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Abstract: Metabolomics research provides a clearer understanding of an organism’s metabolic
state and enables a more accurate representation of its functional performance. This study aimed to
investigate changes in the metabolome of lung tissues resulting from prenatal exposure to polystyrene
microplastics (PS-MPs) and to understand the underlying mechanisms of lung damage in rat offspring.
We conducted metabolomic analyses of lung tissue from seven-day-old rat pups exposed to prenatal
PS-MPs. Our findings revealed that prenatal exposure to PS-MPs led to significantly increased
oxidative stress in lung tissues, characterized by notable imbalances in nucleic acid metabolism and
altered profiles of specific amino acids. Furthermore, we evaluated the therapeutic effects of melatonin
treatment on lung function in 120-day-old offspring and found that melatonin treatment significantly
improved lung function and histologic change in the affected offspring. This study provides valuable
biological insights into the mechanisms underlying lung damage caused by prenatal PS-MPs exposure.
Future studies should focus on validating the results of animal experiments in humans, exploring
additional therapeutic mechanisms of melatonin, and developing suitable protocols for clinical use.

Keywords: microplastics; offspring; lung; metabolome; oxidative stress; melatonin

1. Introduction

Plastic pollution is a significant global problem that is increasing at an alarming rate.
Global plastic production increased from approximately 2 million tons in 2000 to over
400 million tons in 2019 [1]. This reflects the expansion of plastic consumption across
various sectors, including packaging, construction, and electronics. An increase in plastic
production is accompanied by an increase in the amount of plastic waste released into
the environment. Microplastics (MPs) refer to plastic particles smaller than 5 mm, mainly
produced through the breakdown of larger plastic items as a result of natural processes.
Microplastics significantly affect various organisms, particularly in marine ecosystems.
They can interfere with the growth of phytoplankton and reduce their photosynthetic
capacity, which diminishes the primary productivity of ecosystems [2]. Fish and other
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aquatic species that consume microplastics may experience gastrointestinal and organ
damage, which can lead to altered metabolism and behavior, further disrupting aquatic
food chains [3]. These detrimental effects not only threaten the health of marine organisms,
but may also disrupt the stability of entire ecosystems, thus ultimately posing risks to
human health.

Human exposure to MPs occurs primarily through ingestion, inhalation, and skin
contact [4]. Exposure to MPs leads to their accumulation in multiple tissues and, through
several possible mechanisms, causes tissue damage, metabolic disorders, functional im-
pairments, and disease exacerbation [4]. When focusing on the lungs, animal studies have
shown that the inhalation of MPs disrupts the respiratory epithelial barrier, exacerbating
inflammatory responses and oxidative stress in the lungs [5–9]. Several studies have shown
that the inhalation of MPs may cause pulmonary fibrosis. In their study, Li et al. confirmed
that the inhalation of tire wear MPs leads to restrictive ventilatory dysfunction, pulmonary
inflammation, and lung fibrosis damage in C57BL/6 mice through the reorganization of the
epithelial cell cytoskeleton [10]. The inhalation of polystyrene microplastics (PS-MPs) can
induce oxidative stress and activate the Wnt/β-catenin signaling pathway, further inducing
pulmonary fibrosis in mice [11]. Another study demonstrated that the intranasal adminis-
tration of PS-MPs promoted ferroptosis in alveolar epithelial cells via the cGAS/STING
signaling pathway, subsequently leading to pulmonary fibrosis [12]. However, most current
research on the harm caused by MPs focuses on direct exposure experiments in animals,
while investigations into the transgenerational effects of MPs on the health of organisms
are still in their early stages.

Owing to the rapid organ development in embryos and fetuses, exposure to external
adverse factors during this period can significantly increase the risk of disease later in
life [13]. An observational study indicated that MPs sized between 5 and 10 µm could be
detected in human placentas [14]. Furthermore, animal studies have shown that when
mothers ingest MPs during pregnancy, they negatively affect the central nervous system,
liver function, gut health, reproductive capabilities, and metabolic homeostasis [15]. Al-
though researchers have studied the mechanisms by which MPs harm living organisms,
the specific ways in which they affect these organisms are still not fully understood.

Metabolomic research offers direct insights into the physiological and pathological
conditions within organisms, closely reflecting actual biological functions. This approach
aids in understanding how toxins interfere with normal metabolic processes and the
mechanisms underlying damage. This information is beneficial for assessing health risks
and formulating appropriate prevention and treatment strategies. Reports on lung injury
in offspring due to prenatal microplastic exposure are scarce. We aimed to explore the
impact of prenatal MPs exposure on lung injury in offspring and potential prevention and
treatment mechanisms through metabolomic research.

Melatonin, a natural indoleamine found in all aerobic organisms, possesses proper-
ties that regulates the circadian rhythm and provides cellular protection [13]. Melatonin
has been shown to exhibit multiple pharmacological effects, including sleep regulation,
antioxidant and anti-inflammatory properties, and endocrine regulation [14,15]. The pineal
gland is the main source of melatonin in the human circulatory system [16]. Melatonin
has been reported to potentially play a specific role in preventing and treating metabolic
syndrome, cardiovascular diseases, and Alzheimer’s disease [17,18]. In our previous study,
we found prenatal PS-MPs exposure to induce hepatic steatosis in offspring [19]. In another
study, we confirmed that prenatal melatonin treatment could alleviate hepatic steatosis
caused by prenatal dexamethasone exposure [20]. Therefore, in this study, we evaluated the
efficacy of melatonin in treating damage to offspring lung tissue associated with prenatal
and postnatal PS-MPs exposure.
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2. Materials and Methods
2.1. Animals and Experimental Design

As previously reported, 16-week-old virgin female Sprague Dawley rats from Bio-
LASCO were maintained in a controlled environment [21].

