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ABSTRACT: The concordant mode approach (CMA) is a
promising new scheme for dramatically increasing the system size
and level of theory achievable in quantum chemical computations
of molecular vibrational frequencies. Here, we achieve advances in
the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ
(coupled cluster singles and doubles with perturbative triples using
a correlation-consistent polarized-valence triple-ζ basis set) bench-
marks within the G2 molecular test set, executing a statistical
analysis for 1501 frequencies from 111 compounds and then
separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller−Plesset perturbation theory with the
same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA
scheme. Utilizing this Level B within the CMA-0A method reproduces the 1501 benchmark frequencies with a mean absolute error
(MAE) of only 0.11 cm−1 and an attendant standard deviation of 0.49 cm−1. Second, a convergent CMA-2 method is constituted
that allows efficient computation of higher level (Level A) frequencies to any reasonable accuracy threshold by using only Hartree−
Fock (HF) and MP2 or density functional theory (DFT) data to generate ξ parameters, which select the sparse off-diagonal force
field elements for explicit evaluation at Level A. When Level B = MP2/cc-pVTZ, a cutoff of ξ = 0.02 provides an average maximum
absolute error per molecule of only 0.17 cm−1 by incurring merely a 33% increase in average cost over CMA-0A. This CMA-2
method also eradicates the 4 problematic CMA-0A outliers of pyridine with even less effort (ξ = 0.04, 22% increase). Finally, the
newly developed CMA procedures are shown to be highly successful when applied to 1-(1H-pyrrol-3-yl)ethanol, a new test molecule
with diverse types of vibration.

1. INTRODUCTION
The force field for molecular vibrations is an indispensable tool
for contemporary quantum chemistry, facilitating investiga-
tions on molecular structure, spectroscopy, and thermochem-
istry. Even after decades of research, transformative advances
in the computation of force fields are still ongoing.1 For highly
accurate ab initio quantum chemical methods such as coupled
cluster singles and doubles with perturbative triples
[CCSD(T)], computing the vibrational Hessian fully analyti-
cally2−4 is possible for small systems but rapidly becomes
intractable for larger molecules. Alternatively, one can
numerically compute the Hessian using finite differences of
analytic gradients or single-point energies, coarsely parallelizing
the task. In such schemes, numerical differentiation is less
resource-demanding and a necessity for theoretical methods
for which analytical gradients or Hessians have not been
implemented, let alone derived.

The number of single-point energies required to compute
the force constants in a Hessian for a polyatomic molecule
scales quadratically with the number of atoms in the molecule.
Computations of CCSD(T)/cc-pVTZ quadratic force con-
stants for systems with up to 500 basis functions and 75

vibrational degrees of freedom are still currently feasible in our
laboratory, but the inherent scaling causes the full process to
rapidly become intractable as the size of the system increases
further. Rectilinear Cartesian displacement coordinates are
often used as a basis for computing the force constants
numerically; however, this set of coordinates is not optimal for
describing molecular motion on inherently curvilinear
potential energy surfaces. Employing intuitive curvilinear
internal coordinates as a basis reduces the coupling
encountered with rectilinear coordinates, and a litany of
research exists on this topic.5−21 The Natural Internal
Coordinates (NICs) of Pulay and co-workers are a trenchant
choice for describing molecular vibrations.22,23

NICs are linear combinations of chemically motivated
internal coordinates, and algorithms exist for their automatic
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generation.23 While NICs are a felicitous choice to represent
the force field, it is difficult to know a priori which force
constants are negligible. The subject of vibrational coordinate
optimization for the potential energy surface beyond the
harmonic approximation is well-researched.24−26 The optimal
coordinates for the harmonic oscillator are the normal modes
of vibration, which simultaneously diagonalize both the
quadratic kinetic and potential energy matrices. Accordingly,
to maximize the sparsity of the force constant matrix, the
coordinates selected should target the normal mode basis.

A breakthrough solution for selecting vibrational coordinates
is the recently developed Concordant Mode Approach
(CMA),1 whose protocol and notation scheme are fully
specified in Section 3 below. The CMA-0A method is a highly
accurate starting point centered on the computation of only
diagonal force constants at the higher level theory A in a
normal mode basis generated by a lower-level theory B. The
remarkable accuracy of CMA-0A is demonstrated in the 1580
targeted CCSD(T)/cc-pVTZ benchmark vibrational frequen-
cies of the G2 test set.27 Utilizing NICs to represent the
normal modes, out of the 1580 cases CMA-0A is successful in
reducing all but three and seven frequency residuals to less
than 2.5 cm−1 for the Level B choices B3LYP/6-31G(2df,p)
and CCSD(T)/cc-pVDZ, respectively. Simultaneously, CMA-
0A reduces computational times by a factor of 7−10. A
question not addressed in the initial study1 is the choice of
preferred Level B theory in the CMA protocol. Therefore, the
first section of the present research investigates the overall
performance of various Level B methods and makes some
explicit recommendations.

The second section of this report focuses on the systematic
convergence of the CMA methodology by an astute selection
of limited off-diagonal force constants for explicit evaluation at
Level A. Our introductory paper1 formulated a CMA-1
method, where one hand-selects off-diagonal force constants,
neglected in CMA-0, to eliminate frequency residuals. When a
single off-diagonal force constant per molecule is introduced
within CMA-1A(1)[A = CCSD(T)/cc-pVTZ, B = CCSD(T)/
cc-pVDZ], all original CMA-0A outlier residuals of the G2 test
set are reduced to below 1.2 cm−1. While the aforementioned
CMA-1A scheme is impressive, it is not intended to be a
generally practical method, because the off-diagonal couplings
were judiciously selected with full knowledge of the target
Level A force constant matrix. Here we propose CMA-2, an a
priori method of selecting off-diagonal force constants to
manage cost and accuracy. An auxiliary force field is obtained
with a method henceforth denoted as Level C at little or no
additional cost in the Level B computation. In this paper, we
investigate Hartree−Fock (HF) theory as Level C. The Level
C force field is transformed into the Level B normal mode
basis and then cast into a dimensionless matrix ξ. The matrix
elements ξij above a given threshold correspond to the Level A
off-diagonal force constants to be explicitly computed in the
CMA basis.

2. COMPUTATIONAL METHODS
The reference geometries optimized at the CCSD(T)/cc-
pVTZ28−30 level of theory, their corresponding quadratic force
constants, and the NICs chosen in our first CMA study1 were
also used in the present benchmark research on the G2 test set
of molecules. In addition, the CCSD(T)/cc-pVDZ28−30 and
B3LYP/6-31G(2df,p)31−36 force constants which were pre-
viously computed1 on top of the CCSD(T)/cc-pVTZ

optimized geometries were once again employed with the
caveat that symmetry was strictly enforced for all molecules,
contrary to the first study where symmetry was only rigorously
enforced for molecules belonging to non-Abelian symmetries.
Normal modes of vibration that are the sole inhabitants of an
irreducible representation will not mix with any other mode
and are obtained exactly by all CMA methods. Such modes
were retained in the statistical treatment of reference 1 but
were omitted here in order improve measures of the efficacy of
our CMA methods. For reasons discussed later in this work,
pyridine is also omitted from our statistics and analyzed in
greater detail in-text, reducing the number of frequencies
considered in the G2 test set statistics to 1501. New force
fields at the reference geometries were computed with CCSD,
MP2,37 density-fitted MP2 (df-MP2),38,39 HF, and density-
fitted HF (df-HF) electronic wave function methods, also
complying with the full symmetry for all molecules.

