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Abstract: This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in
calculating the population (N) during iterations of the SWO algorithm. By innovating the population
iteration formula and integrating the advantages of Differential Evolution and the Crayfish Opti-
mization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates
convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are
dynamically updated to balance the exploration and exploitation phases. In each generation, ISWO
optimizes individual positions using Lévy flights, DE’s mutation, and crossover operations, and
COA’s adaptive update mechanisms. The OBL strategy is applied every 10 generations to enhance
population diversity. As the iterations progress, the population size gradually decreases, ultimately
yielding the optimal solution and recording the convergence process. The algorithm’s performance
is tested using the 2017 test set, modeling a mountainous environment with a Gaussian function
model. Under constraint conditions, the objective function is updated to establish a mathematical
model for UAV flight. The minimal cost for obstacle-avoiding flight within the specified airspace is
obtained using the fitness function, and the flight path is smoothed through cubic spline interpolation.
Overall, ISWO generates high-quality, smooth paths with fewer iterations, overcoming premature
convergence and the insufficient local search capabilities of traditional genetic algorithms, adapting
to complex terrains, and providing an efficient and reliable solution.

Keywords: unmanned aircraft; path planning; Spider Wasp Optimizer (SWO); Improved Spider
Wasp Optimizer (ISWO); terrain mapping; mathematical model; optimal path

1. Introduction

Amid the relentless advancement of technology and the escalating demands of human
production and daily life, small unmanned aerial vehicles (UAVs) have garnered significant
attention due to their myriad advantages—such as flexible configurations, compact dimen-
sions, and robust adaptability. Currently, they are extensively employed in reconnaissance
and surveillance [1], urban logistics [2], power grid inspections [3], firefighting and rescue
operations [4], and urban patrolling [5], among numerous other domains. These attributes
empower UAVs not only to effectively assist humans but even to entirely supplant human
involvement in various scenarios, including tracking, exploration, transportation, and
military missions [6]. In UAV technology, path planning serves as the cornerstone for
achieving UAV autonomy. It furnishes the essential technical support to ensure that UAVs
can navigate safely and efficiently from the starting point to the destination. Figure 1 below
illustrates the simplified process of UAV flight path planning. The pink areas represent
obstacles. The UAV must navigate from the starting point to the endpoint while avoiding
these pink obstacles.
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Figure 1. Simplified diagram of UAV path planning. 

In recent years, research on path planning has been broadly categorized into three 
types based on solution strategies. The first category comprises population-based algo-
rithms, such as the, newly introduced in 2024, Hippopotamus Optimization Algorithm 
(HO) [7] and Black-winged Kite Algorithm (BKA) [8], as well as recent developments like 
the Dung Beetle Optimizer (DBO) [9], Lemurs Optimizer (LO) [10], Crayfish Optimization 
Algorithm (COA) [11], and earlier methods like Particle Swarm Optimization (PSO) [12]. 

The second category involves physics-based algorithms, such as the Kepler Optimi-
zation Algorithm (KOA) [13], Light Spectrum Optimizer (LSO) [14], and the Sine Cosine 
Algorithm (SCA) [15]. There are also human-inspired metaheuristic algorithms, including 
the Gold Rush Optimizer (GRO) [16] and the Catch Fish Optimization Algorithm (CFOA) 
[17]. Based on the simulation experiments of path planning described below, it was dis-
covered that the CFOA algorithm, newly proposed this year, exhibits inefficiency in engi-
neering applications. Additionally, it demonstrates low stability and reliability on the 
CEC2017 [18] test suite. The HO and BKA algorithms, when tested on benchmark func-
tions, display higher maximum, average, and minimum values across multiple test func-
tions, indicating a propensity to become trapped in local optima and a lack of global 
search capability. The COA algorithm lacks robust global exploration ability and is par-
ticularly prone to local optima during the later stages of optimization. The DBO algorithm 
may suffer from insufficient search efficiency in high-dimensional and complex problems, 
leading to slower convergence rates. The LO algorithm requires improvements in search 
efficiency when applied to complex three-dimensional UAV path planning. The PSO al-
gorithm tends to converge prematurely during the early stages of the search, potentially 
missing the global optimal solution. The SCA algorithm exhibits periodicity in its search 
process, making it susceptible to the influence of local optima and reducing its ability to 
dynamically adapt during the search. The GRO algorithm may prematurely converge to 
local optima when individual behaviors become overly homogeneous, thus limiting 
global exploration. This paper introduces a new nature-inspired metaheuristic algorithm, 
the Spider Wasp Optimizer (SWO) [19], which incorporates multiple unique update strat-
egies and is applicable to various optimization problems with differing exploration and 
exploitation requirements. The effectiveness of SWO was evaluated using several mathe-
matical benchmarks and real-world optimization problems. Although SWO offers ad-
vantages in UAV path planning, such as efficient global search capabilities and strong 
convergence performance, it simulates relatively complex biological behaviors, resulting 
in high computational complexity. When addressing high-dimensional path planning 
problems, it may consume substantial computational resources, which is disadvantageous 
for resource-constrained embedded UAV systems. Therefore, during the iterative process, 
an Improved Spider Wasp Optimizer (ISWO) updates the positions of search agents 

Figure 1. Simplified diagram of UAV path planning.

In recent years, research on path planning has been broadly categorized into three types
based on solution strategies. The first category comprises population-based algorithms,
such as the, newly introduced in 2024, Hippopotamus Optimization Algorithm (HO) [7]
and Black-winged Kite Algorithm (BKA) [8], as well as recent developments like the Dung
Beetle Optimizer (DBO) [9], Lemurs Optimizer (LO) [10], Crayfish Optimization Algorithm
(COA) [11], and earlier methods like Particle Swarm Optimization (PSO) [12].

The second category involves physics-based algorithms, such as the Kepler Optimiza-
tion Algorithm (KOA) [13], Light Spectrum Optimizer (LSO) [14], and the Sine Cosine
Algorithm (SCA) [15]. There are also human-inspired metaheuristic algorithms, includ-
ing the Gold Rush Optimizer (GRO) [16] and the Catch Fish Optimization Algorithm
(CFOA) [17]. Based on the simulation experiments of path planning described below, it
was discovered that the CFOA algorithm, newly proposed this year, exhibits inefficiency in
engineering applications. Additionally, it demonstrates low stability and reliability on the
CEC2017 [18] test suite. The HO and BKA algorithms, when tested on benchmark functions,
display higher maximum, average, and minimum values across multiple test functions,
indicating a propensity to become trapped in local optima and a lack of global search capa-
bility. The COA algorithm lacks robust global exploration ability and is particularly prone
to local optima during the later stages of optimization. The DBO algorithm may suffer from
insufficient search efficiency in high-dimensional and complex problems, leading to slower
convergence rates. The LO algorithm requires improvements in search efficiency when
applied to complex three-dimensional UAV path planning. The PSO algorithm tends to
converge prematurely during the early stages of the search, potentially missing the global
optimal solution. The SCA algorithm exhibits periodicity in its search process, making it
susceptible to the influence of local optima and reducing its ability to dynamically adapt
during the search. The GRO algorithm may prematurely converge to local optima when
individual behaviors become overly homogeneous, thus limiting global exploration. This
paper introduces a new nature-inspired metaheuristic algorithm, the Spider Wasp Opti-
mizer (SWO) [19], which incorporates multiple unique update strategies and is applicable
to various optimization problems with differing exploration and exploitation requirements.
The effectiveness of SWO was evaluated using several mathematical benchmarks and
real-world optimization problems. Although SWO offers advantages in UAV path plan-
ning, such as efficient global search capabilities and strong convergence performance, it
simulates relatively complex biological behaviors, resulting in high computational com-
plexity. When addressing high-dimensional path planning problems, it may consume
substantial computational resources, which is disadvantageous for resource-constrained
embedded UAV systems. Therefore, during the iterative process, an Improved Spider Wasp
Optimizer (ISWO) updates the positions of search agents through hunting and nesting
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behaviors (exploration phase) and mating behaviors (exploitation phase). In the hunting
and nesting behaviors, strategies like dynamic parameter adjustment and Lévy flights [20]
are employed to enhance the exploration ability of the solutions. Differential Evolution
(DE) [21] generates new candidate solutions through mutation and crossover operations
during the mating phase, maintaining population diversity and promoting search efficiency.
COA optimizes individual positions during the mating phase by combining the foraging
and avoidance mechanisms of COA, enhancing local search capability. Furthermore, the
algorithm re-applies the opposition-based learning [22] strategy that generates opposite
solutions periodically during initialization and iterations, expanding the search space and
enhancing global search capability. To reduce computational load and accelerate conver-
gence, the algorithm adopts a population size reduction strategy, gradually decreasing the
number of search agents. Experimental results indicate that the Improved Spider Wasp
Optimizer exhibits faster convergence rates and higher solution quality when solving com-
plex optimization problems, validating the importance of integrating multiple optimization
strategies and opposition-based learning. Moreover, the ISWO algorithm achieved the best
performance on the CEC2017 test suite.