For the metabolomics study, dams were divided into two groups upon confirmation of
pregnancy after mating: (1) In the control group: dams received PS-MPs-free drinking water.
(2) MPs group: dams were administered drinking water containing PS-MPs (Dragon-green
fluorescent carboxylated and non-functionalized PS-MPs; Bangs Laboratories; Fishers,
IN, USA) (5 µm in size) at a concentration of 1000 µg per 1 L. The green fluorescent PS-
MPs were uniformly distributed and consistently dispersed in an aqueous solution. The
maximum excitation and emission wavelengths were 488 and 518 nm, respectively.

For the oxidative stress validation study, dams were divided into three groups: (1) the
control group; (2) the MPL group, where dams were administered PS-MPs (100 g/L) in
drinking water; and (3) the MPH group, where dams were administered drinking water
containing PS-MPs (1000 µg/L). The dose-dependent effects of PS-MPs were determined.

The daily shaking of the drinking water bottles ensured that the rats were exposed
to the PS-MPs in their drinking water. Male offspring were sacrificed on postnatal day 7
using Zoletil and xylazine, followed by saline perfusion.

For the melatonin treatment study, dams were divided into three separate groups:
(1) control group; (2) MPs group: dams were administered drinking water containing
PS-MPs (1000 µg/L) and male offspring also received drinking water containing PS-MPs
(1000 µg/L) from gestational day 0 to postnatal day 120; (3) MPM group: dams were
administered drinking water containing PS-MPs (1000 µg/L) and melatonin (40 mg/L)
and male offspring also received drinking water containing PS-MPs (1000 µg/L) and
melatonin (40 mg/L) from gestational day 0 to postnatal day 120. The male offspring were
sacrificed on postnatal day 120 after the lung function test. Melatonin was prepared as
shown in a previous report [22]. The average daily intake of melatonin was estimated to be
1 mg/kg/day.

A simple flowchart illustrating the study steps is shown in Supplementary Figure S1.
The experimental protocol was approved by the Institutional Animal Care and Use Com-
mittee of the Chang Gung Memorial Hospital (approval number: 2019053001).

2.2. Histopathological Analysis

Lung tissues were preserved in 4% paraformaldehyde at 4 ◦C overnight, followed by
dehydration through a series of ethanol gradients. Samples were cleared with xylene and
embedded in paraffin wax. Sections from formalin-fixed tissues were sliced and stained
using a hematoxylin and eosin (H&E) kit (ScyTek Laboratories, West Logan, WV, USA).
Histological lesions were examined using a Leica DMI-3000 microscope equipped with a
digital camera (Leica Biosystems, Buffalo Grove, IL, USA).

2.3. Immunohistochemistry

As previously reported [21], formalin-fixed tissue sections, each 4 µm thick, were
affixed to polylysine-coated slides. Sections were deparaffinized using xylene, followed by
rehydration in a series of alcohol and water baths. After staining with an anti-8-hydroxy-
2-deoxyguanosine (8-OHdG) antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA,
USA) or anti-cleaved caspase-3 antibody (Cell Signaling Technology, Inc. Danvers, MA,
USA) for 60 min at room temperature and a secondary antibody for 30 min after rinsing.
Avidin and horseradish peroxidase H conjugated with 3,3′-Diaminobenzidine (DAB) were
employed in order to enhance the visualization of the staining (Thermo Scientific Inc.,
TL-060-QHD; Waltham, MA, USA). The slides were examined using a Leica DMI-3000
microscope equipped with a digital camera. Staining was quantified using the ImageJ
software (Fiji version 1.8.0) and evaluated using the Ultravision Quanto Detection System
HRP DAB kit from Thermo Scientific Inc. (TL-060-QHD; Waltham, MA, USA) [21].
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2.4. Sample Preparation and Non-Targeted LC-MS Metabolomics

LC-MS was used for metabolomics analysis [23]. In brief, 50 µL of tissue lysates
was combined with 200 µL of pre-chilled methanol to precipitate any proteins present.
Following this, the mixture underwent centrifugation at 12,000× g for 15 min, after which
the supernatant was collected and dried under a nitrogen stream. The resulting residue
was then diluted in 200 µL of 50% acetonitrile for subsequent LC-MS analysis. The liq-
uid chromatographic separation was carried out using an ACQUITY UPLC BEH Amide
column (1.7 µm, 2.1 × 150 mm; Waters, Milford, MA, USA) within an ACQUITY™ Ultra
Performance Liquid Chromatography (UPLC) system (Waters Corp.). The column tem-
perature was set to 45 ◦C, with a flow rate of 0.4 mL/min. The mobile phase comprised
0.1% formic acid in water (designated as phase A) and acetonitrile containing 0.1% formic
acid (designated as phase B). Mass spectrometric analysis was performed using a Waters
Q TOF-MS (SYNAPT G2S; Waters MS Technologies, Manchester, UK), operating in both
positive and negative electrospray ionization (ESI) modes. The mass scan range was estab-
lished from 50 to 1000 m/z. The desolvation gas was maintained at a flow rate of 800 L/h
and heated to 500 ◦C. The source cone voltage was adjusted to 25 V. For the positive ion
mode, the capillary voltage was set to 2.5 kV, while in negative mode, it was adjusted to
2 kV. Leucine encephalin served as the lock mass, with m/z values of 120.0813 and 556.2771
for positive mode, and 236.1035 and 554.2615 for negative mode. The identification of
metabolites was carried out utilizing the Human Metabolome Database (HMDB) with high
confidence. An orthogonal projection to latent structures discriminant analysis (OPLS-DA)
model was employed for the analysis of metabolites. Significant metabolites were selected
based on a variable importance in projection (VIP) value greater than 1.0. The analysis was
conducted using SIMCA software (V16.0.2, Sartorius Stedim Data Analytics AB, Umea,
Sweden). A p-value of less than 0.05 was considered indicative of significant differences
between groups. Furthermore, the functional studies and analyses of these metabolites
were conducted using the KEGG database to identify specific biological pathways.

