size (N), the number of iterations (T), and the computation of the objective function (O( f )).
In each iteration, the AWOA algorithm calculates the objective function value, while the
computational cost of this process is typically proportional to the problem’s scale (L).
Consequently, the overall time complexity is the sum of the objective function evaluation
and position update O(T × N × f (L) + T × N × D), where D is the dimensionality of the
AWOA algorithm.

4. Experimental Results and Analysis

To validate the effectiveness of our proposed algorithm, we select 15 images from
four test image sets [29–31] and compare them with four different image enhancement
algorithms, including BHOPSO [25], ECS [18], PSO [26], and WOA [32]. For all algorithms,
the population size is set to 20, and the maximum number of evaluations is set to 2000.
To ensure a fair comparison, They use their default parameters. The test images include
satellite, natural, benchmark, and low-contrast images. Except for Img8 and Img9, which
are 512 × 512 pixels in size, the others are 256 × 256 pixels. Figures 5 and 6 display the test
images and their histograms.
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(a) Img1 (b) Histogram of Img1 (c) Img2 (d) Histogram of Img2

(e) Img3 (f) Histogram of Img3 (g) Img4 (h) Histogram of Img4

(i) Img5 (j) Histogram of Img5 (k) Img6 (l) Histogram of Img6

(m) Img7 (n) Histogram of Img7 (o) Img8 (p) Histogram of Img8

(q) Img9 (r) Histogram of Img9 (s) Img10 (t) Histogram of Img10

Figure 5. The test images and their histograms.
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(a) Img11 (b) Histogram of Img11 (c) Img12 (d) Histogram of Img12

(e) Img13 (f) Histogram of Img13 (g) Img14 (h) Histogram of Img14

(i) Img15 (j) Histogram of Img15

Figure 6. The test images and their histograms.

4.1. Experimental Analysis

All the experimental data presented in this study are derived from the average results
obtained after executing each algorithm 20 times. For the convenience of reading, the
optimal solutions obtained by the algorithms in the experiment are displayed in bold font.
Table 1 summarizes the objective function values of these algorithms in test images. AWOA
outperforms the others algorithms, and it achieves the best objective function value in
11 out of the 15 test cases. This demonstrates AWOA’s robustness and effectiveness in
enhancing image quality across a wide range of images. In contrast, ECS performs well in
four images. BHOPSO consistently exhibits the poorest performance in the images tested.

It is particularly noteworthy that the algorithms perform exceptionally well in Img6
and Img9, where they show competitive results. However, the performance could be
more favorable for Img13 and Img15, as the algorithms struggle to achieve significant
enhancements. WOA outperforms the original WOA in all 15 test images.
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Table 1. The objective function values of the metaheuristic algorithms.

Image BHOPSO ECS PSO WOA AWOA

Img1 236.4640 271.8410 263.4538 265.5736 273.1474
Img2 214.6902 222.2742 221.8189 221.7011 223.7718
Img3 75.9251 100.8623 85.3670 94.2189 103.4280
Img4 265.9714 291.2755 272.0849 280.9921 293.6178
Img5 217.5964 280.8553 229.9027 253.2028 283.7132
Img6 279.4530 309.2412 281.8684 299.2884 308.4039
Img7 177.2104 204.6594 194.8185 198.9765 205.5083
Img8 198.2655 248.6043 211.0919 233.7106 253.2086
Img9 295.0253 321.4752 312.8841 317.6043 323.6732
Img10 116.3791 146.1243 133.7074 135.7148 145.9548
Img11 233.3677 259.5309 236.5904 243.0281 265.5205
Img12 152.9294 179.9783 157.2019 169.1388 178.9208
Img13 189.8207 228.7925 209.1573 217.8172 226.0824
Img14 199.0663 240.9255 207.1201 233.0510 248.4387
Img15 57.7229 69.9964 62.4156 65.7773 70.0766

>/=/< 0/0/15 4/0/11 0/0/15 0/0/15 11/3/1
The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

To validate the statistical significance of the experimental results, the Wilcoxon rank
sum test is applied with a significance level of 0.05. The test confirms that AWOA exhibits
the best overall performance. ECS and AWOA demonstrate identical data distributions
in Img6, Img10, and Img13, and AWOA excels in 14 images. AWOA outperforms all
other algorithms in terms of performance ranking, followed by ECS, WOA, PSO, and
BHOPSO. These findings underscore the effectiveness of the proposed AWOA algorithm in
grayscale image enhancement tasks and highlight significant improvements over traditional
optimization methods.