2. The Spider Wasp Optimizer

The Spider Wasp Optimizer (SWO) is a metaheuristic optimization algorithm inspired
by the behaviors of spider wasps. This algorithm emulates the trade-offs between hunting,
nesting, and mating behaviors exhibited by spider wasps and applies these mechanisms
to global optimization problems. Initially, the algorithm performs the initialization of all
search agents (spider wasps). The algorithm’s inputs include the number of search agents,
the maximum number of iterations, the upper and lower bounds of the search space, the
dimensionality of the problem, and the objective function. After the initialization phase
is concluded, the algorithm evaluates the fitness of each spider wasp’s initial position by
invoking the objective function for each agent. If a spider wasp’s fitness value exceeds the
current optimal fitness, the best solution and corresponding fitness are updated accordingly.
While the condition t < tmax holds, the main loop continues execution until the maximum
number of iterations is reached. During each iteration, the algorithm dynamically adjusts
specific parameters. If a randomly generated number rand is less than the trade-off proba-
bility TR, the algorithm elects to perform the hunting and nesting behaviors, updating the
positions of each spider wasp accordingly. Conversely, if rand ≥ TR, the mating behavior is
enacted. In the mating phase, the algorithm generates a new individual by computing the
positional differences between the current solution and other wasps. The new individual’s
position is obtained by calculating the difference between two positions and updating
the position using the crossover probability Cr. If the newly generated individual yields
superior performance compared to the current one, its position is updated and its fitness is
recalculated. If it does not improve upon the current solution, the algorithm reverts to the
prior optimal position. At the conclusion of each iteration, the population size of the spider
wasps is decremented in accordance with Equation (25). This progressive reduction in the
number of search agents during the later iterations serves to accelerate the convergence rate.
Upon reaching the maximum iteration count tmax, the algorithm terminates, outputting
the optimal solution and its associated fitness value. Simultaneously, the convergence
curve records the best fitness value at each iteration, facilitating analysis of the algorithm’s
convergence characteristics. The detailed algorithmic workflow is illustrated in Figure 2.
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2.1. The Generation of the Initial Population

In the proposed algorithm, each spider wasp (female wasp) embodies a solution
of the current generation and can be encoded within a d-dimensional vector using the
following expression:

→
SW =

[
x1, x2, x3, . . . , xD

]
(1)

A set of N vectors can be randomly generated between the pre-specified upper initial

parameter boundary vector
→
H and the lower initial parameter boundary vector

→
L , as

detailed below:

SWPop =


sw1,1 sw1,2 . . . sw1,D
sw2,1 sw2,2 . . . sw2,D

...
...

...
...

swN,1 swN,2 . . . swN,D

 (2)

Here, SWpop represents the initial population of spider wasps. The following equation
can be employed to randomly generate any solution within the search space:

SWt
i =

→
L +

→
r ×

(→
H −

→
L
)

(3)

Here, t denotes the generation index, and i represents the population index
(i = 1, 2, . . . , N). The vector

→
r is a d-dimensional vector, whose elements are randomly

initialized values between 0 and 1. Subsequently, the mathematical simulation of spider
wasp behaviors is introduced to establish a novel metaheuristic algorithm for solving
optimization problems. These behaviors are as follows:

Hunting and nesting behaviors.
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Mating behaviors.

2.2. Search Phase (Exploration)

This phase simulates the behavior of female wasps searching for the most suitable
spiders to feed their larvae. During this stage, female wasps conduct random exploration
within the search space using a fixed step size, as previously described, to locate spiders
that are optimal for their offspring. This behavior is modeled using the method illustrated
in Equation (4), which updates each female wasp’s current position with constant motion
in each generation t, thereby emulating the exploratory behavior of female wasps.

SWt+1
i = SWt

i + µ1 ∗
(

SWt
a − SWt

b

)
(4)

Here, a and b are two indices randomly selected from the population to determine
the exploration direction of the female wasp. The parameter µ1 is utilized to establish the
constant motion based on the current direction, employing the following formula:

µ1 =|rn|∗r1 (5)

Here, r1 is a randomly generated value within the interval [0, 1], and rn is another
random number, though it is generated using a normal distribution. Female wasps occa-
sionally lose track of dropped spiders within tennis webs, prompting them to search the
entire vicinity surrounding the exact drop location of the spider. Based on this behavior, an
alternative equation with a distinct exploration method has been formulated to enable the
proposed algorithm to explore the area around the dropped spider, with a smaller step size
than Equation (4). This equation similarly updates the current position of each female wasp
through constant motion in each generation, where the position representing the dropped
spider’s location is embodied by a female wasp randomly selected from the population.
The equation is described as follows:

SWt+1
i = SWt

c + µ2 ∗
(→

L +
→
r2 ∗

(→
H −

→
L
))

(6)

µ2 = B ∗ cos(2πl) (7)

B =
1

1 + el (8)

Here, c is an index randomly selected from the population, and l is a randomly
generated value between 1 and −2. Equations (4) and (6) complement each other in
exploring the search space and identifying the most promising regions. Finally, as detailed
below, when generating the next position of a female wasp, a random selection is made
between Equations (4) and (6):

→
SW

t+1

i =

{
Eq.(4) r3 < r4,

Eq.(6) otherwise,
(9)

Here, r3 and r4 are two randomly generated numbers within the interval [0, 1].

2.3. Tracking and Evasion Phase (Exploration and Exploitation)

Upon locating prey, the spider wasps endeavor to attack the prey at the center of the
web; however, the prey may descend to the ground in an attempt to escape. The wasps
subsequently track these fallen spiders, paralyze them, and transport them to pre-prepared
nests. In certain instances, the wasps lose track of spiders that have fallen from the web’s
center, indicating that while the wasps are attempting to capture the spiders, the spiders
are simultaneously evading capture. This behavior emulates two distinct tendencies: the
first involves wasps hunting spiders to secure them, wherein Equation (10) is employed
to update the positions of the spider wasps for tracking the prey; the second tendency
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simulates the increasing of the distance between them through a designed distance factor,
allowing the prey to escape and conceal themselves in regions distant from the wasps as
the current iteration count progresses.