As before,1 the cc-pVXZ (X = D, T) basis sets40,41 were
employed for H and Li-F, while the corresponding cc-pV(X
+d)Z basis sets42 were chosen for Na-Cl in order to
incorporate the flexibility of tight d-functions. For brevity,
the +d designations are assumed but not listed in the basis set
notations used here. The Level B quadratic force constants
were computed in the NIC basis via finite differences with
fourth-order accuracy, and the corresponding vibrational
normal modes were computed with the GF-matrix method.43

A displacement size of 0.01 or 0.005 in the units of the NICs
was employed throughout.43 The Level A reference force
constants were transformed from the Cartesian basis to the
normal mode basis of Level B to obtain the matrix FCMA. In
practical applications, the desired elements of FCMA would be
computed by finite differences of Level A energies. However,
to completely eliminate numerical errors in the current
benchmark research, we directly obtained CMA frequencies
by zeroing out off-diagonal elements of FCMA according to the
CMA protocol being employed. The Molpro44 program was
used to compute any conventional CC, MP2, or HF energies,
and the SCF and CC energy residuals were reduced to 10−12

Hartrees upon convergence. The df-MP2 and df-HF results
were computed with Psi4,45 and the SCF energy residuals were
converged to 10−10 Hartrees in these cases. Core orbitals were
frozen in all coupled cluster and MP2 computations. The
optimized geometries and vibrational frequencies of the
CCSD(T)/cc-pVTZ target theory, as well as the NICs
employed, are compiled in the Supporting Information of
this work.

3. CMA PROTOCOL
The most general CMA protocol1 can be summarized as
follows:

1. Choose a complete (preferably chemically intuitive) set
of nonredundant internal coordinates S.

2. Optimize the molecular geometry for computing the
higher level theory A vibrational frequencies and for
constructing the concordant modes at a lower-level of
theory B, as denoted by CMA[Level A, Level B].

3. Solve the GFB eigenproblem43 after obtaining the lower-
level force constants FB. The nonorthogonal LB
eigenvector tensor yields the concordant normal
modes (QB) according to S = LBQB.

4. Adopt the ansatz FA = (LB
−1)TFCMA(A)LB

−1, where FA and
FCMA(A) are the force constants at higher level theory A
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in the S and QB basis sets, respectively. Minimally, the
elements to be included in FCMA(A) are the diagonal
elements, whereas the transformation becomes exact if
all elements are included.

5. Adopt a protocol (CMA-N) that specifies which
elements of FCMA(A) to explicitly compute via finite
differences at the higher level of theory; the CMA-0,
CMA-1, and CMA-2 variants discussed below are those
currently available. A chosen displacement δQB can be
mapped into a final set of Cartesian coordinates by
iterative application of the linear relationship δx =
uBA

TGA
−1LB(δQB), where BA is the customary B matrix for

the S coordinates at the A reference geometry and u is a
diagonal matrix of reciprocal atomic masses.46,47

6. Transform the resulting FCMA(A) to FA, and then solve
the GFA eigenproblem to find the higher level A
harmonic vibrational frequencies and corresponding
normal modes.

In the CMA protocols labeled as (CMA-NA, CMA-NB), the
Level B force constants are computed on top of the (Level A,
Level B) optimum geometries. When necessary for clarity, the
various levels of theory are appended in brackets to the end of
the overarching protocol, such as CMA-0A[Level A, Level B]
or CMA-2A[Level A, Level B, Level C]. All CMA variants
require the diagonal elements of FCMA(A) to be included, and
the CMA-0A and CMA-0B variants include only these. In our
first study,1 CMA-0A was found to be more accurate than
CMA-0B, since the underlying reference geometry is essential
to the accurate prediction of second- and higher-order force
constants.46 The CMA-1(n) variant only differs from CMA-0
in that n hand-selected off-diagonal force constants are also
chosen to be computed along with the diagonals. In the
convergent CMA-2 method, the dimensionless matrix ξ is
constructed via eq 1 from the Level C force field transformed
to the QB normal mode basis [FCMA(C)]:

F

F F

(C)

(C) (C)
ij

ij

ii jj

,CMA

,CMA ,CMA

=
(1)

In carrying out step 5 of the general protocol for the CMA-2
case, all matrix elements ξij greater than a user-given threshold
correspond to matrix elements of FCMA(A) that will be
explicitly computed.

4. BENCHMARKING LEVEL B FOR CMA-0A
The CMA-0A procedure was executed for eight Level B
theories, as summarized in Table 1. The deviation of the pure
Level B results from the CCSD(T)/cc-pVTZ target is
generally reduced by at least an order of magnitude for every
summary statistic when CMA-0A is applied. The mean
absolute error (MAE) is the same statistic designated as the
mean absolute deviation (MAD) in our prior work;1 MAE is
used here to avoid confusion with common statistical
definitions of MAD. The MAE of the CMA-0A residuals
ranges from 0.11 to 1.09 cm−1 for all Level B choices tested.
The mean CMA residuals fall within a remarkably narrow
range of 0.02 to 0.14 cm−1, and the standard deviation (σϵ)
ranges from 0.36 to 4.93 cm−1. The maximum absolute error
(ϵMAX) over the entire G2 test set is between 3.4 and 11.6 cm−1

for all CMA computations with correlated Level B theories,
whereas Hartree−Fock proves to perform much more poorly
in this regard. The MAEs for the zero-point vibrational energy
(ZPVE) residuals (Δ) are a remarkably tight group of
minuscule values across the Level B spectrum, ranging from
0.11 to 0.95 cm−1; similarly, the standard deviation (σΔ) of the
ZPVE Δ lies between 0.24 and 1.56 cm−1. As observed earlier1

a beneficial cancellation of individual frequency errors provides
exceptional accuracy for the CMA-0A ZPVE values.

For a deeper analysis, we first focus on the CMA-0A results
in which a cc-pVDZ basis set was used for Level B. Both CMA-
0A with B = CCSD/cc-pVDZ and B = CCSD(T)/cc-pVDZ
perform very well, and there is no significant statistical
difference differentiating the two. The CMA-0A MP2/cc-
pVDZ statistics are almost as good as the coupled cluster
results, making MP2 a promising candidate as a Level B theory
which scales as N5 with basis set size, compared to the N6 and
N7 scaling of conventional CCSD and CCSD(T), respectively.
The CMA HF/cc-pVDZ results do not compare as well,

Table 1. Summary Statistics within the G2 Test Seta of CMA-0A Residuals for CCSD(T)/cc-pVTZ Harmonic Vibrational
Frequencies (ϵ, cm−1) and ZPVEs (Δ, cm−1) as Compared to the Corresponding Pure Level B Errors

Level B MAE ϵ mean ϵ ϵmax
b σϵ ϵMAX

c MAE Δ mean Δ σΔ

MP2/cc-pVTZd pure 9.44 5.62 28.2 13.68 145 40.6 38.3 39.1
CMA 0.11 0.02 0.54 0.49 9.3 0.12 0.12 0.24

df-MP2/cc-pVTZd,e pure 9.00 5.19 27.2 12.55 146 37.9 35.6 32.0
CMA 0.11 0.02 0.53 0.49 9.3 0.11 0.11 0.24

HF/cc-pVTZ pure 56.92 54.95 94.7 34.41 251 374.4 371.5 294.7
CMA 1.09 0.14 5.18 4.93 86.3 0.95 0.95 1.56

B3LYP/6-31G(2df,p) pure 8.82 4.66 23.1 10.86 69 36.0 31.5 33.3
CMA 0.16 0.04 0.59 0.36 3.4 0.27 0.27 0.32

CCSD(T)/cc-pVDZ pure 47.54 47.12 120.0 54.46 173 319.0 318.6 244.6
CMA 0.22 0.04 0.74 0.45 4.0 0.27 0.27 0.29

CCSD/cc-pVDZ pure 54.34 54.05 128.2 53.55 165 365.5 365.5 267.4
CMA 0.23 0.04 0.77 0.46 3.6 0.29 0.29 0.29

MP2/cc-pVDZd pure 52.52 52.15 139.4 60.38 213 355.3 355.3 253.4
CMA 0.32 0.06 1.18 0.83 11.6 0.38 0.38 0.41

HF/cc-pVDZ pure 85.11 83.88 132.8 47.55 247 567.8 567.1 440.4
CMA 0.72 0.12 3.45 3.02 58.4 0.81 0.81 1.17

aThe instructive case of pyridine is omitted from these statistics and dissected in a later section, leaving 1501 frequencies in the data set. bAverage
maximum absolute ϵ per molecule. cMaximum absolute ϵ over the entire data set. dExcluding ω3(O3), for which MP2 is a catastrophic failure.48

eExcluding ω3(NO2), for which df-MP2 in Psi4 does not run successfully.
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displaying a standard deviation (3.02 cm−1) and maximum
absolute residual (58.4 cm−1) that are considerably larger than
the corresponding coupled cluster results. Apparently, even a
minimal treatment of electron correlation in Level B is
important in CMA computations targeting CCSD(T)/cc-
pVTZ frequencies. Nonetheless, HF may still be an apt Level B
for obtaining ZPVEs, as its MAE is only 0.81 cm−1.