Figure 7 illustrates the convergence curves of the algorithms in 15 images. To fa-
cilitate display, the values on the x-axis in the figure are multiplied by 20 to reflect the
actual evaluation numbers. It is evident that in Img1, Img3, Img4, Img8, Img9, Img11, and
Img14, AWOA demonstrates superior convergence compared to the other algorithms, and
it also obtains the best objective function values. In Img2 and Img7, although AWOA’s
convergence is not as fast as PSO and WOA, it achieves better solutions through extensive
exploration. For Img5, AWOA not only surpasses the other algorithms in terms of conver-
gence and optimal solution but also maintains a continuously updated optimal solution
throughout the process. In Img6, Img10, Img12, and Img13, while AWOA shows the best
convergence, its final optimal solution is slightly worse than ECS. AWOA and ECS have
very similar optimal solutions in Img15, but AWOA converges faster than ECS. AWOA is
able to effectively explore the solution space and optimize the enhancement process more
efficiently in these images.

Table 2 presents the computation time for different images. It is evident from the table
that the proposed algorithm has a longer runtime compared to ECS, PSO, and WOA. PSO
runs most efficiently, while WOA and AWOA have the longest running times. PSO’s logical
structure is the simplest, and WOA’s structure is more complex. Both the algorithm’s logic
and the objective function influence the runtime of image enhancement, as the objective
function in this study is simple. The algorithms consume the least time in Img1–Img7 and
Img10–Img15, while they take the most time in Img8 and Img9. This is because Img8 and
Img9 are larger than the other images, and the execution time of the objective function is
correlated with image size. Despite the increase in AWOA’s runtime, it remains within an
acceptable range.
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(a) Img1 (b) Img2 (c) Img3 (d) Img4

(e) Img5 (f) Img6 (g) Img7 (h) Img8

(i) Img9 (j) Img10 (k) Img11 (l) Img12

(m) Img13 (n) Img14 (o) Img15

Figure 7. Convergence cures.
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Table 2. The computation time of the metaheuristic algorithms.

Image BHOPSO ECS PSO WOA AWOA

Img1 8.0031 6.0798 5.0095 6.9832 7.8374
Img2 8.0048 6.3238 8.2197 8.1975 8.2832
Img3 7.9764 6.1464 4.7609 6.7607 7.6379
Img4 8.0051 6.3083 4.7807 7.3282 7.8708
Img5 8.0300 6.2834 6.3937 7.9977 8.1644
Img6 8.0452 6.2520 6.6992 8.0391 7.9950
Img7 7.9986 5.8793 4.8721 7.0644 7.8576
Img8 37.7047 26.1667 24.2211 33.9242 35.2406
Img9 38.8838 26.0615 24.1822 35.7971 37.2330
Img10 8.0172 6.5635 5.2292 7.5356 8.0088
Img11 8.0561 6.1422 5.0081 7.5765 8.1614
Img12 8.0928 6.1102 5.1043 6.8948 7.8753
Img13 8.0397 6.3173 6.8706 8.3598 8.2271
Img14 8.0074 5.9832 4.8297 7.1798 7.7716
Img15 8.0460 6.1010 7.9190 6.9185 7.7554

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

Tables 3–6 present a comprehensive comparison of the five algorithms in terms of
PSNR, FSIM, SSIM, and PCQI. These tables facilitate a deeper understanding of each
algorithm’s effectiveness in enhancing various aspects of image quality.

