Skip to main content
. 2024 Dec 13;20(24):10886–10898. doi: 10.1021/acs.jctc.4c01240

Table 8. 1-(1H-Pyrrol-3-yl)ethanol Natural Internal Coordinates.

Description Monomera Unnormalized natural internal coordinateb
ring breathing P S1 = r(5,4) + r(1,5) + r(4,3) + r(2,1) + r(2,3)
ring stretching def. P S2 = r(5,4) + B r(1,5) + B r(4,3) + A r(2,1) + A r(2,3)
ring stretching def. P S3 = D r(1,5) – D r(4,3) + C r(2,1) – C r(2,3)
ring stretching def. P S4 = r(5,4) + A r(1,5) + A r(4,3) + B r(2,1) + B r(2,3)
ring stretching def. P S5 = C r(1,5) – C r(4,3) – D r(2,1) + D r(2,3)
C–C stretch P ∩ E S6 = r(5,6)
C–C stretch E S7 = r(6,7)
C–O stretch E S8 = r(6,8)
C–H stretch P S9 = r(1,9)
N–H stretch P S10 = r(2,10)
C–H stretch P S11 = r(3,11)
C–H stretch P S12 = r(4,12)
C–H stretch E S13 = r(6,15)
O–H stretch E S14 = r(8,17)
CH3 sym. stretch E S15 = r(7,13) + r(7,14) + r(7,16)
CH3 sym. stretch E S16 = 2r(7,13) – r(7,14) – r(7,16)
CH3 antisym. stretch E S17 = r(7,14) – r(7,16)
ring bending P S18 = θ(1,2,3) + A θ(2,1,5) + A θ(2,3,4) + B θ(1,5,4) + B θ(3,4,5)
ring shearing P S19 = (A – B) θ(2,1,5) – (A – B) θ(2,3,4) + (1 – A) θ(1,5,4) – (1 – A) θ(3,4,5)
C6–C5 P rock P ∩ E S20 = θ(6,5,4) – θ(6,5,1)
C7–C6–O bend E S21 = θ(8,6,7)
C5–C6 E wag P ∩ E S22 = θ(5,6,7) + θ(5,6,8)
C5–C6 E rock P ∩ E S23 = θ(5,6,7) – θ(5,6,8)
C–H rock P S24 = θ(9,1,2) – θ(9,1,5)
N–H rock P S25 = θ(10,2,3) – θ(10,2,1)
C–H rock P S26 = θ(11,3,4) – θ(11,3,2)
C–H rock P S27 = θ(12,4,5) – θ(12,4,3)
C–O–H bend E S28 = θ(17,8,6)
H–C–C rock E S29 = θ(15,6,7) + θ(15,6,8)
H–C–C wag E S30 = θ(15,6,7) – θ(15,6,8)
CH3 umbrella E S31 = θ(13,7,6) + θ(14,7,6) + θ(16,7,6) – θ(14,7,16) – θ(13,7,14) – θ(13,7,16)
CH3 rock E S32 = 2θ(13,7,6) – θ(14,7,6) – θ(16,7,6)
CH3 wag E S33 = θ(14,7,6) – θ(16,7,6)
CH3 scissor E S34 = 2θ(14,7,16) – θ(13,7,14) – θ(13,7,16)
CH3 def. E S35 = θ(13,7,14) – θ(13,7,16)
ring twisting P S36 = τ(1,5,4,3) + B τ(4,3,2,1) + B τ(3,2,1,5) + A τ(5,4,3,2) + A τ(2,1,5,4)
ring puckering P S37 = (1–A) τ(4,3,2,1) – (1–A) τ(3,2,1,5) – (B–A) τ(5,4,3,2) + (B–A) τ(2,1,5,4)
CH3 torsion E S38 = τ(13,7,6,8) + τ(14,7,6,8) + τ(16,7,6,8)
O–H torsion E S39 = τ(17,8,6,7)
P–E torsion P ∩ E S40 = τ(1,5,6,7) + τ(1,5,6,8) + τ(4,5,6,7) + τ(4,5,6,8)
C6C5 P wag P ∩ E S41 = γ(6,5,1,4)
C–H wag P S42 = γ(9,1,2,5)
N–H wag P S43 = γ(10,2,3,1)
C–H wag P S44 = γ(11,3,4,2)
C–H wag P S45 = γ(12,4,5,3)
a

(P, E) = (pyrrole, ethanol).

b

(A, B, C, D) = Inline graphic.