2.5. Glutathione Determination

Total glutathione, oxidized glutathione (GSSG), and the reduced glutathione (GSH)/
GSSG ratio in lung tissue were measured using kits obtained from Elabscience Biotechnol-
ogy Inc., Houston, TX, USA (catalog #E-BC-K097-M). Briefly, after centrifuging the tissue
extracts to remove debris, glutathione reductase was used to reduce GSSG to GSH. The
GSH then reacted with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) to produce GSSG and
yellow 2-nitro-5-thiobenzoic acid (TNB). The total glutathione concentration (GSSG + GSH)
was determined by measuring the optical density (OD) at 412 nm. To specifically determine
the concentration of GSSG, GSH was removed from the sample using the scavenger reagent
provided in the kit, and the same reaction principle was then applied to measure the
remaining GSSG.

2.6. Western Blot

In accordance with the methodologies described in our previous report [21], lung
tissue samples were prepared and subjected to Western blot analysis to assess protein
expression levels. A total of 40 µg of protein was separated on a 12% polyacrylamide gel
and then transferred to polyvinylidene fluoride membranes using a semidry transfer system.
Then, the membranes were incubated with 5% skim milk (BD Biosciences, Franklin, NJ,
USA) in TBST for 1 h at room temperature for blocking, followed by overnight incubation
with anti-Malondialdehyde (MDA) antibody (ab27642, Abcam, Cambridge, MA, USA)
at a dilution factor of 1:2000 at 4 ◦C. After washing, the membranes were treated with
horseradish peroxidase (HRP)-conjugated GAPDH (ab181602, Abcam; 1:5000), and the
signal was captured with the Bio-Rad Molecular Imager ChemiDocMP and analyzed using
Image Lab version 5.0 software (Bio-Rad, Hercules, CA, USA).
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2.7. Lung Function Test

Unanesthetized rats were placed in a plethysmograph (EMKA Technologies, Paris,
France) for acclimatization. Baseline data on various parameterssuch as breathing fre-
quency, tidal volume, inspiratory and expiratory durations, and airway resistance were
recorded over a 3 min timeframe. Pulmonary function metrics were measured and averaged
using a Biopac MP36 system (Biopac Systems Inc., Camino Goleta, CA, USA). To assess the
consistency of the physiological data obtained from the plethysmograph, the measurements
were repeated three times on the same animal using an unrestrained single-chamber device.

2.8. Statistical Analysis

Statistical analyses were performed using the Mann–Whitney U-test or t-test, as
indicated. Values were expressed as mean ± standard error of the mean, and p < 0.05 was
considered statistically significant. All statistical analyses were performed using SPSS 22.0
for Windows XP (SPSS, Inc., Chicago, IL, USA).

3. Results
3.1. The Consumtion of PS-MPs Pregnant Dams Can Impact the Lung Development of
Their Offspring

The H&E stain of lung tissue from the offspring is illustrated in Figure 1.
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microplastic particle exposure are shown. (A) Control group: under low-power microscopic field,
the control group exhibited better pulmonary tissue aeration development. (B) PS-MPs exposure
(1000 µg/L in drinking water for pregnant dams). (C) Zoomed-in images of Figure 1A. (D) Zoomed-
in images of Figure 1B, showing the collapsed alveoli and thickened alveolar septa (red arrow).
Magnification of boxed area detailing the inflammatory cells; cross-section of small airway from the
(E) control group and (F) prenatal PS-MPs exposure group. (G) Zoomed-in images of (E). (H) Zoomed-
in images of (F). The columnar epithelial cells in the airway of the prenatal PS-MPs exposure group
are shorter and less developed, as indicated by the red marker representing the height of the control
group cells. Each group comprised six animals. The yellow label at the bottom left of (F) and the top
right of (G) is a specimen group annotation, with no other significance.

Prenatal exposure to PS-MPs resulted in collapsed alveoli (Figure 1B), thickened
alveolar septa (Figure 1D), and respiratory columnar epithelial cells with reduced height
(Figure 1H) in offspring that were seven days old. The local accumulation and infiltration of
inflammatory cells were also evident in lung tissue exposed to prenatal PS-MPs (Figure 1D).
Cleaved caspase-3 expression has also been investigated to determine the role of apoptosis
in offspring’s lung tissue with prenatal PS-MPs exposure. Under IHC staining, the lung
tissue of seven-day-old offspring exposed to prenatal microplastic showed higher cleaved
caspase-3 expression compared to the control group (Figure 2).
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compared between different groups. NC denotes the control group, while MP indicates PS-MPs
exposure during pregnancy. Each group comprised six animals. Significant difference is indicated by
*: p < 0.05.

3.2. The Impact of Prenatal PS-MPs Exposure on the Metabolic Profile of Offspring Lung Tissue
3.2.1. The Effects of Prenatal PS-MPs Exposure on the Lipid Metabolome of Offspring
Lung Tissue

The lung tissues of the seven-day-old offspring with/without prenatal PS-MPs expo-
sure were subjected to metabolite analysis using LC-MS to determine the altered metabolites
that were affected by prenatal microplastic treatment. First, we investigated the changes
in the lipid metabolome. A total of 3377 lipid-soluble metabolites were identified, with
25 entries meeting the false discovery rate (FDR) p < 0.05. Compared to the control group,
22 lipid-soluble metabolites were upregulated, whereas three lipid-soluble metabolites
were downregulated in the group exposed to prenatal PS-MPs. PCA and hierarchical heat
map clustering were performed based on lipid-soluble metabolites (Figure 2A,B), showing
a clear separation of lipid-soluble metabolites between prenatal PS-MPs exposure group
(MP) and the control group (NC).