We now turn our attention to the CMA-0A results for which
the larger cc-pVTZ and 6-31G(2df,p) basis sets are used.
Selecting Level B = MP2/cc-pVTZ gives the best MAE (0.11
cm−1) and mean error (+0.02 cm−1). The conventional and
density-fitted MP2 results are nearly indistinguishable, a quite
promising finding because df-MP2 scales as N4 with basis set
size, compared to the N5 scaling of conventional MP2. The
summary statistics for the HF residuals once again show that
electron correlation should be included at Level B, but not
necessarily in ZPVE computations. While B3LYP/6-31G-
(2df,p) yields excellent CMA-0A results, this DFT method is
outperformed by both MP2/cc-pVTZ and df-MP2/cc-pVTZ
for the MAE ϵ, mean ϵ, ϵmax, and ZPVE statistics. The only
caveat is that MP2 and df-MP2 tend to exhibit a few larger
maximum absolute residuals; for example, in six out of 1501
cases this quantity is greater than 4 cm−1 for MP2/cc-pVTZ.
Overall, the summary statistics indicate that basis set quality is
more important than higher-order treatment of electron
correlation in the selection of Level B. Pending further
research, the key conclusion is that if one is targeting
CCSD(T)/cc-pVXZ frequencies with the CMA-0A approach,
then MP2/cc-pVXZ or its df-variant is the preferred Level B
method.

5. DEVELOPMENT OF CMA-2A THEORY
For the purpose of developing a convergent CMA-2 theory, in
this section we consider a CMA outlier as any frequency
residual greater than 1.5 cm−1 in magnitude. Such outliers for
CMA-0A[CCSD(T)/cc-pVTZ, MP2/cc-pVTZ] are presented
in Table 2, where 16 cases are found from 9 distinct molecules
out of the test set of 1501 frequencies. The size of these
residuals ranges from 1.56 to 9.34 cm−1. Pyridine presented a

unique challenge to CMA-0A with four outliers at −22.61,
−6.46, 4.87, and 27.60 cm−1. Because this molecule proved to
be so abnormal, it is excluded from the statistics in Table 2 and
treated in greater detail below. When the vibrational modes
highlighted in Table 2 are treated by CMA-1A(1) (fifth
column), all absolute residuals are less than 1.2 cm−1. In other
words, the inclusion of a single off-diagonal force constant per
molecule is sufficient to make all outliers disappear! This
mathematical fact shows that CMA-0A is tantalizingly close to
being a flawless method for this limited test set. However,
finding the optimal mathematical solution without prior
knowledge of the full force constant matrix remains a
considerable challenge. There may be circumstances in which
chemical principles can effectively guide one to choose the
correct mode couplings, but the development of a generally
applicable, automated approach is clearly warranted.

An algorithm for automatically selecting off-diagonal force
constants should have a variable tolerance so that the user has

Table 2. Only Cases within the Set of 1501 Benchmark Frequencies with CMA-0A[CCSD(T)/cc-pVTZ, MP2/cc-pVTZ]
Residuals (ϵ, cm−1) Greater than 1.5 cm−1 in Magnitude, Together with the Corresponding CMA-1A and CMA-2A Results
That Target These Outliers

Molecule and mode Description Benchmark ϵ[CMA-0A] ϵ[CMA-1A(1)] ϵ[CMA-2A](n)a ηb (%)

nitrous oxide, ω3(σ) sym. stretch 1297.09 9.34 0.00 0.00 (1) 25
ketene, ω9(b2) C�C�O bend 514.86 7.12 0.00 0.00 (2) 22
ketene, ω8(b2) CH2 wag 584.48 −6.28 0.00 0.00 (2) 22
nitrous oxide, ω1(σ) antisym. stretch 2282.57 −5.33 0.00 0.00 (1) 25
benzene, ω18(b1u) ring def. 1158.88 4.90 0.00 0.00 (10) 36
benzene, ω17(b1u) ring def. 1328.17 −4.29 0.00 0.00 (10) 36
spiropentane, ω4(a1) ring breathing 1054.41 3.67 0.00 0.03 (7) 21
spiropentane, ω3(a1) sym. CH2 wag 1076.02 −3.60 0.01 0.01 (7) 21
methyl nitrite, ω12(a) N−O stretch 595.01 3.55 0.68 −0.12 (9) 60
nitromethane, ω4(a) NO2 rock 1642.57 −2.87 −1.11 0.04 (13) 87
nitromethane, ω10(a) CH3 rock 1110.76 2.71 0.12 0.12 (13) 87
n−butane, ω28(bu) CH3 stretch 3028.05 1.81 0.00 1.81 (10) 28
n−butane, ω29(bu) CH2 stretch 3023.91 −1.79 −0.03 −1.79 (10) 28
aziridine, ω1(a′) CH2 rock 783.89 1.76 1.19 1.11 (12) 67
isobutane, ω3(a1) CH stretch 3019.64 1.62 0.02 1.62 (5) 14
isobutane, ω2(a1) CH3 sym. stretch 3024.21 −1.56 0.04 −1.56 (5) 14

an = the number of off-diagonal elements included for the ξ = 0.020 cutoff. bη = number of FCMA(A) off-diagonal elements included as a percentage
of the vibrational degrees of freedom for the given molecule.

Figure 1. CMA-2A MAE of the 1501 CCSD(T)/cc-pVTZ bench-
mark frequencies plotted as a function of η, where Level C = HF and
the basis set is the same as employed in Level B.
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ultimate control over the cost and accuracy of a convergent
CMA protocol. A diagnostic can be imagined with matrix
elements that correctly predict the importance of off-diagonal
force constants of FCMA(A). A simple approach would be to
compute another set of force constants at a level of theory C in
the QB normal mode basis, such that the magnitude of
FCMA(C) off-diagonal force constants mimics the ordering of
the FCMA(A) elements. Preferably, this third Level C should
scale better than theory B, and the ideal circumstance would
not incur any additional computational cost. If B = MP2/cc-
pVXZ single-point energies are computed to target A =
CCSD(T)/cc-pVXZ frequencies using CMA, then the C =
HF/cc-pVXZ quadratic force field can indeed be obtained
without extra cost.

With this choice, the level of theory manifestly increases in
the sequence C → B → A. Because FCMA(B) is a strictly
diagonal matrix by construction, then the FCMA(C) off-
diagonal elements of greatest size directly indicate which
couplings in the molecule are most sensitive to the C → B
increase in level of theory. These are precisely the couplings
that are expected to yield significant nonzero values for the off-

diagonal elements of FCMA(A) as a consequence of the B → A
change in level of theory. In this sense, FCMA(C) can be
considered a photographic negative of FCMA(A), although this
characterization is not meant to imply that the coupling
elements in these matrices are always opposite in sign. In order
to translate this correspondence into a viable, universal
diagnostic for identifying which parts of FCMA(A) should be
explicitly computed, the FCMA(C) off-diagonal elements should
be cast into a dimensionless form that also takes into account
their size relative to the associated diagonal force constants.
For this purpose we have adopted eq 1 to define the ξij
diagnostics for our CMA-2 theory.