→
SW

t+1

i =
→

SW
t

i + C ∗
∣∣∣∣2 ∗→

r5 ∗
→

SW
t

a −
→

SW
t

i

∣∣∣∣ (10)

C =

(
2 − 2 ∗

(
t

tmax

))
∗ r6 (11)

Here, a is an index randomly selected from the population; t and tmax denote the
current and maximum evaluation counts, respectively;

→
r5 is a vector of values randomly

generated within the interval [0, 1]; and r6 is a randomly generated number within the
interval [0, 1]. When a spider escapes from a female wasp, the distance between the female
wasp and the spider gradually increases. This phase initially represents the exploitation
stage, and as the distance increases, exploitation progressively transitions into exploration.
This behavior is modeled by the following equation:

→
SW

t+1

i =
→

SW
t

i ∗
→
νc (12)

Here,
→
vc is a vector generated from a normal distribution within the interval [−k, k].

Consequently, k is determined using Equation (13) to progressively increase the distance
between the female wasp and the spider.

k = 1 −
(

t
tmax

)
(13)

The trade-off between these two tendencies is implemented randomly, as illustrated
by the following equation:

→
SW

t+1

i =

{
Eq.(10) r3 < r4

Eq.(12) otherwise
(14)

At the commencement of the optimization process, all wasps employ an exploration
mechanism to conduct a global search of the optimization problem’s domain, aiming
to identify promising regions that may harbor near-optimal solutions. Throughout the
iterative process, the algorithm leverages tracking and evasion mechanisms to explore and
exploit the areas surrounding the current wasps, thereby mitigating the risk of becoming
trapped in local minima. Finally, the transition between the search phase and the tracking
mechanism is regulated according to the following equation:

→
SW

t+1

i =

{
Eq.(9) p < k

Eq.(14) otherwise
(15)

Here, p is a randomly generated number within the interval [0, 1]. The trade-off
between the search and tracking mechanisms is illustrated in Figure 3.
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2.4. Nesting Behavior (Exploitation Phase)

Female wasps transport paralyzed spiders into pre-prepared nests and engage in
various nesting behaviors, such as excavating in the soil, constructing mud nests, or
utilizing existing cavities. In the proposed algorithm, we employ two equations to simulate
these nesting behaviors. The first equation models the transportation of spiders into
the most suitable nesting areas, facilitating the placement of paralyzed spiders and the
oviposition of eggs on their abdomens.

→
SW

t+1

i =
→

SW
∗
+ cos(2πl) ∗

( →
SW

∗
−

→
SW

t

i

)
(16)

Here, SW∗ represents the best solution obtained to date. The second equation con-
structs nests at the positions of female wasps randomly selected from the population,
utilizing an additional step size to prevent the construction of two nests at the same
location. The equation is designed as follows:

SWt+1
i = SWt

a + r3 ∗ |γ| ∗
(

SWt
a − SWt

i

)
+ (1 − r3) ∗

→
U ∗

(
SWt

b − SWt
c

)
(17)

Here, r3 is a randomly generated number within the interval [0, 1]; γ is a value
generated based on Lévy flight; a, b, and c are indices of three solutions randomly selected

from the population;
→
U is a binary vector used to determine when to apply a step size in

order to prevent the construction of two nests at the same location. The binary vector
→
U is

assigned according to the following formula:

→
U =

{
1
→
r4 >

→
r5

0 otherwise
(18)

Here,
→
r4 and

→
r5 are two vectors representing randomly generated values within

the interval [0, 1]. Equations (16) and (17) are randomly swapped according to the
following formula:

SWt+1
i =

{
Eq.(16) r3 < r4

Eq.(17) otherwise
(19)

Finally, the trade-off between hunting and nesting behaviors is achieved through
Equation (20), as illustrated in Figure 4. At the onset of the optimization process, all
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spider wasps search for their respective spiders. Subsequently, the wasps guide suitable
individuals to the pre-prepared nests.

SWt+1
i =

{
Eq.(15) i < N ∗ k
Eq.(19) otherwise

(20)
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2.5. Mating Behavior

Each spider wasp embodies a candidate solution within the current generation, while
the eggs of the spider wasps signify newly synthesized potential solutions for that genera-
tion. New solutions/spider wasp eggs are generated according to the following equation:

SWt+1
i = Crossover(SWt

i , SWt
m, CR) (21)

Here, Crossover denotes the uniform crossover operator applied between solutions
SWt

m and SWt
i , and the crossover probability is referred to as the crossover rate (CR).

SWt
m and SWt

i represent the vectors of male and female spider wasps, respectively. In the
proposed algorithm, male spider wasps are generated according to the following formula
to differentiate them from female wasps:

SWt+1
m = SWt

i + el ∗ |β| ∗→
v 1 +

(
1 − el

)
∗ |β1| ∗

→
v 2 (22)

Here, β and β1 are two numbers randomly generated based on a normal distribution,
e is the natural constant, and

→
v1 and

→
v2 are generated according to the following formula:

→
v 1 =

{→
x a −

→
x i f (

→
x a) < f (

→
x i)

→
x i −

→
x a otherwise

(23)

→
v 2 =

{→
x b −

→
x c f (

→
x b) < f (

→
x c)

→
x c −

→
x b otherwise

(24)

Here, a, b, and c are indices of three solutions randomly selected from the population,
with a ̸= i ̸= b ̸= c. The crossover operation is employed to recombine the genetic material
of two parent spider wasps, thereby generating an offspring (egg) that simultaneously
possesses characteristics from both parents. The trade-off between hunting and mating
behaviors is governed by a predefined factor known as the behavioral weight (TR).
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2.6. Population Reduction and Memory Saving

During the iterative process, certain wasps within the population are terminated
to allocate additional function evaluations to other wasps, thereby reducing population
diversity and accelerating convergence toward near-optimal solutions. In each compre-
hensive function evaluation, the size of the new population is updated according to the
following equation:

N = Nmin + (N − Nmin)× k (25)

Here, Nmin denotes the minimum population size employed to prevent the optimiza-
tion process from becoming trapped in local minima at various stages. As the number
of iterations increases, k linearly decreases from 1 to 0. Finally, our proposed algorithm
achieves memory efficiency by storing the optimal spider positions acquired by each wasp,
facilitating updates in subsequent generations (Algorithm 1).

Algorithm 1 The proposed SWO

Input: N, Nmin, CR, TR, tmax

Output:
→

SW∗

1. Initialize N female wasps,
→

SWi (i = 1, 2, ..., N ), using Equation (3)
2. Evaluate each

→
SWi and finding the one with the best fitness in

→
SW∗

3. t = 1; //the current function evaluation
4. while (t < tmax )
5. r6: generating a random number between 0 and 1
6. if (r6 < TR) %% Hunting and Nesting behaviors
7. for i = 1 : N
8. Applying Figure 2
9. Compute f (

→
SWi)

10. t = t + 1;
11. End for
12. Else %% Mating Behavior
13. for i = 1 : N
14. Applying Equation (21)
15. t = t + 1;
16. End for
17. End if
18. Applying Memory Saving
19. Updating N using Equation (25)
20. End while

3. Improved Spider Wasp Optimizer

The Improved Spider Wasp Optimizer (ISWO) synergistically combines the advan-
tages of the Spider Wasp Optimizer (SWO), the Crayfish Optimization Algorithm (COA),
and Differential Evolution (DE). It refines the original Equation (25), adaptively adjusts
the parameters TR [23] and Cr [24], and introduces the opposition-based learning (OBL)
strategy to expedite convergence.