After correction, 14 lipid-soluble metabolites showed statistically significant differ-
ences between the two groups (Table 1). Compared to the control group, among the
identified differential lipid metabolites, only lysophosphatidylcholine (LPC) was signif-
icantly higher in the group exposed to prenatal PS-MPs, increased by 46,919 folds. The
other 13 metabolites showed significant decreases compared to those in the control group.
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The least abundant was ceramide (Cer) 24:0;O2/14:1, which was 9.04 × 10−6 folds that in
the control group.

Table 1. The VIP score and fold change in lipid-soluble metabolites significantly differentially ex-
pressed between lung tissue of 7-day-old male spring rat with and without prenatal PS-MPs exposure.

Metabolites VIP Score * Fold Change † p

PC 35:4 1.19 1.37 × 10−5 0.021
PE 8:0_28:4 0.91 1.71 × 10−5 0.028

LPC 30:1 0.74 46,919 0.030
SM 32:3;O3 1.42 1.23 × 10−5 0.032

Cer 24:0;O2/14:1 2.09 9.04 × 10−6 0.041
PC 17:4_21:4 1.77 1.33 × 10−5 0.041
PC 10:0_26:6 1.25 1.07 × 10−5 0.041

TG 36:2_16:4_16:4 2.48 1.02 × 10−5 0.041
PC 42:11 1.70 1.44 × 10−5 0.041

PC O-16:1_24:6 1.11 8.22 × 10−6 0.041
SL 15:2;O/18:5 1.38 1.16 × 10−5 0.042
PC O-20:0_28:2 3.40 7.93 × 10−6 0.046

NAGlySer 24:6;O(FA 19:5) 1.40 1.15 × 10−5 0.048
TG 18:5_21:5_18:0;O4 1.62 1.00 × 10−5 0.048

* VIP scores were obtained from partial least squares discriminant analysis (PLS-DA). † Fold changes were calcu-
lated by dividing the value of metabolites in rats with prenatal PS-MPs exposure by control group. VIP, variable
importance in projection; FDR, false discovery rate; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
LPC, lysophosphatidylcholine; SM, sphingomyelin; Cer, ceramide; TG, triglyceride; SL, saccharolipid; NAGly,
N-acyl glycine; Ser, serine. Each group comprised three animals.

Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cells,
accounting for 40–60% of the total phospholipids [24]. In the phospholipids analyzed
in our samples, PC accounts for the highest proportion at 53%, followed by SM, PE, PS,
and PI in descending order, with proportions of 26%, 14%, 5%, and 2%, respectively
(Figure 3C). However, a 26% composition of SM is somewhat high compared to the general
cell membrane profile. The elevated SM may suggest an adaptive or protective response
to stabilize cell membranes under environmental stress. Within the phospholipids, only
PI-Cer, SM and SL exhibit noticeable oxidative states. The prenatal PS-MPs exposure group
showed higher oxidative states compared to the control group, along with a higher ratio of
oxidized PI-Cer, SM, and SL than the control group (Figure 3D).

3.2.2. Prenatal PS-MPs Exposure Alter Aqueous Metabolites of Offspring Lung Tissue

Next, lung tissues from seven-day-old offspring with and without prenatal PS-MPs
exposure were subjected to aqueous metabolite analysis to determine the expression of
aqueous metabolites affected by prenatal microplastic treatment. Similarly to the lipid
phase metabolites, the aqueous metabolite profiles of the control and prenatal PS-NPs
exposure groups displayed distinct separation patterns. The PCA plot and heatmap re-
vealed differences in aqueous metabolites between the control and prenatal PS-MPs groups
(Figure 3A,B). In this study, aqueous metabolites that met the threshold (p < 0.05 and |fold
change| ≥ 2) were considered significant differential metabolites and used to assess the
differences between the prenatal PS-MPs exposure group and the control group. Among
the 2128 detected differential metabolites, 324 met the significance threshold of p < 0.05 and
|fold change| ≥ 2. In comparison to the control group, there were 139 upregulated and
185 downregulated metabolites in the lung tissue of the seven-day-old offspring exposed
to prenatal PS-MPs (Figure 4C).
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Figure 3. The differentially expressed lipid-soluble metabolites between the control group (NC) and
prenatal PS-MPs exposure group (MP). (A) Principal component analysis (PCA) and (B) heatmap
for lipid-soluble metabolites. The heatmap illustrates the top 25 metabolites with the most promi-
nent differences between the two groups. In this display, the rows represent metabolite codes,
columns represent samples, and the color intensity within each cell signifies the level of abundance
(red = high; blue = low). (C) The composition of phospholipid from lung tissue of seven-day-old rat
offspring. (D) Oxidized PI-Cer and SM in control group and in prenatal PS-MPs exposure group.
Each group comprised three animals. Abbreviations: Cer, ceramide; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; PA, phosphatidic acid;
PG, phosphatidylglycerol; SM, sphingomyelin.

Table 2 lists the top 20 statistically significant aqueous metabolites that were altered
after prenatal microplastic exposure. Prenatal exposure to PS-MPs increased the levels
of cytosine, hypoxanthine, creatinine, 5-oxoproline, and glutamine in lung tissues. Con-
versely, it decreased the levels of 2′,3′-dideoxyinosine, adenosine 5′-monophosphate, and
3-methylcytidine.