When evaluated using the PSNR metric, AWOA performs slightly better than WOA.
Specifically, AWOA achieves higher PSNR values than the other algorithms in images such
as Img2, Img6, Img8, Img10, Img11, and Img15. However, in three images, Img3, Img5 and
Img14, AWOA’s PSNR values are lower than those of the other algorithms. BHOPSO, ECS,
and PSO achieve the highest PSNR values in 5, 2, and 2 images, respectively. AWOA is
more effective at preserving the structural integrity of the images while simultaneously
reducing noise and distortion.

Table 3. The PSNR values of the metaheuristic algorithms.

Image BHOPSO ECS PSO WOA AWOA

Img1 17.6846 17.2311 16.8940 17.2716 17.1458
Img2 14.2454 14.7904 14.4572 14.5135 15.4639
Img3 26.0344 23.9569 25.2053 24.1994 23.7172
Img4 13.5535 14.2838 13.5501 13.7586 14.2322
Img5 27.5348 23.2648 29.5161 26.2994 22.1189
Img6 15.6696 16.2233 15.6395 15.6746 16.3080
Img7 17.6698 16.2379 16.3127 15.8952 16.3991
Img8 21.4395 21.7143 21.4533 21.5859 21.9276
Img9 18.0139 17.9874 18.0390 18.0071 17.9884
Img10 16.7751 16.6088 16.4733 16.7555 17.1117
Img11 16.0860 16.6894 16.1905 16.3919 16.9379
Img12 15.9886 19.2835 16.1691 17.7842 19.1157
Img13 21.9457 20.7998 21.2461 20.9097 21.1201
Img14 20.9835 20.2605 20.6223 20.4291 20.1715
Img15 10.3853 10.7004 10.2366 10.7808 10.7996

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.
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Table 4. The FSIM values of the metaheuristic algorithms.

Image BHOPSO ECS PSO WOA AWOA

Img1 0.8363 0.8275 0.8409 0.8263 0.8943
Img2 0.8906 0.8952 0.8879 0.9079 0.9033
Img3 0.8314 0.8270 0.8583 0.8217 0.8832
Img4 0.7948 0.7603 0.8224 0.7562 0.8327
Img5 0.9002 0.8561 0.9354 0.8439 0.9280
Img6 0.8536 0.8718 0.8841 0.8569 0.8783
Img7 0.8032 0.7954 0.8132 0.7960 0.8558
Img8 0.9384 0.9270 0.9525 0.9220 0.9561
Img9 0.8828 0.8749 0.8912 0.8722 0.9150
Img10 0.8809 0.8681 0.8895 0.8540 0.9110
Img11 0.8543 0.8203 0.8663 0.8079 0.8760
Img12 0.8230 0.8091 0.8479 0.8047 0.8666
Img13 0.9136 0.9133 0.9078 0.8963 0.9081
Img14 0.8605 0.8498 0.8924 0.8433 0.8958
Img15 0.7587 0.7596 0.7488 0.7609 0.7691

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

Table 5. The SSIM values of the metaheuristic algorithms.

Image BHOPSO ECS PSO WOA AWOA

Img1 0.7591 0.7459 0.7670 0.7439 0.8515
Img2 0.8224 0.8300 0.8192 0.8451 0.8034
Img3 0.7826 0.7664 0.8263 0.7573 0.8691
Img4 0.7326 0.6948 0.7640 0.6906 0.7751
Img5 0.8827 0.8175 0.9297 0.8063 0.9362
Img6 0.7822 0.8016 0.8209 0.7899 0.8144
Img7 0.7389 0.7288 0.7547 0.7307 0.8129
Img8 0.8489 0.8146 0.8948 0.8085 0.9165
Img9 0.7808 0.7613 0.7991 0.7541 0.8627
Img10 0.8365 0.8161 0.8423 0.8104 0.8760
Img11 0.8110 0.7662 0.8239 0.7549 0.8338
Img12 0.7743 0.7552 0.8044 0.7536 0.8266
Img13 0.8908 0.8859 0.8894 0.8736 0.8972
Img14 0.8396 0.8255 0.8777 0.8171 0.8899
Img15 0.5718 0.5353 0.5794 0.5382 0.6237