For the remainder of the study, when Level B is a correlated
wave function method such as CCSD or MP2 with a cc-pVXZ
basis set, then Level C is chosen as HF/cc-pVXZ so that C →
B → A forms a series of increasing electron correlation with a
fixed basis set. When B = B3LYP/6-31G(2df,p), we have
employed C = HF/6-31G(2df,p) for lack of a more transparent
choice, even though extra cost is incurred because a second set
of SCF orbitals must be optimized. The CMA-2A protocol that
incorporates all FCMA force constants corresponding to ξ >
0.020 is assessed in Table 2. Overall, 12 of the 16 outliers are
successfully eliminated by CMA-2A (|ϵ| < 1.11 cm−1). The
remaining four residuals are hardly significant, corresponding
to the (1.81, −1.79) and (1.62, −1.56) cm−1 pairs for (ω28,
ω29) and (ω3, ω2) of n-butane and isobutane, respectively. For
the (n-butane, isobutane) C−H stretching modes, the ξ cutoff
identified (10, 5) off-diagonal elements for explicit evaluation
at Level A, but the key coupling discovered in CMA-1A(1)
that eliminates these outliers escaped inclusion. The η
parameter appearing in Table 2 is equal to the number of
included off-diagonal FCMA elements as a percentage of the
molecular vibrational degrees of freedom that are present. This
metric turns out to also be very nearly the percentage increase
in computational cost in going beyond CMA-0A to CMA-2A.
Demonstrating the success of CMA-2A with a ξ = 0.020 cutoff,
8 of the outliers are eliminated with η < 37%, and in the
remaining instances η = 60−87%. Given that CMA-0A already
reduces the cost of Level A frequency computations by 700−
1000%,1 any η value less than 100% still constitutes a rather
marginal price to pay for the added certainty afforded by
CMA-2A.

Figure 2. CMA-2A MAE of the 1501 CCSD(T)/cc-pVTZ bench-
mark frequencies plotted as a function of % nonzero off-diagonal
matrix elements included in FCMA(A).

Table 3. Metrics for CMA-2A Performance of the 1501 CCSD(T)/cc-pVTZ Benchmark Frequencies as a Function of the ξ
Cutoff and the Choice of Level Ba

B = MP2/cc-pVTZ B = CCSD(T)/cc-pVDZ B = B3LYP/6-31G(2df,p)

ξ Cutoff MAE ϵ ϵmax σϵ ϵMAX η (%) MAE ϵ ϵmax σϵ ϵMAX η (%) MAE ϵ ϵmax σϵ ϵMAX η (%)

∞ 0.11 0.54 0.49 9.34 0 0.22 0.74 0.45 3.96 0 0.16 0.59 0.36 3.42 0
0.20 0.099 0.45 0.40 7.12 0.6 0.22 0.73 0.45 3.96 0.5 0.16 0.58 0.36 3.42 7.7
0.18 0.099 0.45 0.40 7.12 0.7 0.22 0.73 0.45 3.96 0.5 0.16 0.58 0.36 3.42 7.8
0.16 0.093 0.40 0.37 7.12 0.8 0.22 0.73 0.45 3.96 0.6 0.16 0.58 0.36 3.42 7.9
0.14 0.093 0.40 0.37 7.12 0.8 0.22 0.73 0.45 3.96 0.9 0.16 0.58 0.35 3.42 8.1
0.12 0.081 0.33 0.25 3.67 1.0 0.22 0.72 0.45 3.96 1.0 0.16 0.58 0.35 3.42 8.4
0.10 0.080 0.32 0.25 3.67 1.3 0.21 0.72 0.44 3.96 1.4 0.16 0.56 0.35 3.42 8.8
0.08 0.079 0.32 0.25 3.67 1.9 0.21 0.73 0.44 3.96 1.8 0.15 0.55 0.35 3.42 9.3
0.06 0.070 0.27 0.21 3.55 4.3 0.21 0.71 0.44 3.96 3.1 0.15 0.55 0.35 3.42 11
0.04 0.059 0.22 0.18 2.78 11 0.19 0.62 0.39 2.87 8.2 0.15 0.53 0.34 3.42 14
0.02 0.047 0.17 0.15 1.81 33 0.13 0.40 0.28 2.56 29 0.12 0.39 0.28 2.77 33
0.01 0.036 0.14 0.13 1.81 76 0.10 0.29 0.23 2.66 63 0.08 0.25 0.20 2.77 71

0.005 0.022 0.10 0.11 1.81 135 0.07 0.24 0.20 2.68 121 0.06 0.20 0.18 2.77 132

aSee footnotes to Tables 1 and 2 for definitions of the metrics. Level C = HF with the same basis used for Level B.
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The performance of CMA-2A for the entire data set of
CCSD(T)/cc-pVTZ benchmark frequencies is illustrated in
Figure 1, where the MAE is plotted vs η. It is abundantly clear
from the curves that MP2/cc-pVTZ (blue) is once again
superior to both CCSD(T)/cc-pVDZ (orange) and B3LYP/6-
31G(2df,p) (green); hence, B = MP2/cc-pVTZ is the method
of choice for both CMA-0A and CMA-2A. In this case an
increase in cost of only 10% is sufficient to lower the MAE to a
mere 0.06 cm−1! The corresponding blue curve has an
underlying ξ = 0.040 cutoff at η = 10%, and any further
reduction of ξ improves the MAE very little. In contrast, the B
= CCSD(T)/cc-pVDZ curve reveals a steady MAE reduction
as η ranges up to 40% and as the ξ cutoff is diminished to
0.020. While not optimal, this choice of Level B still provides
excellent final results once CMA-2A is applied. Although B =
B3LYP/6-31G(2df,p) achieves much success in CMA-0A, the
lag in further improvement via CMA-2A is somewhat
disappointing, presumably because the C → B → A series is
not systematic in this circumstance.

It is worth emphasizing that the maximum value of η in
Figure 1 still corresponds to a very small fraction of off-
diagonal elements included in FCMA. In order to reveal the
asymptotic nature of CMA-2A, the MAE over the entire data
set is plotted against the percent of included nonzero FCMA off-
diagonals in Figure 2. Of course, all the MAE curves must
decay to zero when 100% of the off-diagonals are explicitly
computed. For all intents and purposes, this asymptotic value
is reached at the 90% mark on the abscissa, regardless of the
choice of Level B. The key point of Figure 2 is that CMA-2A is
truly a convergent method, and the smooth and rapid decay of
the blue curve for B = MP2/cc-pVTZ shows how striking the
performance can be. Statistics for the overall performance of
CMA-2A on the benchmark frequencies are collected in Table
3, where MAE ϵ, σϵ, ϵmax, ϵMAX, and η are given as the ξ cutoff
ranges from 0.005 to ∞ and as Level B is varied. These data
allow the CMA-2A user to make a wise choice for ξ and Level
B in accord with the accuracy goals and computational costs of
the chemical application at hand. A salient feature of Table 3 is
that the MAE, standard deviation, and largest residual per
molecule all converge much more rapidly as the ξ cutoff is
made more stringent when B = MP2/cc-pVTZ as compared to
B = CCSD(T)/cc-pVDZ or B3LYP/6-31G(2df,p). This
observation further amplifies the conclusions from Figures 1
and 2 on the selection of Level B. Because MAE ϵ, σϵ, and ϵmax
are already much less than 1 cm−1 when no off-diagonal
elements of FCMA are accounted for (ξ cutoff = ∞), CMA-0A
will be more than sufficient in a preponderance of applications.
However, a very low probability remains that an isolated
frequency error might occur on the order of ϵMAX. Informed by
Table 3, the user can apply CMA-2A to eliminate this concern,
while still maintaining vast savings in computing the harmonic
frequencies of the molecule at higher level A. For example,
application of CMA-2A with our recommended Level B =
MP2/cc-pVTZ and a ξ cutoff of 0.02 yields truly outstanding
accuracy while only increasing the average cost by 33% over
CMA-0A. The convincing residual statistics in this case can be
spelled out as follows: mean absolute error = 0.047 cm−1,
average maximum absolute residual per molecule = 0.17 cm−1,
standard deviation of residuals = 0.15 cm−1, and global
maximum absolute residual = 1.81 cm−1.

6. SOLUTION OF THE PYRIDINE PROBLEM
The unusual behavior of pyridine in CMA applications
demands that this molecule be analyzed in greater detail as
an instructive, isolated benchmark species rather than as an
outlier that excessively skews the statistics of the G2 test set.
Pyridine is depicted in Figure 3 with atomic labeling, and
corresponding NICs for our CMA analyses are defined in
Table 4. The ring coordinates are constructed with the 6-fold
symmetry of a regular hexagon, but the CMA frequencies
would be mathematically invariant if linear combinations were
made only with the C2v symmetry of pyridine itself.