KEGG enrichment analysis was performed in order to identify the pathways associated
with differential metabolite changes. Offspring exposed to PS-MPs exhibited significant
effects on metabolic pathways in the lung tissue, particularly nucleotide (purine and
pyrimidine), amino acid (alanine, aspartate, and glutamate), riboflavin, and nitrogen
metabolism (Table 3). The altered metabolism of nucleotides (purines and pyrimidines)
may weaken cellular proliferation and repair functions, thereby reducing the repair capacity
of the lung tissue. Riboflavin, a component of various coenzymes, is crucial for energy
release, and any impairment in energy metabolism in lung cells may result in decreased
cellular function [25]. Additionally, abnormalities in amino acid metabolism, such as
alanine, aspartate, and glutamate levels, may intensify inflammatory responses in the lungs.
Furthermore, irregularities in nitrogen metabolism can lead to the excess production of
reactive nitrogen species, triggering oxidative stress and inflammation. Overall, metabolic
pathway abnormalities caused by prenatal exposure to PS-MPs may increase physiological
stress, damage, and inflammatory responses in lung tissue, thereby negatively impacting
lung function and overall health.
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Figure 4. Prenatal exposure to PS-MPs altered the aqueous metabolite composition of offspring lung
tissue. (A) The PCA displays the expression of aqueous metabolites in the control group (NC) and
the prenatal polystyrene microplastics (PS-MPs) exposure group (MP). The yellow and purple dots
represent three samples from the control group and the PS-MPs group, respectively. (B) The volcano
plot demonstrates the differential expression of aqueous metabolites between the MPs and control
groups. In this study, differential expression analysis of aqueous metabolites was performed, and a
threshold of p < 0.05 and |fold change| ≥ 2 was used to identify significant differential metabolites. In
the plot, the horizontal axis represents the fold change, while the vertical axis represents the adjusted
p-value, with smaller values indicating more significant differences. Higher −log10 values correspond
to higher statistical significance. (C) The heatmap shows the differential aqueous metabolites between
the MPs group and control group. Increased aqueous metabolites were represented in yellow, and
decreased aqueous metabolites were represented in purple, compared to the control group. Each
group comprised three animals.

Table 2. The aqueous metabolites differentially expressed between lung tissue of seven-day-old male
offspring rat with and without prenatal PS-MPs exposure.

Aqueous Metabolites

Metabolites VIP Score * Fold Change p

Cytosine 1.76 5220.8 <0.001
2′,3′-Dideoxyinosine 1.92 0.000177 0.003
N-Methylisoleucine 1.35 4062.9 0.008

Hypoxanthine 1.23 3840.1 0.013
Adenosine 5′-monophosphate 2.23 0.000141 0.015

Raffinose 1.35 3543 0.016
Succinic acid 1.08 3228.9 0.016

Creatinine 1.41 4866.1 0.017
2′-Deoxycytidine 1.05 3884.5 0.026
3-Methylcytidine 1.5 0.000238 0.026



Antioxidants 2024, 13, 1459 10 of 18

Table 2. Cont.

Aqueous Metabolites

Metabolites VIP Score * Fold Change p

alpha-Galactosamine-1-phosphate 0.78 1881.3 0.027
Hydromorphone 1.12 3913.5 0.027

Pyroglutamic acid (5-oxoproline) 2.00 5696.8 0.027
Methohexital 0.74 2085.8 0.031

Guanine 1.64 4765.5 0.032
Phenylacetylglutamine 1.05 2939.6 0.032

Betaine 1.02 3131.1 0.034
Riboflavin 1.47 4449.9 0.035
Glutamine 1.91 5635.2 0.038

N8-Acetylspermidine 1.39 3217.7 0.041

* Variable importance in projection (VIP) scores were obtained from PLS-DA. Fold changes were calculated by
dividing the value of metabolites in seven-day-old offspring rats with prenatal PS-MPs exposure by the value of
those without prenatal PS-MPs exposure. Each group comprised three animals.

Table 3. Metabolic pathways and functional analysis of metabolites in offspring rats with prenatal
polystyrene microplastics (PS-MPs) exposure.

Pathway Name Metabolites Total Hits p Function

Purine metabolism Glutamine, AMP,
Hypoxanthine, Guanine 70 4 0.001 Nucleotide metabolism

Alanine, aspartate, and
glutamate metabolism Glutamine, Succinate 38 2 0.012 Amino acid metabolism

Pyrimidine metabolism Glutamine,
Deoxycytidine 39 2 0.023 Nucleotide metabolism

Riboflavin metabolism Riboflavin 4 1 0.025 Metabolism of cofactors
and vitamins

Nitrogen metabolism Glutamine 6 1 0.037 Amino acid metabolism

“Total” is the total number of compounds in the pathway; “Hits” is the actual matched number from the user-
uploaded data.

The increase in glutamine involved several important candidate pathways affected by
prenatal PS-MPs exposure, including purine, pyrimidine, alanine/aspartate/glutamate,
and glutathione metabolism. Given that glutathione plays a crucial role in maintaining
redox homeostasis [26], and that we previously found oxidative stress involved in the liver
damage of offspring caused by prenatal PS-MPs exposure, further research was conducted
to investigate the role of oxidative stress in the lung damage of offspring resulting from
prenatal PS-MPs exposure.

To conduct the oxidative stress analysis, we added an additional group exposed
to a lower dose of the prenatal PS-MPs to investigate dose-dependent effects. Initially,
the total glutathione levels in the lung tissue of seven-day-old offspring were measured
(Figure 4A). The group exposed to prenatal PS-MPs exhibited significantly higher levels of
total glutathione and oxidized glutathione (GSSG) compared to the control group. However,
the ratio of reduced glutathione (GSH) to GSSG was not significantly different. Compared
to the control group, the lungs of offspring in the high-dose prenatal PS-MPs exposure
group demonstrated a significant increase in MDA levels, which is a marker of lipid
peroxidation and oxidative stress (Figure 4B). Additionally, in the analysis of 8OH-dG,
a marker of DNA peroxidation and oxidative stress, both low- and high-dose prenatal
PS-MPs exposure groups showed significantly elevated 8OH-dG expression in the lung
tissues of the offspring (Figure 5C).
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Figure 5. Oxidative stress in the lung tissue of pups. (A) Total glutathione (T-GSH), oxidized
glutathione (GSSG), and ratio of reduced glutathione (GSH) to GSSG. Each group comprised
9–10 animals. (B) Western blot of Malondialdehyde (MDA) expression and semi-quantitative analysis.
(C) 8-hydroxy-2-deoxyguanosine (8-OHdG) staining and semi-quantitative analysis. Magnification at
40× *: p < 0.05; **: p < 0.01; ***: p < 0.001. Each group comprised six animals.