The workflow of the improved algorithm is as follows. Initialization phase: The
algorithm begins by generating an initial population of n individuals, each with a dimen-
sionality of d, and positions randomly distributed within the defined upper and lower
bounds. Parameters such as TR, Cr, and mutation factors are initialized. Through the
opposition-based learning strategy, the population size is expanded by computing the
opposite solutions for each individual. The original population is merged with these op-
posite solutions to form a new population. Fitness evaluations are performed on this new
population, and the n individuals with the best fitness are selected as the initial population,
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initializing the optimal solution. Main loop phase: In each iteration of the generation,
parameters are updated based on the current iteration count t. The dynamic adjustment
of these parameters helps balance the trade-off between the exploration and exploitation
phases. With a certain probability, the algorithm executes the exploration phase (hunting
and nesting behaviors). During this phase, individuals update their positions according
to Lévy flight patterns or based on the differences with other individuals. By calculating
randomly generated parameters, the movement strategies of individuals are determined,
aiming to increase population diversity and enhance global search capabilities. If the
conditions for the exploration phase are not met, the exploitation phase is executed. At this
stage, the algorithm integrates the characteristics of Differential Evolution (DE) and the
Crayfish Optimization Algorithm (COA) to update individuals. After every 10 generations,
the algorithm applies the opposition-based learning (OBL) strategy. At this point, opposite
solutions for the individuals in the population are regenerated and combined with the
current population to update the optimal solution. The OBL strategy aids in expanding the
coverage of the search space, improving the algorithm’s diversity and global search ability.
At the end of each generation, the algorithm adjusts the population size based on the
current generation number t. Starting with an initial population size of n, the population
size gradually decreases as the iterations progress until it reaches the minimum population
size. This size adjustment strategy assists in conducting extensive exploration during the
early stages and facilitates local exploitation in the later stages. Subsequently, the optimal
solution of each generation is stored, and the optimal fitness value of the current generation
is calculated to form a convergence curve. This curve reflects the algorithm’s convergence
speed during the search process and the evolution of the optimal solution. When the
maximum number of iterations tmax is reached, the algorithm terminates. At this point,
the optimal solution obtained is the final result of the algorithm. The specific algorithmic
workflow is depicted in Figure 5.
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3.1. An Enhancement Has Been Made to Equation (25)

In the original equation, N appears on both sides, which may lead to inaccurate
calculations of N during each iteration since N is continuously updated throughout the
iterative process. This recursive form can cause the population size to decrease either
too rapidly or too slowly. To address this issue, the improved version of the original
Equation (25) replaces the current N with the initial population size N0. This modification
ensures that the population size decreases linearly from the initial value to the minimum
value as intended. The improved equation is as follows:

N = Nmin + (N0 − Nmin)×
(

1 − t
tmax

)
(26)

Here, N0 denotes the initial population size (i.e., the population size at t = 0), and
tmax signifies the maximum number of iterations. As illustrated in Figure 6, Equation (26)
demonstrates that the population size progressively diminishes with increasing iterations.
A larger population size during the initial stages facilitates extensive exploration of the
solution space, thereby avoiding local optima. Conversely, a smaller population size in the
later stages concentrates the search within promising regions, thereby accelerating conver-
gence. This gradual reduction mechanism reduces computational overhead, automates the
adjustment of population size, minimizes the complexity of manual parameter tuning, and
effectively balances exploration and exploitation. Consequently, it enhances the overall
performance of the algorithm and aids in locating the global optimal solution.
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3.2. Adaptive Parameter Adjustment of TR and Cr

TR (trade-off probability) governs the balance between hunting and mating behav-
iors within the algorithm. Cr (crossover probability) controls the likelihood of crossover
operations. As the number of iterations increases, gradually decreasing TR and Cr allows
the algorithm to be more exploratory in the early stages and more exploitative in the later
stages, thereby enhancing the convergence speed and solution accuracy. Consequently, a
linear decay approach is employed, reducing these parameters incrementally from their
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initial values to zero. Here, t represents the current iteration count, and tmax denotes the
maximum number of iterations.

TR = TR(0)×
(

1 − t
tmax

)
(27)

In Equation (27), TR(0) represents the initial behavioral weight, tmax denotes the
maximum number of iterations, and t refers to the current iteration.

Cr = Cr(0)×
(

1 − t
tmax

)
(28)

In Equation (28), Cr(0) represents the initial crossover rate, tmax denotes the maximum
number of iterations, and t refers to the current iteration.

As illustrated in Figure 7, within the various stages of the Improved Spider Wasp
Optimizer (ISWO), the parameters TR and Cr are dynamically adjusted in response to the
number of iterations to balance exploration and exploitation.
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Initial phase (first 20 iterations): TR begins at 0.3 and gradually decreases, while Cr
starts at 0.2 and similarly decreases. During this phase, the algorithm predominantly
engages in hunting and nesting behaviors, as well as crossover operations. This inclination
enhances the diversity of solutions and facilitates an extensive search of the solution space.

Intermediate phase (around the 50th iteration): Both TR and Cr are reduced by ap-
proximately half. The algorithm begins to balance exploration and exploitation, continuing
to search new regions while also initiating fine-tuning of existing solutions.

Final phase (last 20 iterations): TR and Cr approach zero. At this stage, the algorithm
primarily performs mating behaviors with a lower probability of crossover operations,
concentrating on the meticulous refinement of the current optimal solution to enhance
its precision.

The role of TR here is to control the probability of the algorithm selecting between
hunting and nesting behaviors versus mating behaviors. A high TR value biases the
algorithm towards global exploration, which aids in escaping local optima. Conversely, a
low TR value favors local exploitation, accelerating the convergence speed.
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Therefore, the adaptive adjustment of TR enables the algorithm to conduct a broad
search of the solution space during the initial phase, preventing premature convergence. In
the later stages, it shifts towards the fine-tuning of the current solution, thereby increasing
the precision of the solution and speeding up convergence.

3.3. Integration of the Crayfish Optimization Algorithm

The Crayfish Optimization Algorithm (COA) simulates the foraging and avoidance
behaviors of crayfish, utilizing both local and global search strategies to further optimize
the positions of individuals in the original SWO algorithm, improving search efficiency
and accuracy. When executing the ISWO algorithm, the first step is to determine whether
to perform COA behaviors. During each iteration of the main loop, the algorithm initially
decides whether to execute the “hunting and nesting behaviors” based on a randomly
generated probability rand within the range [0, 1], specifically if rand < TR. If the condition
rand < TR is not met, the algorithm proceeds to the mating behavior phase. In the mating
phase (when COA behavior is selected), a random value temp is generated using a specified
formula to decide whether to execute specific COA behaviors. If temp > 30, the COA
update formulas are employed: using COA’s Equations (32) and (34), the positions of the
spider wasps are updated. Here, C2 is a control coefficient that gradually decreases as

the number of iterations increases. The updated position
→

SWm is generated through a

linear combination with the optimal solution
→

SW∗. If temp ≤ 30, a “fitness parameter”
p is calculated based on the current value. The update position is then generated using
X f ood, which is an update formula based on p. This formula adjusts the fitness based on

the objective function values to generate new food positions. Ultimately,
→

SWm is updated

as a linear combination based on the optimal solution
→

SW∗ and the current solution. Below
are the referenced COA formulas.

In Equation (29), temperature changes influence the foraging behavior of crayfish,
thereby controlling the balance between exploration and exploitation. Here, temp represents
the temperature of the crayfish’s environment.

temp = rand × 15 + 20 (29)

Here, rand denotes a random number, and temp is a value generated from a uniformly
distributed random number within the range [20, 35].