Comprehensive results for pyridine frequencies are listed in
Table 5, where residuals for all modes with respect to the
CCSD(T)/cc-pVTZ reference values are provided for seven
different treatments: CMA-0A with B = CCSD(T)/cc-pVDZ,
MP2/cc-pVTZ, B3LYP/6-31G(2df,p), CCSD/cc-pVTZ, and
MP4/cc-pVTZ, as well as CMA-2A with B = MP2/cc-pVTZ
(ξ = 0.04) and CCSD(T)/cc-pVDZ (ξ = 0.015). First we
focus on the CMA-0A outlier residuals greater than 1.5 cm−1 in
magnitude that are highlighted in boldface in Table 5. With B
= CCSD(T)/cc-pVDZ, five such residuals appear of modest
size, (ϵ8, ϵ9, ϵ16, ϵ17, ϵ25) = (−3.24, 4.61, −1.58, 2.46, 2.50)
cm−1. With B = MP2/cc-pVTZ, a clustered set of four much
larger residuals crops up, (ϵ22, ϵ23, ϵ24, ϵ25) = (−6.46, −22.61,
27.60, 4.87) cm−1, despite the fact this method is the clear
overall champion for CMA applications within the G2 test set.
One infers that both orbital basis set and electron correlation
effects are unusually important for the normal modes of
pyridine, because there is little overlap among the cases for
which these two Level B methods struggle. Quite surprisingly,
when B = B3LYP/6-31G(2df,p) all the CMA-0A residuals (|ϵ|
< 0.8 cm−1) are well below the outlier threshold, and thus this
method happens to capture both the basis set and correlation
effects present in the CCSD(T)/cc-pVTZ normal modes of
pyridine. While CMA-0A with B = CCSD/cc-pVTZ generally
performs better than with B = MP2/cc-pVTZ, the large
outliers (ϵ24, ϵ25) = (−18.15, 19.79) cm−1 still remain, the
latter of which represents a considerable deterioration. This
occurrence suggests that the triple-excitation effects described
by the (T) correlation correction are an essential component
in the physical description of the normal modes of pyridine.
While MP4 is a largely defunct method in modern computa-
tional chemistry, correlation terms within this theory inspired
the (T) ansatz.28 It is thus compelling that the two problematic
outliers for B = CCSD/cc-pVTZ are greatly diminished to (ϵ24,
ϵ25) = (−1.56, 2.00) cm−1 when B = MP4/cc-pVTZ is
invoked.

The outlier normal modes of pyridine are quantitatively
characterized by the total energy distributions (TEDs)49−51

provided in Table 6, where the classical vibrational energy of
each mode k is decomposed into the predominant percentage

Figure 3. Enumerated carbon backbone of pyridine, corresponding to
selected internal coordinates utilized for all CMA computations.
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contributions n attributable to the NICs Si. When B =
CCSD(T)/cc-pVDZ, all of the outliers with |ϵ| > 1.5 cm−1 are
removed by merely adding three off-diagonal force constants
that couple the (ω8, ω9), (ω16, ω17), and (ω24, ω25) pairs, in
accord with our earlier CMA-1A analysis of pyridine.1 Table 6
shows that these three pairs mostly involve strong remixing of
[S1(a1), S12(a1)], [S20(b1), S25(b1)], and [S2(b2), S18(b2),
S19(b2)], respectively, which Table 4 in turn identifies as the
vibrations (ring breathing, ring stellation), [chair ring pucker,
out-of-plane (C2−H8) + (C3−H9) wag], and [ring stretch
deformation, (C2−H8) − (C3−H9) in-plane rock, (C1−H7) in-
plane rock]. The cluster of 4 outliers for B = MP2/cc-pVTZ
does not exhibit simple remixing vis-a-̀vis the CCSD(T)/cc-
pVTZ target modes. Once again S2(b2), S18(b2), and S19(b2)
are culprits, but now the fray is joined by an alternative ring
stretching deformation S4(b2) and the (C4−H10) − (C5−H11)
in-plane rock S16(b2). The two large outliers for B = CCSD/cc-
pVTZ have similar origins as in the MP2 case, but the
vibrational interactions are less intricate and mostly restricted
to the [S2(b2), S18(b2), S19(b2)] set; accordingly, a single (ω24,
ω25) coupling within CMA-1A(1) eliminates these outliers.
Collectively, the TED analyses in Table 6 suggest that CMA-
0A might generally encounter difficulties with aromatic ring
vibrations that couple antisymmetric ring stretching deforma-
tions with CH in-plane rocks of the same symmetry. Indeed,
our work has also found some moderate residuals up to 5 cm−1

in size for these types of vibrations in benzene, pyrrole, and
furan.

While pyridine is an abnormal case for which CMA-0A is
not fully adequate for some isolated modes, this challenging

test molecule is totally vanquished by CMA-2A employing
either B = CCSD(T)/cc-pVDZ or B = MP2/cc-pVTZ, as
shown in Table 5. With our recommended B = MP2/cc-pVTZ
and a ξ cutoff of 0.04, only 6 off-diagonals are chosen, and the
cost increase is merely 22%. Nevertheless, the maximum
absolute residual is reduced to 1.30 cm−1, while the MAE and
standard deviation are 0.22 and 0.39 cm−1, respectively. For B
= CCSD(T)/cc-pVDZ, a ξ cutoff of 0.015 is necessary to
eliminate all outliers, resulting in 20 chosen off-diagonals and a
74% increase in cost; however, in the end the statistics
achieved for the residuals are even better than in the MP2/cc-
pVTZ case.

7. APPLICATION TO 1-(1H-PYRROL-3-YL)ETHANOL
The methodological advances achieved in this study were put
to the test for the vibrations of a large molecule containing
several challenging motifs, including a heterocyclic aromatic
ring, aromatic N−H and C−H bonds, aliphatic O−H and C−
H bonds, methyl and hydroxyl internal rotations, and torsions
of entire monomer groups about a central C−C bond
mediated by noncovalent interactions. In particular, the
CMA-0A, CMA-1A(1), and CMA-2A methods with higher
level A = CCSD(T)/cc-pVTZ and lower-level B = MP2/cc-
pVTZ were applied to the 1-(1H-pyrrol-3-yl)ethanol con-
former shown in Figure 4. This molecule lies outside the G2
test set, and very little is known about its vibrational spectrum.
Benchmark CCSD(T)/cc-pVTZ harmonic frequencies and
corresponding CMA residuals are reported in Table 7. The
NICs were constructed by starting with the full set of
customary coordinates for the individual P = pyrrole and E