3.2.3. Melatonin Treatment Partially Ameliorates Pulmonary Dysplasia and Lung Function
in Adult Offspring Caused by Prenatal Plus Postnatal Exposure to PS-MPs

The next experiment was conducted in order to examine the lung damage caused
by prenatal and postnatal PS-MPs exposure in rats and to identify whether melatonin
intake can reduce the lung damage associated with such exposures. With prenatal and
postnatal exposure to PS-MPs, inspiratory time (Ti), expiratory time (Te), and specific airway
resistance (sRaw) increased, whereas minute ventilation (MV) and breathing frequency (F)
decreased (Table 4). Melatonin treatment improved the increased Ti and Te and enhanced
the decreased peak expiratory flow (PEF), peak inspiratory flow (PIF), and breathing
frequency (F).

Table 4. Metabolic pathways and functional analysis of metabolites in offspring rats with prenatal
polystyrene microplastics (PS-MPs) exposure.

MV (mL) p (msec) F (bpm) EIP (msec) EEP (msec) dT (msec) SRaw (cm
H2O.s)

SGaw
(1/cm
H2O.s)

EF50
(mL/s)

NC 595.33 ±
155.32

273.04 ±
33.22

227.46 ±
31.79

13.43 ±
1.25

12.71 ±
1.77 1.07 ± 0.76 1.03 ± 0.74 0.42 ± 0.19 25.94 ±

7.61

MP 480.81 ±
103.51 *

358.45 ±
31.82 **

173.73 ±
14.80 **

17.84 ±
1.78 **

18.56 ±
2.70 **

2.24 ±
0.32 **

2.18 ±
0.31 ** 0.51 ± 0.07 19.52 ±

5.28

MPs + M 706.12 ±
229.52

302.95 ±
13.40 †

202.21 ±
8.66 †

13.23 ±
0.75 ††

14.42 ±
0.82 †† 2.00 ± 1.32 1.94 ± 1.29 0.47 ± 0.11 28.18 ±

10.81 †
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Table 4. Cont.

Ti (msec) Te (msec) PIF (mL/s) PEF
(mL/s) TV (mL) EV (mL) NTV (mL) NEV (mL) RT (msec)

NC 153.32 ±
22.58

128.73 ±
20.50

24.05 ±
6.32

29.10 ±
7.55 2.69 ± 0.85 2.72 ± 0.90 1.91 ± 0.32 1.91 ± 0.32 83.29 ±

12.19

MP 172.97 ±
11.58 *

186.15 ±
25.21 **

21.09 ±
3.36

21.95 ±
5.88 2.79 ± 0.56 2.82 ± 0.56 1.49 ± 0.30 1.49 ± 0.30 119.08 ±

16.53 **

MPs + M 155.87 ±
3.04 †

147.99 ±
11.36 †

28.76 ±
8.35 †

34.09 ±
9.76 †† 3.51 ± 1.07 3.56 ± 1.07 1.88 ± 0.60 1.88 ± 0.60 94.59 ±

6.65 ††

Data are the mean ± SD of five experiments in triplicate. * NC (control) vs. MPs (PS-MPs exposure) group,
* p < 0.05, ** p < 0.01; MPs group vs. MPs + M (PS-MPs exposure + melatonin treatment) group, † p < 0.05,
†† p < 0.01. Abbreviations: F, breathing frequency; TV, tidal volume; MV, minute ventilation; Ti, inspiratory time;
Te, expiratory time; PIF, peak inspiratory flow; PEF, peak expiratory flow; EV, expiratory volume; NTV, nasal tidal
volume; NEV, nasal expiratory volume, EIP, end inspiratory pause; EEP, end expiratory pause; dT, time delay;
sRaw, specific airway resistance; sGaw, specific airway conductance; EF50, flow at mid-tidal expiratory volume.
Each group comprised 9–10 animals. Data are the mean ± SD of triplicate.

Following the assessment of lung function, we proceeded with histological analyses
to further investigate the structural changes in lung tissue of 120-day-old offspring with
prenatal plus postnatal PS-MPs exposure. We found that, similarly to the seven-day-old
offspring exposed to prenatal PS-MPs, combined prenatal and postnatal exposure to PS-
MPs led to alveoli collapse, thickened alveolar septa, and increased connective tissue below
the epithelial layer in the lung tissue of the 120-day-old offspring (Figure 6).
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Following the assessment of lung function, we proceeded with histological analyses 
to further investigate the structural changes in lung tissue of 120-day-old offspring with 
prenatal plus postnatal PS-MPs exposure. We found that, similarly to the seven-day-old 
offspring exposed to prenatal PS-MPs, combined prenatal and postnatal exposure to PS-
MPs led to alveoli collapse, thickened alveolar septa, and increased connective tissue be-
low the epithelial layer in the lung tissue of the 120-day-old offspring (Figure 6). 

 
Figure 6. Melatonin treatment partially ameliorates pulmonary hypoplasia in adult offspring caused 
by prenatal and postnatal exposure to polystyrene microplastics (PS-MPs). Histological 
Figure 6. Melatonin treatment partially ameliorates pulmonary hypoplasia in adult offspring caused
by prenatal and postnatal exposure to polystyrene microplastics (PS-MPs). Histological manifes-
tations of lung tissue from 120-day-old offspring under low-power microscopic field. (A) Control
group; (B) prenatal plus postnatal PS-MPs exposure group showing the alveolar collapse and hy-
pertrophied alveolar septa; (C) prenatal plus postnatal PS-MPs exposure with melatonin treatment
group; (D) zoomed-in images of (A); (E) zoomed-in images of (B) showing thickened connective
tissue beneath the epithelial layer; (F) zoomed-in images of (C). Each group comprised three animals.