In the Improved Spider Wasp Optimizer (ISWO) algorithm, the generation of temp
directly influences the position-update rules of the search agents. When temp is high, the
system may adopt more aggressive exploitation behaviors (i.e., conducting local searches
near the optimal solution). Conversely, a lower temperature implies that the system will
engage in broader exploratory behaviors.

The mathematical model of crayfish foraging is presented in Equation (30). An illus-
trative diagram of food intake is shown in Figure 8.

p = C1 × (
1√

2 × π × σ)
× exp(− (temp − µ)2

2σ2 )). (30)
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Here, µ represents the optimal temperature for crayfish, which corresponds to their
fitness. The parameters σ and C1 are utilized to control the crayfish’s foraging rate at
different temperatures, thereby influencing the fitness of the optimal solution under varying
temp conditions. The value of p is calculated based on the fitness of the current search

agent
→

SWm and the fitness of the global optimal solution
→

SW∗. The p value is employed
to determine whether to proceed with more intensive exploratory behaviors (such as
executing larger jumps or focusing on the local region of the current solution). A larger
p value tends to encourage more exploratory behaviors, while a smaller p value promotes
more exploitative behaviors.

Xshade =
(
XG + XL

)
/2, (31)

In Equation (31), Xshade serves as the midpoint between the current individual’s
position XL and the global optimal solution XG. It represents the direction in which the
current individual moves toward the global optimum. By calculating the midpoint of XG
(the global optimal solution) and the current position XL, Xshade is used as a reference point
for updating positions. This indicates that the Crayfish Optimization Algorithm leverages
global information to guide individuals toward the optimal solution.

Xt+1
i,j = Xt

i,j + C2 × rand ×
(

Xshade − Xt
i,j

)
(32)

In Equation (32) of the ISWO algorithm,
→

SWm represents the updated individual
position Xt+1

i,j . This update is achieved by calculating the distance between the individual’s
current position Xt

i,j and the midpoint Xshade of the global optimal solution, employing
a scaling factor C2. Equation (34) embodies the global optimization mechanism during
the exploration process. The parameter C2 controls the search step size, and the random
number rand is used to introduce variations across different dimensions. This enhances the
algorithm’s diversity, enabling rapid jumps on a global scale to explore potential global
optimal solutions.

C2 = 2 − (t/tmax) (33)
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In Equation (33), C2 is a scaling factor that varies with the number of iterations and
gradually decreases as the iterative process progresses. C2 adjusts the magnitude of the
individuals’ jumps within the search space. During the initial phase of the algorithm, a
larger C2 implies that individuals have larger step sizes, allowing them to explore a more
expansive region. As time advances, C2 diminishes, indicating that the search process is
gradually converging, and individuals conduct fine-grained searches within smaller areas.
This helps balance the relationship between global exploration and local exploitation. Here,
tmax denotes the maximum number of iterations.

Xt+1
i,j = Xt

i,j − Xt
z,j + Xshade (34)

In Equation (34), the position is updated by calculating the difference between the

current individual position
→

SWm and the position Xt
z,j of another randomly selected indi-

vidual, then adding Xshade. This update method enables the individual to rely not only

on the global optimal solution
→

SW∗ but also incorporates the influence of neighboring
individuals (through the random selection of z). This approach enhances the diversity of
the search, rendering the individual’s exploratory behavior more flexible and preventing
premature convergence.

X f ood = exp
(
− 1

p

)
× X f ood (35)

In Equation (35), the right-hand-side term X f ood represents the global optimal solution
→

SW∗ in the ISWO algorithm. This equation encapsulates how the crayfish locates a highly
attractive food source during its search process. Based on the value of p, the expression

exp(−1 / p) reduces the distance to the global optimal solution
→

SW∗, thereby attracting in-
dividuals toward it. When p is large, individuals exhibit a broader search scope, indicating
global exploration; when p is small, it signifies more intensive local exploitation.

Xt+1
i,j = Xt

i,j + X f ood × p × (cos(2 × π × rand)− sin(2 × π × rand)) (36)

In Equation (36),
→

SWm in the ISWO algorithm represents the updated individual

position Xt+1
i,j . X f ood is the global optimal solution

→
SW∗ at generation t. The position Xt+1

i,j
adjusts based on the attraction of the global optimal solution X f ood and incorporates a
random term weighted by p.

Xt+1
i,j =

(
Xt

i,j − X f ood

)
× p + p × rand × Xt

i,j (37)

In Equation (37), Xt+1
i,j is updated by amalgamating the positional difference between

the global optimal solution and the current individual. This equation embodies the hybrid
strategy in the Crayfish Optimization Algorithm (COA), wherein the global optimal so-

lution
→

SW∗ directs the search while a stochastic term enhances search diversity. Here, p
serves as a scaling factor, controlling the intensity of the current search.

3.4. Integration of Differential Evolution Algorithm

Differential Evolution (DE) generates new candidate solutions through mutation and
crossover operations, utilizing the differential information between individuals in the
population, which enhances the population diversity and search capability compared to
the original SWO algorithm. The synergy between COA and DE accelerates the discovery
of the optimal solution and the convergence process. The introduction of DE enhances
the exploration capability of the ISWO algorithm and, when combined with COA, further
improves the algorithm’s performance and convergence speed.

The evolutionary process of the DE algorithm in ISWO is as follows.
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First, the mutation operation is performed, where a new individual is generated by
computing the difference between three randomly selected individuals from the population.
The specific mutation formula is as follows:

V = Xr1 + F · (Xr2 − Xr3) (38)

In Equation (38), V represents the mutant individual. Xr1, Xr2, Xr3 are three different
individuals randomly selected from the population. F is the mutation factor that controls
the magnitude of the mutation.

Next, a crossover operation is performed on each dimension of the mutant individual
V and the current individual X. If a random number is less than the crossover probability
Cr, the value is taken from the mutant individual V; otherwise, the value from the current
individual X is retained. The specific formula is as follows:

Uj =

{
Vj if rand < Cr
Xj otherwise

(39)

In Equation (39), Uj represents the candidate solution after the crossover operation.
Cr is the crossover probability. Vj is the j-th dimension of the mutant individual, and Xj is
the j-th dimension of the current solution. rand is a uniformly distributed random number
within the interval [0, 1].

Finally, a selection operation is performed to decide whether to update the current
position. If f (U) < f (X), the candidate solution U is selected; if f (U) > f (X), the
candidate solution X is chosen. Here, f (U) and f (X) denote the fitness values.

The update results from the DE algorithm and the COA algorithm are integrated as
shown in Equation (40).

Xi
i,j = (Xi

i,j +
→

SWm)/2 (40)

In the expression
(

Xi
i,j +

→
SWm

)
, Xi

i,j represents the current position of individual i (i.e.,

the solution vector), and
→

SWm denotes the new solution obtained after simulating crayfish

behavior based on COA. The term
(

Xi
i,j +

→
SWm

)
/2 signifies an averaging operation that

combines the results from both the DE and COA components. Specifically, the solution
provided by the DE part is derived from global search capabilities, while the COA part
offers a solution based on local search and the simulated foraging behavior of crayfish. The
DE contributes by enhancing the global search ability, enabling individuals to escape local
optima. In contrast, the COA’s contribution focuses on meticulous local search, allowing
the solution to be refined near the optimal region.