Table 4. Pyridine Natural Internal Coordinates for CMA Applications

Description Unnormalized natural internal coordinatea

ring breathing S1(a1) = r(5,3) + r(3,1) + r(1,2) + r(2,4) + r(4,6) + r(6,5)
ring stretching def. S2(b2) = r(5,3) − r(3,1) + r(1,2) − r(2,4) + r(4,6) − r(6,5)
ring stretching def. S3(a1) = 2r(5,3) − r(3,1) − r(1,2) + 2r(2,4) − r(4,6) − r(6,5)
ring stretching def. S4(b2) = 2r(5,3) + r(3,1) − r(1,2) − 2r(2,4) − r(4,6) + r(6,5)
ring stretching def. S5(a1) = r(3,1) + r(1,2) − r(4,6) − r(6,5)
ring stretching def. S6(b2) = r(3,1) − r(1,2) + r(4,6) − r(6,5)
sym. CH stretch S7(a1) = r(5,11) + r(4,10)
antisym. CH stretch S8(b2) = r(5,11) − r(4,10)
sym. CH stretch S9(a1) = r(3,9) + r(2,8)
antisym. CH stretch S10(b2) = r(3,9) − r(2,8)
CH stretch S11(a1) = r(1,7)
ring stellation S12(a1) = θ(4,6,5) − θ(6,5,3) + θ(5,3,1) − θ(3,1,2) + θ(1,2,4) − θ(2,4,6)
ring rectangulation S13(a1) = 2θ(4,6,5) − θ(6,5,3) − θ(5,3,1) + 2θ(3,1,2) − θ(1,2,4) − θ(2,4,6)
ring shearing S14(b2) = θ(6,5,3) − θ(5,3,1) + θ(1,2,4) − θ(2,4,6)
sym. i.p. CH rock S15(a1) = θ(11,5,6) − θ(11,5,3) + θ(10,4,6) − θ(10,4,2)
antisym. i.p. CH rock S16(b2) = θ(11,5,6) − θ(11,5,3) − θ(10,4,6) + θ(10,4,2)
sym. i.p. CH rock S17(a1) = θ(9,3,5) − θ(9,3,1) + θ(8,2,4) − θ(8,2,1)
antisym. i.p. CH rock S18(b2) = θ(9,3,5) − θ(9,3,1) − θ(8,2,4) + θ(8,2,1)
i.p. CH rock S19(b2) = θ(7,1,2) − θ(7,1,3)
chair ring pucker S20(b1) = τ(6,5,3,1) + τ(3,1,2,4) − τ(5,3,1,2) − τ(1,2,4,6) + τ(2,4,6,5) − τ(4,6,5,3)
boat ring pucker S21(b1) = τ(3,1,2,4) − τ(5,3,1,2) − τ(2,4,6,5) + τ(4,6,5,3)
ring twist S22(a2) = 2τ(6,5,3,1) − τ(5,3,1,2) − τ(3,1,2,4) + 2τ(1,2,4,6) − τ(2,4,6,5) − τ(4,6,5,3)
sym. o.o.p. CH wag S23(b1) = γ(11,5,3,6) + γ(10,4,6,2)
antisym. o.o.p. CH wag S24(a2) = γ(11,5,3,6) − γ(10,4,6,2)
sym. o.o.p. CH wag S25(b1) = γ(9,3,1,5) + γ(8,2,4,1)
antisym. o.o.p. CH wag S26(a2) = γ(9,3,1,5) − γ(8,2,4,1)
o.o.p. CH wag S27(b1) = γ(7,1,2,3)

ar(i,j) = i−j bond distance; θ(i,j,k) = i−j−k bond angle; τ(i,j,k,l) = dihedral angle between i−j−k and j−k−l plane; γ(i,j,k,l) = signed angle of i−j
bond out of the k−j−l plane.
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= ethanol monomers. Conceptually, the hydrogens on C5 and
C6 were then removed while keeping the bond vectors fixed,
whence the entire molecule was assembled by adding the C5−
C6 distance and the intermonomer torsion angles about this
linkage. The resulting 45 NICs for 1-(1H-pyrrol-3-yl)ethanol
are provided in Table 8, and the Cartesian coordinates of all
atoms are given in the Supporting Information.

For all but two frequencies, the performance of CMA-0A is
excellent, achieving a MAE and maximum absolute residual
(ϵmax) of only 0.24 and 1.61 cm−1, respectively, for 43 of the 45
normal modes. The two prominent outliers (ϵ37, ϵ39) = (10.9,
−13.1) cm−1 arise from (ω37, ω39) = (480.6, 443.0) cm−1,
whose largest TED components occur for the (C7−C6−O8
bend, N−H out-of-plane wag) coordinates. If CMA-1A(1) is

applied with a single (ω37, ω39) coupling, then the (ϵ37, ϵ39)
residuals are dramatically reduced to (0.04, 1.56) cm−1. What
is remarkable about this solution is that the largest contributors
for the two modes occur on different monomers, so that the
coupling occurs at long-range across the C5−C6 linkage. A
likely explanation is that the coupling involves noncovalent
interactions of the aromatic π cloud with the polar O−H
group. In any event, the system clearly provides a rigorous test
for CMA methods. When CMA-2A is invoked with ξ = 0.04 (η
= 27%, n = 12 couplings), the automatic selection process
indeed picks up the (ω37, ω39) coupling, so that the MAE
becomes a mere 0.22 cm−1 for the entire system of 45
vibrations. The residuals of largest size for CMA-2A(ξ = 0.04)
are (ϵ11, ϵ39) = (−1.56, 1.56) cm−1, which barely qualify as

Table 5. CMA-0A and CMA-2A Residuals (ϵ, cm−1) for CCSD(T)/cc-pVTZ Harmonic Frequencies (ωref, cm−1) of Pyridine
Obtained with Various Level B Methods

Mode Description ωref

ϵ[CMA-0A] ϵ[CMA-2A]

B = CCSD(T)/
cc-pVDZ

B = MP2/
cc-pVTZ

B = B3LYP/
6-31G(2df,p)

B = CCSD/
cc-pVTZ

B = MP4/
cc-pVTZ

B = CCSD(T)/
cc-pVDZa

B = MP2/
cc-pVTZb

ω1(a1) sym. CH
str.

3212.85 −0.01 −0.05 −0.03 0.00 0.00 −0.01 −0.06

ω2(a1) asym. CH
str.

3187.57 −0.01 0.01 −0.08 −0.01 0.00 0.03 0.06

ω3(a1) asym. CH
str.

3169.83 0.01 0.05 0.08 0.01 0.01 −0.03 0.02

ω4(a1) ring str. def. 1630.29 −0.47 −0.21 −0.02 −0.01 −0.06 −0.01 −0.18
ω5(a1) sym. CH

rock
1510.12 −0.48 0.10 −0.05 0.01 0.04 −0.15 0.10

ω6(a1) asym. CH
rock

1236.72 0.50 0.08 0.03 0.00 0.02 −0.02 0.08

ω7(a1) sym. CH
rock

1087.86 −0.37 −0.07 0.00 0.00 −0.06 −0.89 −0.07

ω8(a1) ring
stellation

1043.14 −3.24 0.00 −0.16 0.00 −0.02 1.06 0.00

ω9(a1) ring
breathing

1001.24 4.61 0.16 0.30 0.01 0.10 0.14 0.17

ω10(a1) ring
rectangle

603.31 0.10 0.02 0.08 0.01 0.01 0.03 0.02

ω11(a2) asym. CH
wag

995.11 −0.01 −0.51 −0.04 −0.01 −0.11 −0.01 −0.50

ω12(a2) asym. CH
wag

890.79 0.00 0.56 0.02 0.01 0.12 0.00 0.56

ω13(a2) ring twist 378.44 0.01 0.01 0.06 0.01 0.02 0.01 0.01
ω14(b1) asym. CH

wag
996.87 −0.69 −0.41 −0.11 −0.06 −0.06 −0.15 −0.16

ω15(b1) sym. CH
wag

953.64 0.02 0.12 −0.02 0.01 0.03 0.12 0.12

ω16(b1) ring chair 753.17 −1.58 0.02 0.03 −0.02 −0.14 0.00 −0.30
ω17(b1) sym. CH

wag
711.89 2.46 0.36 0.12 0.08 0.19 0.03 0.36

ω18(b1) ring boat 409.22 0.21 0.01 0.03 0.00 0.00 0.03 0.01
ω19(b2) asym. CH

str.
3204.49 −0.01 −0.03 −0.02 0.00 −0.01 0.00 −0.02

ω20(b2) asym. CH
str.

3168.42 0.00 0.03 −0.04 0.00 0.01 −0.01 0.00

ω21(b2) ring str. def. 1618.43 −0.50 −0.46 −0.01 −0.04 −0.03 −0.25 −0.48
ω22(b2) ring str. def. 1464.66 −1.02 −6.46 −0.10 −0.17 −0.18 0.17 0.06
ω23(b2) sym. CH

wag
1379.21 −1.34 −22.61 −0.12 −0.04 −0.06 0.04 0.29

ω24(b2) ring str. def. 1266.95 0.38 27.60 −0.37 −18.15 −1.56 −0.01 −1.05
ω25(b2) asym. CH

wag
1158.82 2.50 4.87 0.75 19.79 2.00 0.02 1.30

ω26(b2) ring str. def. 1071.35 0.65 0.07 0.07 0.05 0.02 0.09 0.07
ω27(b2) ring

shearing
656.98 0.11 0.01 0.02 0.01 0.00 0.03 0.01

aξ cutoff = 0.015, η = 74%, and n = 20 off-diagonals included. bξ cutoff = 0.04, η = 22%, and n = 6 off-diagonals included.
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outliers by our adopted CMA-2A threshold of 1.5 cm−1. While
this level of performance is impressive, the application of
CMA-2A with ξ = 0.02 (η = 140%, n = 63 couplings) removes
any hint of an outlier. Specifically, the (MAE, ϵmax) metrics for
this final run are (0.15, 1.2) cm−1.