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

From the results of Table 4, it is evident that AWOA significantly improves image
contrast. AWOA achieves higher FSIM values compared to BHOPSO, ECS, PSO, and WOA
in 11 images, including Img1, Img3, Img4, Img7, Img8, Img9, Img10, Img11, Img12, Img14,
and Img15. AWOA is particularly effective at enhancing the overall detail and complexity
of the images. On the other hand, BHOPSO and WOA perform relatively well in Img13 and
Img2, since they achieve a higher FSIM value than the other algorithms. ECS outperforms
the other algorithms in Img6 and Img7. Overall, AWOA outperforms BHOPSO, ECS, PSO,
and WOA in terms of enhancing image detail and information content, and it is well-suited
for applications where preserving fine image details and enhancing contrast are critical for
achieving high-quality results.
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In terms of SSIM, BHOPSO, ECS, WOA, and AWOA demonstrate varying levels of
effectiveness across the test images. AWOA stands out, and it achieves the best results in
13 out of the 15 images. BHOPSO and PSO show no advantage in any of the tested images.
The results of SSIM suggest that AWOA is particularly adept at preserving and enhancing
the sharpness of edges.

Table 6. The PCQI values of the metaheuristic algorithms.

Image BHOPSO ECS PSO WOA AWOA

Img1 0.9629 1.0109 0.9905 0.9975 1.0104
Img2 0.9563 1.0029 0.9834 0.9774 1.0177
Img3 0.9429 1.0195 0.9656 0.9667 1.0255
Img4 0.9539 1.0467 0.9634 0.9921 1.0449
Img5 1.0642 1.1876 1.0993 1.1422 1.1678
Img6 1.0004 1.0924 1.0160 1.0458 1.0835
Img7 0.9681 1.0221 0.9733 0.9841 1.0251
Img8 1.0304 1.1250 1.0610 1.0997 1.1272
Img9 1.0206 1.1107 1.0789 1.0949 1.1175
Img10 0.9642 1.0564 1.0143 1.0215 1.0430
Img11 0.9754 1.0529 0.9780 1.0006 1.0545
Img12 0.9725 1.1135 0.9491 1.0196 1.0842
Img13 1.0030 1.0780 1.0384 1.0537 1.0580
Img14 0.9484 1.0099 0.9579 0.9991 1.0175
Img15 0.9699 0.9442 0.9394 0.9504 0.9455

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

PCQI is a non-reference image quality assessment method and it evaluates image
quality based on local contrast and structural information. BHOPSO, ECS, PSO, WOA, and
AWOA achieve the highest PCQI values in 1, 7, 0, 0, and 7 images, respectively. Although
ECS and AWOA perform equally well, AWOA demonstrates excellent stability. It ranks
second in Img1, Img4, Img5, Img6, Img10, Img12, and Img13. In contrast, ECS is extremely
unstable, while it performs poorly in Img15. AWOA has the highest average ranking,
followed by ECS, WOA, PSO, and BHOPSO. The algorithms significantly enhance the
contrast of local patches in Img1–Img14, and they effectively improve the visibility of
details and edges. However, the local contrast of Img15 is originally low.

In conclusion, based on the objective function, PSNR, FSIM, SSIM, and PCQI, AWOA
outperforms BHOPSO, ECS, WOA, and PSO. Its superior performance in preserving
image details, enhancing edges, and improving clarity makes it highly suitable for image
enhancement tasks.

4.2. Evaluation of the Enhanced Images Visually

In this section, we compare the efficiency of the proposed AWOA in improving the
contrast and detail of images. Figures 8 and 9 exhibits the enhanced images produced
by AWOA.