3.5. Perform Dynamic Readjustment of the Adaptive Parameters TR and Cr

In the ISWO algorithm, dynamic updates of TR and Cr are implemented to optimize
the algorithm’s performance during the search process by adjusting exploration and ex-
ploitation behaviors. Specifically, this dynamic update design is based on the following
two considerations: First, adjusting the balance between exploration and exploitation. In
optimization algorithms, exploration and exploitation are two critical processes. In the
early stages, the algorithm requires more exploration to avoid premature convergence to
local optima; in the later stages, it should focus more on exploitation to refine the current
optimal solution and ultimately converge to the global optimum.

By dynamically adjusting TR and Cr, the algorithm’s search strategy can gradually
change during different iterative stages. TR decreases linearly from TRmax to TRmin; this
means that over time, the algorithm gradually reduces the proportion of hunting and
nesting behaviors while increasing the proportion of mating behaviors. This allows the
algorithm to explore the search space more extensively in the initial stages to avoid falling
into local optima, and to focus on fine-tuning the current optimal solution in the later
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stages. Cr increases linearly from Crmin to Crmax: As the iterations progress, the algorithm
gradually increases the frequency of crossover operations. This helps maintain diversity
during the early exploration phase, preventing premature convergence; in the later stages,
stronger crossover operations promote solution fusion and optimization, accelerating the
convergence speed.

Second, emphasizing exploration in the early stages and exploitation in the later stages.
The dynamic updating strategy of TR and Cr is based on the different requirements of
the algorithm behaviors at various stages. Early stage (t < tmax with smaller t values): At
this stage, search agents rely more on exploration behaviors. By employing a higher TR
(favoring hunting and nesting behaviors) and a lower Cr (less crossover), the algorithm can
effectively avoid becoming trapped in local optima and extensively explore the solution
space. Later stage (t approaching tmax): Over time, the algorithm gradually shifts towards
more exploitation behaviors, increasing Cr to enhance the refinement of solutions, and
decreasing TR to focus on local optimization and convergence.

Therefore, the original Equations (27) and (28) need to be improved to
Equations (41) and (42).

TR = TRmin + (TRmax − TRmin)×
(

1 − t
tmax

)
(41)

Cr = Crmin + (Crmax − Crmin)×
(

t
Tmax

)
(42)

Figure 9 depicts the variations in the adaptively adjusted TR and Cr parameters
over 100 iterations after their readjustment. The TR parameter decreases linearly from
0.8 to 0.2, which implies that in the early stages, the algorithm tends to perform more
exploratory behaviors (hunting and nesting) to extensively search the solution space and
avoid becoming trapped in local optima. As the iterations advance, the TR value gradually
diminishes, making the algorithm more inclined to execute exploitative behaviors in the
later stages, focusing on refining the current optimal solution to achieve better convergence.
This strategy ensures diversity during the initial optimization phases while emphasizing
convergence in the later stages.
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Similarly, the Cr parameter increases linearly from 0.1 to 0.9, indicating that as the
iterations progress, the algorithm gradually increases the probability of crossover opera-
tions. In the early stages, a smaller Cr maintains solution diversity, preventing premature
convergence. In the later stages, the increase in Cr allows solutions to merge more effec-
tively through crossover during local exploitation, thereby accelerating convergence and
improving optimization precision.

3.6. Incorporation of the Centroid Opposition-Based Learning Strategy

The opposition-based learning (OBL) strategy expands the search space by generating
the “opposite” solution of the current solution, which helps the improved SWO algorithm
escape local optima and enhances its global search capability. The core idea of this formula
is to produce an opposite solution based on the current solution and the problem’s lower
and upper bounds (lb and ub), thereby enhancing population diversity and preventing the
algorithm from becoming trapped in local optima.

x′i = lbi + ubi − xi (43)

In Equation (43), xi is the value of the current solution at the i-th dimension. lbi and
ubi are the lower and upper bounds of the i-th dimension, respectively. x′i is the opposite
solution of the current solution x at the i-th dimension.

According to Figure 10, the impact of the centroid opposition-based learning (OBL)
strategy within the ISWO algorithm is primarily manifested through the incorporation of
opposite solutions, which accelerates the algorithm’s convergence toward near-optimal
solutions in its early stages. Opposition-based learning enhances the coverage of the
solution space, thereby increasing population diversity and preventing the algorithm from
prematurely converging to local optima. The application of OBL throughout the iterative
process ensures the smoothness and stability of the algorithm’s convergence (Algorithm 2).
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Algorithm 2 The Improved Spider Wasp Optimization Algorithm

Input: N, Nmin, CR, TR, tmax, lb, ub, dim,
Output:

→
SW∗

1. Initialize parameters
2. Set boundary conditions lb, ub
3. Initialize

→
SW∗ as a zero vector

4. Set optimal fitness to infinity
5. Initialize positions of search agents
6. Use initialization function to generate initial positions xi
7. Generate an opposite population using opposition learning x′i
8. Combining the original and inverse populations
9. Evaluate each

→
SWi and finding the one with the best fitness in

→
SW∗

10. Main loop (t = 0 to tmax)
11. To calculate the values of TR, Cr, and k using Equations (26), (41) and (42),
12. Randomly shuffle the index
13. Judgement of hunting and nesting behavior based on TR
14. rand between 0 and 1
15. If rand < TR, perform hunting and nesting behavior

16.
The optimal solution

→
SW∗ can be calculated using Formulas (4)–(8)

from the exploration phase and Formulas (10), (12), (16) and (17) from the
follow-escape phase.

17. Perform boundary check
18. Else, perform mating behavior (DE + COA hybrid strategy)
19. Differential Evolution (DE) operates using Equations (38) and (39)
20. Perform crossover operations
21. Apply boundary check

22.
The optimal

→
SW∗ solution can be obtained by combining COA using

Formulas (29)–(37), and then fusing the results of DE and COA, applying
Formula (40).

23. Apply opposition-based learning (OBL) every 10 iterations
24. Generate an opposite population using opposition learning x′i
25. Combining the original and inverse populations
26. if f (U) < f (X)

27. X =
→

SW∗

28. Else, U =
→

SW∗

29. Reduce population size

30.
Compute the new population size ensuring it is not less than the

minimum size
31. Update the population accordingly

4. Simulation Tests and Result Analysis of the Improved Spider Wasp
Optimizer Algorithm

To validate the performance of the Improved Spider Wasp Optimizer (ISWO), it was
compared with five other popular algorithms introduced in the past two years: the Crayfish
Optimization Algorithm (COA), the Spider Wasp Optimizer (SWO), the Black-winged Kite
Algorithm (BKA), the Catch Fish Optimization Algorithm (CFOA), and the Hippopotamus
Optimization Algorithm (HO). The following sections describe the test functions used
for the experimental data, the comparative algorithms, parameter configurations, and the
analysis of the experimental results. This experiment was conducted on a Thunderobot
laptop in Deyang, China. The computer was equipped with a 12th Gen Intel(R) Core i5-
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12450H processor (base frequency 2.50 GHz) and 256 GB of memory, running the MATLAB
R2023b software.

4.1. Introduction to the CEC2017 Test Suite and Algorithm Parameters

The CEC2017 benchmark test suite comprises 30 optimization test functions, widely
used for evaluating and comparing the performance of optimization algorithms. These
functions are categorized into four main classes based on their characteristics. F1–F3 uni-
modal functions: These functions have only one global optimum and are primarily used to
test an algorithm’s exploitation capability and convergence speed. F4–F10 simple multi-
modal functions: Featuring multiple local optima, these functions assess an algorithm’s
ability to avoid becoming trapped in local optima. F11–F20 hybrid functions: By combining
different types of functions, these hybrid functions increase problem complexity, testing an
algorithm’s capability to handle complex search spaces. F21–F30 composition functions:
Composed of multiple basic functions with complex landscapes and diverse features, they
are used for comprehensively evaluating an algorithm’s global search and local exploitation
abilities. The numbers in the last column represent the benchmark optimal values Fi* for
the CEC’17 test functions, as shown in Table 1. These values indicate the function’s value,
Fi(x*), at the global optimal solution x*.