All computations for 1-(1H-pyrrol-3-yl)ethanol were
performed using 6 cores with 60 GB of memory on an Intel
Xeon Gold 6130 processor in conjunction with a Luster file
system. The CMA-0A, CMA-2A(ξ = 0.04), and CMA-2A(ξ =
0.02) results required a mere 4.3%, 5.6%, and 10.5%,
respectively, of the CPU time for the complete CCSD(T)/
cc-pVTZ harmonic frequency computation. In summary,
CMA-2A gives a commanding performance for this test
molecule. CMA-2A(ξ = 0.04) cuts the CPU time by a factor of
18 while evaluating all frequencies to better than 1.6 cm−1,
whereas CMA-2A(ξ = 0.02) provides additional assurance

against outliers yet still cuts the original cost by almost a factor
of 10.

8. SUMMARY
The Concordant Mode Approach (CMA) is a general protocol
by which harmonic vibrational frequencies at a higher level
theory A can be computed using a normal mode basis
generated by a lower-level theory B, with cost reductions
approaching an order of magnitude for larger molecules. Our
introductory study1 on the G2 test set showed that CMA-0A
can produce vibrational frequencies with at least a 99%
probability of being accurate to within 1.5 cm−1 but with a
0.2−0.4% chance of outliers greater than 2.5 cm−1. The current
research has focused on creating new CMA methods that
rapidly and systematically converge to the exact Level A
frequencies while also eliminating outliers. Overall, MP2/cc-
pVTZ is found to be the best Level B when targeting
CCSD(T)/cc-pVTZ frequencies. Our results show the
importance of going beyond HF to incorporate electron
correlation at Level B, but matching the quality of the Level A
orbital basis set becomes paramount thereafter. Another key
conclusion for Level B is that density-fitted (df) MP2 performs
just as well as conventional MP2; hence, the reduced scaling of
df-MP2 provides a wealth of opportunities for CMA
applications on large molecules. The CMA-2A procedure
developed here is demonstrated to be a robust, convergent
method (Figure 2) that selects which off-diagonal force field
elements to explicitly evaluate at Level A based on
dimensionless ξ parameters that can be evaluated at a Level
C with essentially no additional computational cost. Our
current recommendation for CMA-2A applied to CCSD(T)/
cc-pVXZ frequencies is to choose B = MP2/cc-pVXZ (or its
df-MP2 variant) and C = HF/cc-pVXZ with ξ in the 0.02−
0.04 range depending on the required certainty of the results.
With ξ = 0.02 the CMA-2A residuals exhibit extremely small
(MAE, σϵ, ϵmax) statistics of (0.05, 0.15, 0.17) cm−1, and the
maximum absolute discrepancy (ϵMAX) over the entire
database is only 1.8 cm−1, all achieved with only a 33%
increase (η) in average cost over CMA-0A. Moreover, the
troublesome pyridine and challenging 1-(1H-pyrrol-3-yl)-
ethanol vibrational problems can be fully solved by CMA-2A
with the less stringent threshold ξ = 0.04, resulting in (ϵMAX, η)
= (1.3 cm−1, 22%) and (1.6 cm−1, 27%) for these two
molecules, respectively. The hierarchy CMA-N is now in place
for N = 0, 1, 2, and the thoroughgoing success of these
methods promises continuing improvements in cost and
accuracy, applications to ever-larger molecules, and diversifi-
cation into intermolecular vibrations. Other advances are also
readily envisioned for which CMA-N can provide an ideal
solution, such as the inclusion of core electron correlation and
complete basis set (CBS) extrapolation in the determination of
vibrational frequencies for larger molecules.
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CMA-2A (RMSD, ϵmax) versus (η, percent off-diagonals
in FCMA) plots. Cartesian coordinates for the CCSD(T)/
cc-pVTZ structure of 1-(1H-pyrrol-3-yl)ethanol and all
molecules of the G2 test set. 1501 pure, CMA-0A, and
CMA-2A frequencies at ξ = 0.02 with A = CCSD(T)/

Table 6. Total Energy Distributions (TEDs) for the Outlier
Modes of Pyridine at Various Levels of Theory

Mode Frequency (cm−1) TEDa

CCSD(T)/cc-pVTZ
ω8(a1) 1043.14 S12(51) + S1(33) + S5(13)
ω9(a1) 1001.24 S1(65) − S12(32)
ω16(b1) 753.17 S20(68) − S25(15) − S27(13)
ω17(b1) 711.89 S20(53) + S25(27) + S27(10) + S23(9)
ω22(b2) 1464.66 S4(32) − S18(25) + S19(20) + S16(15)
ω23(b2) 1379.21 S16(67) + S18(18) − S19(13)
ω24(b2) 1266.95 S2(78) + S6(8) − S19(8) − S18(7)
ω25(b2) 1158.82 S18(36) + S19(35) + S2(20) − S6(8)

CMA-0A[CCSD(T)/cc-pVTZ, CCSD(T)/cc-pVDZ]
ω8(a1) 1039.90 S1(64) + S12(30)
ω9(a1) 1005.85 S12(61) − S1(34)
ω16(b1) 751.59 S20(46) − S25(24) − S27(20) − S23(11)
ω17(b1) 714.35 S20(75) + S25(20)
ω25(b2) 1161.32 S18(41) + S19(40) + S2(9) − S6(8)

CMA-0A[CCSD(T)/cc-pVTZ, MP2/cc-pVTZ]
ω22(b2) 1458.20 S4(29) − S18(23) + S19(17) + S16(17)
ω23(b2) 1356.60 S16(56) + S18(17) − S2(15) − S6(6)
ω24(b2) 1294.55 S2(70) − S19(13) + S16(9)
ω25(b2) 1163.69 S18(42) + S19(41) − S6(10) + S2(6)

CMA-0A[CCSD(T)/cc-pVTZ, CCSD/cc-pVTZ]
ω24(b2) 1248.80 S2(38) − S18(26) − S19(25) + S6(12)
ω25(b2) 1178.61 S2(61) + S19(18) + S18(18)
aFor each normal mode k, the percentage n of the vibrational energy
attributable to internal coordinate i is listed as Si(n), as calculated
from eq 32 of ref 49. The signs preceding these entries denote the
relative phases in the normal-mode eigenvectors.

Figure 4. Enumerated atomic structure of 1-(1H-pyrrol-3-yl)ethanol,
corresponding to selected internal coordinates utilized for all CMA
computations.
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cc-pVTZ, B = [MP2/cc-pVTZ, CCSD(T)/cc-pVDZ,
B3LYP/6-31G(2df,p)], and C = [HF/cc-pVTZ, HF/cc-
pVDZ, HF/6-31G(2df,p)] (PDF)
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Table 7. CMA-(0-2)A Residuals (ϵ, cm−1) for CCSD(T)/cc-pVTZ Harmonic Frequencies (ωref, cm−1) of 1-(1H-Pyrrol-3-
yl)ethanol Obtained with B = MP2/cc-pVTZ

ωref ϵ[CMA-0A] ϵ[CMA-1A(1)] ϵ[CMA-2A] ϵ[CMA-2A]

Monomera CCSD(T)/cc-pVTZ B = MP2/cc-pVTZ B = MP2/cc-pVTZ B = MP2/cc-pVTZb B = MP2/cc-pVTZc

