Table 8. 1-(1H-Pyrrol-3-yl)ethanol Natural Internal Coordinates.
Description | Monomera | Unnormalized natural internal coordinateb |
---|---|---|
ring breathing | P | S1 = r(5,4) + r(1,5) + r(4,3) + r(2,1) + r(2,3) |
ring stretching def. | P | S2 = r(5,4) + B r(1,5) + B r(4,3) + A r(2,1) + A r(2,3) |
ring stretching def. | P | S3 = D r(1,5) – D r(4,3) + C r(2,1) – C r(2,3) |
ring stretching def. | P | S4 = r(5,4) + A r(1,5) + A r(4,3) + B r(2,1) + B r(2,3) |
ring stretching def. | P | S5 = C r(1,5) – C r(4,3) – D r(2,1) + D r(2,3) |
C–C stretch | P ∩ E | S6 = r(5,6) |
C–C stretch | E | S7 = r(6,7) |
C–O stretch | E | S8 = r(6,8) |
C–H stretch | P | S9 = r(1,9) |
N–H stretch | P | S10 = r(2,10) |
C–H stretch | P | S11 = r(3,11) |
C–H stretch | P | S12 = r(4,12) |
C–H stretch | E | S13 = r(6,15) |
O–H stretch | E | S14 = r(8,17) |
CH3 sym. stretch | E | S15 = r(7,13) + r(7,14) + r(7,16) |
CH3 sym. stretch | E | S16 = 2r(7,13) – r(7,14) – r(7,16) |
CH3 antisym. stretch | E | S17 = r(7,14) – r(7,16) |
ring bending | P | S18 = θ(1,2,3) + A θ(2,1,5) + A θ(2,3,4) + B θ(1,5,4) + B θ(3,4,5) |
ring shearing | P | S19 = (A – B) θ(2,1,5) – (A – B) θ(2,3,4) + (1 – A) θ(1,5,4) – (1 – A) θ(3,4,5) |
C6–C5 P rock | P ∩ E | S20 = θ(6,5,4) – θ(6,5,1) |
C7–C6–O bend | E | S21 = θ(8,6,7) |
C5–C6 E wag | P ∩ E | S22 = θ(5,6,7) + θ(5,6,8) |
C5–C6 E rock | P ∩ E | S23 = θ(5,6,7) – θ(5,6,8) |
C–H rock | P | S24 = θ(9,1,2) – θ(9,1,5) |
N–H rock | P | S25 = θ(10,2,3) – θ(10,2,1) |
C–H rock | P | S26 = θ(11,3,4) – θ(11,3,2) |
C–H rock | P | S27 = θ(12,4,5) – θ(12,4,3) |
C–O–H bend | E | S28 = θ(17,8,6) |
H–C–C rock | E | S29 = θ(15,6,7) + θ(15,6,8) |
H–C–C wag | E | S30 = θ(15,6,7) – θ(15,6,8) |
CH3 umbrella | E | S31 = θ(13,7,6) + θ(14,7,6) + θ(16,7,6) – θ(14,7,16) – θ(13,7,14) – θ(13,7,16) |
CH3 rock | E | S32 = 2θ(13,7,6) – θ(14,7,6) – θ(16,7,6) |
CH3 wag | E | S33 = θ(14,7,6) – θ(16,7,6) |
CH3 scissor | E | S34 = 2θ(14,7,16) – θ(13,7,14) – θ(13,7,16) |
CH3 def. | E | S35 = θ(13,7,14) – θ(13,7,16) |
ring twisting | P | S36 = τ(1,5,4,3) + B τ(4,3,2,1) + B τ(3,2,1,5) + A τ(5,4,3,2) + A τ(2,1,5,4) |
ring puckering | P | S37 = (1–A) τ(4,3,2,1) – (1–A) τ(3,2,1,5) – (B–A) τ(5,4,3,2) + (B–A) τ(2,1,5,4) |
CH3 torsion | E | S38 = τ(13,7,6,8) + τ(14,7,6,8) + τ(16,7,6,8) |
O–H torsion | E | S39 = τ(17,8,6,7) |
P–E torsion | P ∩ E | S40 = τ(1,5,6,7) + τ(1,5,6,8) + τ(4,5,6,7) + τ(4,5,6,8) |
C6–C5 P wag | P ∩ E | S41 = γ(6,5,1,4) |
C–H wag | P | S42 = γ(9,1,2,5) |
N–H wag | P | S43 = γ(10,2,3,1) |
C–H wag | P | S44 = γ(11,3,4,2) |
C–H wag | P | S45 = γ(12,4,5,3) |
(P, E) = (pyrrole, ethanol).
(A, B, C, D) = .