Img1–Img3 are satellite images, and they all appear significantly clearer after enhance-
ment. AWOA adjusts the brightness distribution of these images and brings out more
details in the originally dark areas. The histograms of the enhanced images demonstrate a
greater pixel distribution in the low brightness region, so their distribution is more balanced.
The images for Img4–Img6 appear more natural after enhancement. AWOA reduces the
multiple peaks in the original images, and the pixel value distribution is more uniform. The
enhanced images not only improve contrast but also preserve important details, such as the
door frame, water ripples, and folds in clothing. These are critical features for maintaining
the authenticity and fine texture of the images. By applying contrast stretching to Img7 and
Img8, the image details become more clearly visible. In the histogram of Img7, multiple
small peaks can be seen, indicating that details at different brightness levels are more



Biomimetics 2024, 9, 760 15 of 20

prominently highlighted. The original images of Img10-Img15 are set with different low
illumination conditions and exhibit narrower histograms. The histograms of the enhanced
images are more dispersed and demonstrate an even distribution. The clarity of these
images is also enhanced.

The enhanced images produced by AWOA are visually closer to the original images,
which is a strong indicator of the algorithm’s effectiveness in improving image clarity
without introducing significant distortion. This visual similarity reflects AWOA’s ability to
enhance image details while maintaining the natural appearance of the images.

(a) Img1 (b) Histogram of Img1 (c) Img2 (d) Histogram of Img2

(e) Img3 (f) Histogram of Img3 (g) Img4 (h) Histogram of Img4

(i) Img5 (j) Histogram of Img5 (k) Img6 (l) Histogram of Img6

Figure 8. The enhanced images and their histograms.
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(a) Img7 (b) Histogram of Img7 (c) Img8 (d) Histogram of Img8

(e) Img9 (f) Histogram of Img9 (g) Img10 (h) Histogram of Img10

(i) Img11 (j) Histogram of Img11 (k) Img12 (l) Histogram of Img12

(m) Img13 (n) Histogram of Img13 (o) Img14 (p) Histogram of Img14

(q) Img15 (r) Histogram of Img15

Figure 9. The enhanced images and their histograms.
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4.3. Compared with Histogram Equalization Methods and Ablation Experiments

To evaluate the effectiveness of the proposed algorithm, we compare it with histogram
equalization methods, such as HEF [33] and CAHE [34]. Tables 7–10 present experimental
data for these algorithms in terms of PSNR, FSIM, SSIM, and PCQI. AWOA demonstrates
exceptional performance in PSNR, FSIM, and SSIM, and it outperforms the comparison
algorithms in 13, 11, and 13 images, respectively. AWOA is highly effective in preserving
structural integrity. However, AWOA performs poorly in PCQI, falling behind CAHE
and HEF. AWOA proves to be an ideal choice for tasks where global image enhancement
and overall clarity are the primary concerns, but further refinement may be needed for
applications that heavily rely on local contrast preservation.

Table 7. The PSNR values of the AWOA and HE algorithms.

Image AWOA HEF CAHE

Img1 17.1458 16.3111 15.7677
Img2 15.4639 10.6675 10.7976
Img3 23.7172 14.5628 12.8940
Img4 14.2322 15.5402 15.2576
Img5 22.1189 21.2190 12.7669
Img6 16.3080 12.9614 11.9429
Img7 16.3991 16.3233 14.0049
Img8 21.9276 19.4568 15.3155
Img9 17.9884 17.5546 15.0415
Img10 17.1117 16.2094 11.1434
Img11 16.9379 15.4838 13.1020
Img12 19.1157 16.6890 15.0781
Img13 21.1201 13.3802 12.9426
Img14 20.1715 23.5663 12.3956
Img15 10.7996 8.3767 10.0881

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

Table 8. The FSIM values of the AWOA and HE algorithms.

Image AWOA HEF CAHE

Img1 0.8943 0.8114 0.7683
Img2 0.9033 0.8161 0.7878
Img3 0.8832 0.5600 0.5105
Img4 0.8327 0.8242 0.7572
Img5 0.9280 0.8972 0.6592
Img6 0.8783 0.9083 0.7294
Img7 0.8558 0.8333 0.7789
Img8 0.9561 0.9326 0.7027
Img9 0.9150 0.8651 0.7592
Img10 0.9110 0.8608 0.7341
Img11 0.8760 0.9021 0.7598
Img12 0.8666 0.8099 0.7287
Img13 0.9081 0.8707 0.8384
Img14 0.8958 0.9519 0.7724
Img15 0.7691 0.8891 0.7941

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.
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Table 9. The SSIM values of the AWOA and HE algorithms.