ω1 O−H stretch E 3808.93 0.00 0.00 0.00 0.00
ω2 N−H stretch P 3696.76 0.00 0.00 0.00 0.00
ω3 C1−H9 stretch P 3276.98 0.03 0.03 0.03 0.03
ω4 C−H sym. stretch P 3271.79 −0.01 −0.01 −0.01 −0.01
ω5 C−H antisym. stretch P 3248.80 0.04 0.04 0.04 0.04
ω6 CH3 antisym. stretch E 3124.60 −0.04 −0.04 −0.04 −0.04
ω7 CH3 sym. stretch E 3108.32 −0.07 −0.07 −0.07 −0.07
ω8 C6−H15 stretch E 3047.93 −0.00 0.00 0.00 0.00
ω9 CH3 sym. stretch E 3031.56 0.05 0.05 0.05 0.05
ω10 ring stretching def. P 1604.19 −0.70 −0.70 −0.25 −0.15
ω11 ring stretching def. P 1521.94 −1.61 −1.61 −1.56 −0.11
ω12 CH3 def. E 1498.72 −0.10 −0.10 −0.10 −0.10
ω13 CH3 scissor E 1495.56 −0.09 −0.09 −0.09 −0.09
ω14 ring stretching def. P 1475.70 0.61 0.61 0.76 −0.09
ω15 H15−C6−C5 wag E 1429.80 −0.23 −0.23 −0.00 −0.02
ω16 ring stretching def. P 1408.44 0.04 0.04 0.22 0.33
ω17 CH3 umbrella E 1401.83 0.01 0.01 0.01 0.01
ω18 H15−C6−C5 rock E 1365.39 0.33 0.33 0.33 0.34
ω19 C−O−H bend E 1306.54 −0.29 −0.29 −0.29 −0.27
ω20 C1−H9 rock P 1276.10 0.55 0.55 0.32 0.40
ω21 sym. C−H rock P 1251.64 0.17 0.17 0.17 0.09
ω22 N−H rock P 1156.61 0.72 0.72 0.15 0.02
ω23 C−O stretch E 1125.73 −0.01 −0.01 −0.30 −0.36
ω24 ring breathing P 1108.99 −0.10 −0.10 −0.10 −0.10
ω25 antisym. C−H rock P 1088.87 0.67 0.67 0.37 0.54
ω26 CH3 rock E 1067.33 0.48 0.47 0.48 0.23
ω27 CH3 wag E 1034.92 0.14 0.14 0.14 0.13
ω28 ring shearing P 958.88 0.06 0.06 0.06 0.06
ω29 ring bending P 898.10 −0.01 −0.01 −0.01 −0.01
ω30 C6−C7 stretch E 892.03 0.11 0.11 0.11 0.10
ω31 antisym. C−H wag P 830.69 −0.47 −0.47 −0.21 −0.12
ω32 sym. C−H wag P 789.78 −0.07 −0.07 −0.07 0.10
ω33 C5−C6 E wag P ∩ E 701.34 −0.42 −0.42 −0.42 −0.03
ω34 antisym. C−H wag P 696.28 0.52 0.52 0.29 −0.08
ω35 ring puckering P 635.44 0.20 0.20 0.12 0.06
ω36 ring twisting P 614.14 0.10 0.10 0.10 0.07
ω37 C7−C6−O8 bend E 480.63 −10.90 0.04 0.04 −0.02
ω38 C5−C6 E rock P ∩ E 457.57 −1.05 −1.05 −1.05 −1.05
ω39 N−H wag P 442.97 13.10 1.56 1.56 1.20
ω40 C5−C6 stretch P ∩ E 357.34 0.06 0.06 0.06 0.05
ω41 O−H torsion E 320.88 0.04 0.04 0.04 0.04
ω42 CH3 torsion E 261.50 0.02 0.02 0.02 0.02
ω43 C6−C5 P rock P ∩ E 196.99 0.02 0.02 0.02 0.01
ω44 C6−C5 P wag P ∩ E 172.27 0.04 0.04 0.04 0.02
ω45 P−E torsion P ∩ E 47.91 0.03 0.03 0.03 0.02
a(P, E) = (pyrrole, ethanol). bξ cutoff = 0.04, η = 26.7%, and n = 12 off-diagonals included. cξ cutoff = 0.02, η = 140.0%, and n = 63 off-diagonals
included.
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Table 8. 1-(1H-Pyrrol-3-yl)ethanol Natural Internal Coordinates

Description Monomera Unnormalized natural internal coordinateb

ring breathing P S1 = r(5,4) + r(1,5) + r(4,3) + r(2,1) + r(2,3)
ring stretching def. P S2 = r(5,4) + B r(1,5) + B r(4,3) + A r(2,1) + A r(2,3)
ring stretching def. P S3 = D r(1,5) − D r(4,3) + C r(2,1) − C r(2,3)
ring stretching def. P S4 = r(5,4) + A r(1,5) + A r(4,3) + B r(2,1) + B r(2,3)
ring stretching def. P S5 = C r(1,5) − C r(4,3) − D r(2,1) + D r(2,3)
C−C stretch P ∩ E S6 = r(5,6)
C−C stretch E S7 = r(6,7)
C−O stretch E S8 = r(6,8)
C−H stretch P S9 = r(1,9)
N−H stretch P S10 = r(2,10)
C−H stretch P S11 = r(3,11)
C−H stretch P S12 = r(4,12)
C−H stretch E S13 = r(6,15)
O−H stretch E S14 = r(8,17)
CH3 sym. stretch E S15 = r(7,13) + r(7,14) + r(7,16)
CH3 sym. stretch E S16 = 2r(7,13) − r(7,14) − r(7,16)
CH3 antisym. stretch E S17 = r(7,14) − r(7,16)
ring bending P S18 = θ(1,2,3) + A θ(2,1,5) + A θ(2,3,4) + B θ(1,5,4) + B θ(3,4,5)
ring shearing P S19 = (A − B) θ(2,1,5) − (A − B) θ(2,3,4) + (1 − A) θ(1,5,4) − (1 − A) θ(3,4,5)
C6−C5 P rock P ∩ E S20 = θ(6,5,4) − θ(6,5,1)
C7−C6−O bend E S21 = θ(8,6,7)
C5−C6 E wag P ∩ E S22 = θ(5,6,7) + θ(5,6,8)
C5−C6 E rock P ∩ E S23 = θ(5,6,7) − θ(5,6,8)
C−H rock P S24 = θ(9,1,2) − θ(9,1,5)
N−H rock P S25 = θ(10,2,3) − θ(10,2,1)
C−H rock P S26 = θ(11,3,4) − θ(11,3,2)
C−H rock P S27 = θ(12,4,5) − θ(12,4,3)
C−O−H bend E S28 = θ(17,8,6)
H−C−C rock E S29 = θ(15,6,7) + θ(15,6,8)
H−C−C wag E S30 = θ(15,6,7) − θ(15,6,8)
CH3 umbrella E S31 = θ(13,7,6) + θ(14,7,6) + θ(16,7,6) − θ(14,7,16) − θ(13,7,14) − θ(13,7,16)
CH3 rock E S32 = 2θ(13,7,6) − θ(14,7,6) − θ(16,7,6)
CH3 wag E S33 = θ(14,7,6) − θ(16,7,6)
CH3 scissor E S34 = 2θ(14,7,16) − θ(13,7,14) − θ(13,7,16)
CH3 def. E S35 = θ(13,7,14) − θ(13,7,16)
ring twisting P S36 = τ(1,5,4,3) + B τ(4,3,2,1) + B τ(3,2,1,5) + A τ(5,4,3,2) + A τ(2,1,5,4)
ring puckering P S37 = (1−A) τ(4,3,2,1) − (1−A) τ(3,2,1,5) − (B−A) τ(5,4,3,2) + (B−A) τ(2,1,5,4)
CH3 torsion E S38 = τ(13,7,6,8) + τ(14,7,6,8) + τ(16,7,6,8)
O−H torsion E S39 = τ(17,8,6,7)
P−E torsion P ∩ E S40 = τ(1,5,6,7) + τ(1,5,6,8) + τ(4,5,6,7) + τ(4,5,6,8)
C6−C5 P wag P ∩ E S41 = γ(6,5,1,4)
C−H wag P S42 = γ(9,1,2,5)
N−H wag P S43 = γ(10,2,3,1)
C−H wag P S44 = γ(11,3,4,2)
C−H wag P S45 = γ(12,4,5,3)

a(P, E) = (pyrrole, ethanol). b(A, B, C, D) =
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ( ) ( ) ( ) ( )cos , cos , sin , sin4
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5
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.
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