Table 1. Summary of the CEC’17 test functions [25].

No. Function Fi* = Fi(x*)

Unimodal Functions
1 Shifted and Rotated Bent Cigar Function 100

2 Shifted and Rotated Sum of Different Power
Function 200

3 Shifted and Rotated Zakharov Function 300

Simple Multimodal
Functions

4 Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Rastrigin’s Function 500

6 Shifted and Rotated Expanded Scaffer’s F6
Function 600

7 Shifted and Rotated Lunacek Bi_Rastrigin
Function 700

8 Shifted and Rotated Non-Continuous Rastrigin’s
Function 800

9 Shifted and Rotated Lévy Function 900
10 Shifted and Rotated Schwefel’s Function 1000

Hybrid Functions

11 Hybrid Function 1 (N = 3) 1100
12 Hybrid Function 2 (N = 3) 1200
13 Hybrid Function 3 (N = 3) 1300
14 Hybrid Function 4 (N = 4) 1400
15 Hybrid Function 5 (N = 4) 1500
16 Hybrid Function 6 (N = 4) 1600
17 Hybrid Function 6 (N = 5) 1700
18 Hybrid Function 6 (N = 5) 1800
19 Hybrid Function 6 (N = 5) 1900
20 Hybrid Function 6 (N = 6) 2000

Composition
Functions

21 Composition Function 1 (N = 3) 2100
22 Composition Function 2 (N = 3) 2200
23 Composition Function 3 (N = 4) 2300
24 Composition Function 4 (N = 4) 2400
25 Composition Function 5 (N = 5) 2500
26 Composition Function 6 (N = 5) 2600
27 Composition Function 7 (N = 6) 2700
28 Composition Function 8 (N = 6) 2800
29 Composition Function 9 (N = 3) 2900
30 Composition Function 10 (N = 3) 3000

Search Range: [−100, 100]D
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In this study, the parameters of each algorithm in the CEC2017 test suite are pro-
vided in Table 2. In Table 2, the CFOA parameter E f s represents the number of objective
function evaluations.

Table 2. Algorithm parameters.

Algorithm Population Number of Iterations Parameters

HO 30 500 t = 1

BKA 30 500 p = 0.9, r = rand

CFOA 30 500 E f s = 0

SWO 30 500 TR = 0.3, Cr = 0.2, t = 0

COA 30 500 t = 1, C = 2

ISWO 30 500 TR = 0.3, Cr = 0.9, F = 0.5

4.2. Analysis of the Test Results for Each Algorithm

Firstly, from the data of the 50-dimensional tests in Table A1, it is evident that the
minimum values (Min) and mean values (Mean) are lower for the ISWO algorithm. In most
test functions (F1–F30), the ISWO algorithm consistently achieves lower minimum and
mean values compared to other algorithms. This indicates that the ISWO algorithm excels
in finding global optimal solutions, yielding superior results. Additionally, the standard
deviation of the ISWO algorithm is typically lower, signifying reduced variability in its
outcomes and demonstrating more stable performance.

The HO, BKA, and CFOA algorithms exhibit higher maximum, mean, and minimum
values across multiple test functions, suggesting a tendency to become trapped in local
optima and a lack of robust global search capability. Moreover, as observed from the
convergence curves (Figures A1–A5) in Appendix C and the box plots (Figures A6–A10)
in Appendix D, there is a significant disparity in iteration stability and the optimal values
found between the ISWO algorithm and the HO, BKA, and CFOA algorithms. This is also
reflected in the p-value analysis.

In the box plots of Figures A6 and A7, the ISWO algorithm displays relatively shorter
box lengths, indicating lower variance in the results and demonstrating stability, with better
robustness. For instance, in functions F5, F8, and F11, the results of ISWO are notably
concentrated, implying minimal performance fluctuations across multiple runs. Conversely,
algorithms like BKA and CFOA show larger box lengths and more outliers in the box plots
of several test functions (such as F1, F2, F3, and F8), which means their results are less stable
and more susceptible to the influence of initial solutions, leading to significant performance
variability and unstable optimization quality.

From Figures A5 and A10 concerning function F30, it is apparent that the ISWO
algorithm exhibits some shortcomings in the optimization and iteration processes. This
is primarily because functions like F30 are high-complexity multimodal functions with
numerous local extrema in their objective functions. The exploration process of ISWO tends
to become trapped in these local optima, which imposes higher demands on the precision
of the search. The global optimum of such functions is unevenly distributed, with many
local optima that are relatively concentrated. Consequently, ISWO may spend extended
periods near a local optimum, affecting its efficiency in swiftly locating the global optimum.

In the test curves for functions F5 and F6 in Figure A1, it can be seen that although
ISWO performs relatively well overall, its convergence speed and final optimal value do
not significantly surpass those of other algorithms. In F5, the descent curve of ISWO is
similar to those of HO and SWO, indicating that it has not achieved a substantial advantage
during the exploration process. The optimization of F5 and F6 may rely on the fine
exploitation of local optima; such functions require the algorithm to continuously make
precise adjustments during the search to find better solutions.
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From Table A2 (100-dimensional) in Appendix B, it is evident that as the dimensional-
ity increases, the complexity of the problem escalates, highlighting the strong adaptability
of the ISWO algorithm in high-dimensional optimization problems. The p-value anal-
ysis shows that a p-value lower than 0.05 indicates a statistically significant difference,
confirming that one algorithm outperforms another. Conversely, a p-value higher than
0.05 suggests no significant difference, and the observed variations may be attributed to
randomness. In most functions, the ISWO algorithm exhibits a clear advantage.

The standard deviation (Std) of the ISWO algorithm is generally small, indicating
consistent results across multiple runs and demonstrating high stability. From the conver-
gence curves (Figures A11–A15) in Appendix E and the box plots (Figures A16–A20) in
Appendix F, the ISWO algorithm showcases outstanding performance on both simple and
complex test functions, reflecting its broad applicability.

In Figures A11, A14 and A15, functions F6 and F30 may contain complex gradient
variations, while F8 and F23 may have a large number of local extrema. Other algorithms
might possess stronger adaptability when handling these specific functions. Parameters
within the algorithm (such as step size or weight coefficients) may not be optimally tuned
for these particular functions, leading to suboptimal performance when addressing such
problems. This results in the ISWO algorithm appearing slightly weaker in the later stages
of iterations.

5. Environmental Model for UAV Path Planning

In this study, we constructed an accurate three-dimensional environmental model for
UAV trajectory planning, defining the flight area as a 100 × 100 × 250 rectangular space.
Gaussian function models [26,27] were employed to simulate obstacles (such as mountains);
these not only accurately reproduce terrain undulations but also can be adapted to different
geographical environments.

z(x, y) =
N

∑
i=1

hi(x, y) =
N

∑
i=1

Hi exp

(
−
(
(x − xi)

2

2σ2
xi

+
(y − yi)

2

2σ2
yi

))
(44)

In Equation (44), N represents the total number of mountain peaks, z(x, y) denotes the
terrain elevation at the horizontal coordinates (x, y), and hi(x, y) signifies the height of the
i-th peak at position (x, y). As illustrated in Figure 11, we randomly determine each peak’s
central position, height, and extent:

(xi, yi) are the central coordinates of the i-th peak within the map boundaries.
Hi denotes the height of the i-th peak.
σxi , σyi control the slope by adjusting the rate of change of the peak along the x- and

y-axes, respectively.