4. Discussion

Retrospective analyses have suggested that prenatal PS-MPs exposure adversely
affects the central nervous system, liver, intestines, reproductive system, and muscle tissue
of the offspring [27].

In a previous study, we reported that after pregnant dams ingest PS-MPs, their off-
spring exhibit an increase in body weight and the shortening of the ileal villi [19]. Prenatal
exposure to microplastics also leads to an increase in lipid accumulation in the livers of
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offspring compared to that in the control group [19]. In this study, we investigated the
effects of prenatal PS-MPs exposure on the lung tissues of infant offspring. Our findings
indicate that prenatal exposure to PS-MPs significantly affects the development of lung
tissue in offspring. This study employed metabolomic techniques to analyze the potential
mechanisms by which prenatal PS-MPs influence the development of lung tissue in the
offspring. Compared to the control group, prenatal PS-MPs exposure notably affected
the growth and biological processes in the lung tissue of the offspring. The pathways
affected by prenatal PS-MPs were primarily enriched in purine and pyrimidine metabolism,
specific amino acid metabolism, and nitrogen metabolism. Abnormalities in these pro-
cesses, particularly in the metabolism of purines, pyrimidines, and amino acids (aspartate,
glutamate, and threonine), can lead to oxidative stress [28–30], which supports our findings
that maternal exposure to prenatal PS-MPs resulted in increased oxidative phospholipid
levels in the lung tissue of the offspring.

Phospholipids and cholesterol are crucial components of double-layered membranes
in mammalian cells. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are
major phospholipid species in mammalian cell membranes, whereas minor components
include phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), phos-
phatidylglycerol (PG), and sphingomyelin (SM) [22]. Apart from their structural role in the
membrane, phospholipids have also been shown to play essential roles in various cellular
processes such as membrane transport, cell signaling, cell proliferation and differentiation,
cell migration, and apoptosis. The observation that the group exposed to prenatal PS-MPs
exhibited increased levels of certain oxidative phospholipid components compared with
the control group suggests an elevation in oxidative stress within the cells.

Metabolic reprogramming has been detected in the lung tissues of patients with bron-
chopulmonary dysplasia, chronic obstructive pulmonary disease (COPD), and pulmonary
fibrosis. In a cigarette smoke-induced COPD mouse model, FAM13A (family with sequence
similarity 13 member A) was found to promote fatty acid oxidation by activating sirtuin
1 and increasing the expression of carnitine palmitoyl transferase 1A (CPT1A) [31]. Hu-
man studies further indicate that patients with severe COPD exhibit significantly elevated
glycolysis and oxidation levels compared to control subjects [32]. Additionally, research
highlights that alteration in polyamine metabolism, glycolysis, mitochondrial β-oxidation,
and the tricarboxylic acid cycle could play crucial roles in the development of idiopathic
pulmonary fibrosis [33]. However, the role of metabolic reprogramming and molecular
mechanisms underlying these diseases are not yet fully understood. Purines (adenine and
guanine) and pyrimidines (cytosine, thymine, and uracil) are fundamental components
of nucleic acids that are involved in the replication of genetic material, gene transcrip-
tion, protein synthesis, and energy transfer (for example, ATP) [34]. The interactions
between purines and pyrimidines are crucial for the transmission of genetic information
and cellular metabolism.

Glutamine elevation reflected the convergence of key metabolic pathways affected by
prenatal PS-MPs exposure, including purine, pyrimidine, alanine/aspartate/glutamate,
and glutathione metabolism. Glutamine is also involved in the synthesis of glutathione
and serves as a carbon source for oxidative processes in certain cells [35,36]. In most cells,
glutamine metabolism is facilitated by glutaminase, which converts glutamine to glutamate.
Moreover, glutamine may play a direct role in cellular antioxidant defense mechanisms [37].
In response to stress, lung tissue utilizes glutamine synthetase to synthesize glutamine
from glutamate and ammonia, thereby ensuring the stability of glutamine levels [38,39].
The release of stress-induced glutamine from the lungs is regulated by glucocorticoids
and protein stability [38,39]. In a mouse model of endotoxin-induced acute respiratory
distress syndrome, intravenous glutamine administration reduced lung inflammation and
extracellular trap release, improved lung elastance, and mitigated alveolar collapse [40].
These results suggest that prenatal PS-MPs exposure leads to a compensatory increase
in glutamine levels in offspring lung tissue in response to stress. This compensatory



Antioxidants 2024, 13, 1459 14 of 18

phenomenon is also reflected in the increase in the total glutathione protein of the γ-
glutamyl cycle.

Glutathione, which is composed of glutamate, cysteine, and glycine, is vital for protect-
ing cellular components from damage caused by reactive oxygen species and heavy metals.
It is essential to prevent oxidative damage, mitigate the toxicity of xenobiotic electrophiles,
and maintain the redox balance [26]. In healthy cells and tissues, reduced glutathione (GSH)
is the predominant form, whereas oxidized glutathione (GSSG) is relatively less abundant.
The GSH/GSSG ratio is an important indicator of cellular oxidative stress. When this ratio
increases, the concentration of GSSG is elevated relative to GSH, which typically indicates
that the cells are under a greater oxidative pressure [41]. When phospholipids containing
polyunsaturated fatty acids are exposed to oxidative attack, oxidized phospholipids are
formed [42]. In our study, we found that prenatal exposure to PS-MPs resulted in elevated
oxidation of cell membrane phospholipids in the lung tissue of the offspring. These findings
indicate that prenatal exposure to PS-MPs increases oxidative stress. The elevated oxidative
stress in the lung tissue of offspring prenatally exposed to PS-MPs was further corroborated
by increased levels of 8-OHdG and MDA.