Image AWOA HEF CAHE

Img1 0.8515 0.7296 0.6630
Img2 0.8034 0.6215 0.6031
Img3 0.8691 0.4723 0.3968
Img4 0.7751 0.7372 0.6660
Img5 0.9362 0.8535 0.5247
Img6 0.8144 0.7868 0.5889
Img7 0.8129 0.7427 0.6726
Img8 0.9165 0.8740 0.5668
Img9 0.8627 0.7827 0.6068
Img10 0.8760 0.7904 0.5575
Img11 0.8338 0.8446 0.5915
Img12 0.8266 0.7052 0.6003
Img13 0.8972 0.7353 0.7028
Img14 0.8899 0.9212 0.6045
Img15 0.6237 0.3893 0.5545

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

Table 10. The PCQI values of the AWOA and HE algorithms.

Image AWOA HEF CAHE

Img1 1.0104 1.1794 1.2407
Img2 1.0177 0.9843 1.0416
Img3 1.0255 1.1564 1.2380
Img4 1.0449 1.2439 1.2752
Img5 1.1678 1.1158 1.2990
Img6 1.0835 1.0266 1.1974
Img7 1.0251 1.1507 1.2155
Img8 1.1272 1.1139 1.2900
Img9 1.1175 1.1292 1.2949
Img10 1.0430 1.0613 1.0902
Img11 1.0545 1.0642 1.2067
Img12 1.0842 1.1750 1.2764
Img13 1.0580 0.9548 1.0663
Img14 1.0175 0.9429 1.0208
Img15 0.9455 0.7425 0.9452

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.

We improve the AWOA algorithm from new exemplars, circling position update, and
spiral update. As shown in Section 4.1, they have excellent image enhancement effects.
Table 11 presents the results of ablation experiments conducted to analyze the impact
of these improvements on the algorithm. The experimental data shows the number of
instances in which the proposed improvement strategy outperforms WOA. The three
improvement measures significantly improve the performance of the WOA algorithm,
especially new exemplars and circling position update. These measures are effective and
can be applied in image enhancement.

Table 11. The results of ablation studies.

Improvement PSNR FSIM SSIM PCQI

New exemplars 8 11 12 12
Circling position update 7 12 13 12
Spiral update 5 9 10 10

The optimal solutions obtained by the algorithms in the experiment are displayed in bold font.
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5. Conclusions

This paper presents an advanced WOA algorithm for grayscale image enhancement.
The objective function in this study takes into account the entropy and the number of
edge pixels in images. The algorithm is implemented using a transformation function that
contains both global and local information. The proposed AWOA is used to optimize the
four key parameters of this function. New exemplars and position updates are utilized in
the algorithm. The proposed algorithm is compared with other algorithms, and the results
indicate its superiority in subjective qualitative and objective quantitative evaluations.

While the proposed AWOA demonstrates excellent performance in enhancing grayscale
images, its applicability to color and high-resolution images remains underexplored.
Grayscale images involve a single channel, which simplifies the optimization process. How-
ever, color images consist of multiple channels (R, G, B), and the independent or joint opti-
mization of parameters for each channel introduces additional complexity. High-resolution
images significantly expand the search space, and they lead to increased computational
costs and longer processing times. Although AWOA has shown effective convergence
for smaller images, it may be difficult in real-time applications. As with metaheuristic
algorithms, AWOA is sensitive to parameter settings such as population size and iteration
count. Improper tuning of these parameters can cause premature convergence or slow
optimization. We can implement an adaptive mechanism to dynamically adjust these pa-
rameters based on the characteristics of the image content or the search space. Additionally,
parallelization strategies could accelerate AWOA for large-scale or real-time applications,
especially for high-resolution images. Satellite and medical imaging can be challenging to
interpret for land monitoring and disease diagnosis due to noise, low contrast, and low
resolution. The proposed AWOA enhances image contrast and clarity, and significantly
aids diagnostic and analytical processes.
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