In addition to an increase in glutamate, prenatal PS-MPs exposure influences the
pyrimidine metabolic pathway, resulting in elevated cytosine and deoxycytidine levels.
In the purine metabolic pathway, increased levels of guanine and hypoxanthine were ob-
served, whereas AMP levels decreased. Furthermore, in the alanine/aspartate/glutamate
metabolic pathway, prenatal microplastic exposure leads to elevated levels of glutamate and
succinate in the lung tissues of offspring. In the glutathione metabolic pathway, increased
5-oxoproline levels were detected in the lung tissues of the offspring (Figure 7).
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Figure 7. Prenatal microplastic exposure affects the metabolic pathways of purine, pyrimidine,
alanine/aspartate/glutamate, and glutathione in the lung tissue of the offspring, along with their
corresponding biological functions. The red upward arrow represents an increase, while the blue
downward arrow represents a decrease.

As an antioxidant, melatonin and its metabolites have a broad capability to neutralize
superoxide anions (O2•−), hydroxyl radicals (•OH), hydrogen peroxide (H2O2), hypochlor-
ous acid (HOCl), nitric oxide (NO), and peroxynitrite anions (ONOO−) [15]. Melatonin is
an immunomodulatory agent with anti-inflammatory properties [18,43]. This effect may
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occur through the inhibition of nuclear factor kappa B (NF-κB) binding to DNA, thereby
reducing the synthesis of pro-inflammatory cytokines by inhibiting cyclooxygenase [43].
Caspase-3 is a cysteine protease that plays an important role in the apoptosis and DNA
damage response [44]. It generally exists in an inactive precursor form. When cells receive
apoptotic signal, it is activated by other caspases to form cleaved caspase-3 form. The active
form initiates cellular changes that ultimately lead to cell death and other downstream
responses. Research demonstrates that melatonin protects various cell types by reducing
caspase-3 activation, a critical executor of apoptosis. In a rat model of sepsis induced
by cecal ligation and puncture, melatonin treatment significantly enhanced the survival
rates and mitigated lung damage by decreasing caspase-3 expression [45]. In our study,
we observed increased localized accumulation and infiltration of inflammatory cells in
lung tissue exposed to prenatal PS-MPs. Given that melatonin has both antioxidant and
anti-inflammatory effects, it is likely that melatonin improves lung function in offspring
exposed to prenatal PS-MPs through both antioxidant and anti-inflammatory mechanisms.

Although our research identified metabolites related to prenatal exposure to PS-MPs
in the lung tissues of neonates as well as their potential mechanisms and associations,
certain limitations must be considered when interpreting these findings. Previous estimates
have suggested that humans could ingest between 0.1 and 5 g of microplastics each week
via various exposure routes [46]. In this dosage range, a rat weighing 200 g would there-
fore consume approximately 10 µg to 2 mg of microplastics daily. Considering that rats
generally drink around 10 milliliters per 100 g of body weight per day, a concentration of
1000 micrograms per liter of microplastics in their drinking water results in a relatively low
intake daily when compared to potential human exposure situations. However, human
exposure to microplastics in natural environments involves diverse mixtures [27], making it
more complex to design experiments aimed at investigating the effects of microplastics on
human health. Second, in addition to its antioxidant properties, melatonin has other poten-
tial functions. Therefore, further research is necessary to reveal other specific mechanisms
through which melatonin prevents and mitigates the damage caused by PS-MPs.

This study also has another limitation that may affect the overall interpretation and
understanding of the relationship between prenatal microplastic exposure and offspring
health outcomes. The lack of assessment of changes in the gastrointestinal histology of the
dams means that it is not possible to rule out the absorption of PS-MPs due to damage to the
intestinal barrier. However, the existing literature reports that the prolonged ingestion of
PS-MPs in mice leads to a reduction in the height and surface area of intestinal villi, as well
as a downregulation of related tight junction proteins, which may result in compromised
intestinal barrier function [47]. Further research evaluating the intestinal histology of the
dams could provide a more comprehensive understanding of the overall impact of prenatal
microplastic exposure on both the mother and offspring. The current findings do not offer
clear conclusions regarding whether the changes in the lung tissue induced by prenatal
exposure to PS-MPs are irreversible or recoverable. This uncertainty arises from the study
design, which did not include offspring prenatally exposed to PS-MPs during adulthood.
In clinical applications, melatonin is typically administered at doses of 2–5 mg per day.
However, studies based on animal research indicate that several potential therapeutic effects
of melatonin may require higher doses in the range of 40–100 mg per day to manifest, which
are rarely used in clinical settings [48]. Further human studies are required to investigate
the effects of melatonin at higher doses.

5. Conclusions

Through metabolomic analysis, we expanded our understanding of the effects of
prenatal PS-MPs exposure on toxicity in offspring lung tissues. Metabolomic analyses
revealed that prenatal PS-MPs exposure caused significant oxidative stress and disrupted
the nucleic acid metabolism and amino acid profiles in the lung tissues of seven-day-
old rat pups. In addition, melatonin treatment significantly improved lung function in
120-day-old rats exposed to both prenatal and postnatal PS-MPs. These findings suggest
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that melatonin may be an effective therapeutic agent for mitigating lung damage caused
by environmental pollutants, such as PS-MPs. Future studies should aim to validate these
findings in humans, investigate the broader therapeutic mechanisms of melatonin, and
establish effective clinical protocols to enhance its application in therapeutic settings.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/antiox13121459/s1. Figure S1. Simple flowchart illustrating
the study steps. (NC = control group; MPL = low-dose PS-MPs exposure (100 µg/L in drinking
water); MPH = high-dose PS-MPs exposure (1000 µg/L in drinking water); MPM = high-dose PS-MPs
exposure and melatonin treatment.
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