Biomimetics 2024, 9, x FOR PEER REVIEW 22 of 44 
 

 

confirming that one algorithm outperforms another. Conversely, a p-value higher than 
0.05 suggests no significant difference, and the observed variations may be attributed to 
randomness. In most functions, the ISWO algorithm exhibits a clear advantage. 

The standard deviation (Std) of the ISWO algorithm is generally small, indicating 
consistent results across multiple runs and demonstrating high stability. From the conver-
gence curves (Figures A11–A15) in Appendix E and the box plots (Figures A16–A20) in 
Appendix F, the ISWO algorithm showcases outstanding performance on both simple and 
complex test functions, reflecting its broad applicability. 

In Figures A11, A14 and A15, functions F6 and F30 may contain complex gradient 
variations, while F8 and F23 may have a large number of local extrema. Other algorithms 
might possess stronger adaptability when handling these specific functions. Parameters 
within the algorithm (such as step size or weight coefficients) may not be optimally tuned 
for these particular functions, leading to suboptimal performance when addressing such 
problems. This results in the ISWO algorithm appearing slightly weaker in the later stages 
of iterations. 

5. Environmental Model for UAV Path Planning 
In this study, we constructed an accurate three-dimensional environmental model 

for UAV trajectory planning, defining the flight area as a 100 × 100 × 250 rectangular space. 
Gaussian function models [26,27] were employed to simulate obstacles (such as moun-
tains); these not only accurately reproduce terrain undulations but also can be adapted to 
different geographical environments. 

( ) ( )2 2

2 2
1 1

( , ) ( , ) exp
2 2

i i

N N
i i

i i
i i x y

x x y y
z x y h x y H

σ σ= =

  − −
 = = − + 

    
   (44)

In Equation (44), N represents the total number of mountain peaks, 𝑧(𝑥, 𝑦) denotes 
the terrain elevation at the horizontal coordinates (𝑥, 𝑦), and ℎ௜(𝑥, 𝑦) signifies the height 
of the 𝑖-th peak at position (𝑥, 𝑦). As illustrated in Figure 11, we randomly determine 
each peak’s central position, height, and extent: (𝑥௜, 𝑦௜) are the central coordinates of the 𝑖-th peak within the map boundaries. 𝐻௜ denotes the height of the 𝑖-th peak. 𝜎௫೔, 𝜎௬೔ control the slope by adjusting the rate of change of the peak along the x- and 
y-axes, respectively. 

 
Figure 11. Three-dimensional model of Gaussian mountains. 

6. Flight Path and Smoothing Processing 
A cubic spline fitting algorithm can be utilized to generate paths and plot three-di-

mensional surfaces as follows. Begin by initializing the starting point, ending point, and 

Figure 11. Three-dimensional model of Gaussian mountains.



Biomimetics 2024, 9, 765 23 of 45

6. Flight Path and Smoothing Processing

A cubic spline fitting algorithm can be utilized to generate paths and plot three-
dimensional surfaces as follows. Begin by initializing the starting point, ending point, and
surface coordinates, then merge these points into a sequence. Employ MATLAB’s spline
function to perform cubic spline interpolation, thereby generating a smooth path. Use
surf(X, Y, Z) to plot the surface graph, apply shading flat to remove grid lines, and set
colors with colormap, thus rendering a smooth flight path.

In the Improved Spider Wasp Optimizer algorithm, each path consists of a starting
point, an ending point, and waypoint nodes. By optimizing the positions of these waypoints,
smooth cubic spline curves are generated through interpolation between adjacent points.
The i-th segment of the path contains n control points, defined as f (x0), f (x1), . . ., f (xn),
with the domain x0 < x1 < x2 < . . . < xn. Cubic spline interpolation represents the
function between adjacent points, ensuring that the function and its first and second
derivatives are continuous within the interval, as shown in Equation (45).

fn(x) = an(x − xn)
3 + bn(x − xn)

2 + cn(x − xn) + dn (45)

The n polynomial segments require solving 4n parameters an, bn, cn, dn [28]. Based on
the continuity of derivatives and interpolation, 4n − 2 equations can be derived, as shown
in Equation (46): 

fn(xn)
fn(xn+1)
f ′n(xn+1)
f ′′n (xn+1)

(46)

The remaining two conditions are determined by the starting point x0 and the target
point xn. Upon completing the path planning, the UAV will generate a continuous and
smooth cubic spline curve. The optimization effect of the cubic spline interpolation is
illustrated in Figure 12. By comparing the trajectories with and without the cubic spline
in Figure 13, it is evident that the path without the cubic spline is not smooth and is more
prone to contacting obstacles.
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7. Constraint Conditions

To ensure the UAV operates within the specified airspace, its position updates during
each iteration must satisfy the following conditions. Boundary constraint condition: The
UAV’s position must remain within the upper and lower bounds of the search space. For
each dimension j(j = 1, 2, . . . , dim), the position xj must satisfy:

lbj ≤ xj ≤ ubj (47)

In Equation (47), lbj and ubj represent the lower and upper bounds of the j-th di-
mension, respectively. Furthermore, to ensure that the flight path remains within the
designated airspace, boundary constraints must be applied to satisfy the conditions speci-
fied in Equation (48): 

0 ≤ xi ≤ xmax
0 ≤ yi ≤ ymax
0 ≤ zi ≤ zmax

, i = 1, 2, . . . , n (48)

The fitness function [29] yields the minimum cost of flight within the designated
airspace while avoiding obstacles. It is derived from the objective function expression, as
shown in Equation (49):

f itness = min(Vc + Tc + Ec) (49)

8. Objective Function

The objective function for the UAV flight path primarily consists of three key fac-
tors: the total flight distance, the obstacle avoidance cost, and constraints to ensure the
UAV remains within specified boundaries. This objective function [30,31] considers the
following aspects:

f itness = Vc + Tc + Ec (50)

In Formula (50), VC represents the total voyage cost of the UAV. Tc denotes the cost
incurred by the UAV when bypassing obstacles. Ec signifies the cost of the UAV flying
within the specified boundaries.
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The voyage cost Vc primarily considers the total flight distance of the UAV from the
starting point to the endpoint, which is the sum of each arc segment Li. If the entire flight
path comprises n segments, the total voyage cost is expressed as Vc =

n−1
∑

i=1
Li

Li =
√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2
(51)

The terrain cost Tc is primarily designed to ensure that the UAV’s flight path avoids
obstacles by controlling the value of Tc. When the altitude zi is higher than the obstacle
height Z2(xi, yi) in the local terrain, we set Tc = 0; when the altitude zi is lower than the
obstacle height Z2(xi, yi), we set Tc = ∞. Summing up in this manner guarantees that the
UAV’s flight path can avoid obstacles such as mountains. The expression is as follows:

Tc =
n
∑

i=1
Tci Tc0 = 0

Tci =

{
0 Zi > Z(xi, yi)
∞ otherwise

(52)

The boundary cost Ec is intended to ensure that the UAV remains within the specified
airspace, primarily achieved by controlling the value of Ec. When the UAV is within the
airspace, Ec = 0; when it is outside the airspace, Ec = ∞. Summing in this way guarantees
that the UAV’s flight path stays within the designated airspace. The expression is as follows:

Ec =
n
∑

i=1
Eci Ec0 = 0

Eci =

{
∞ otherwise
0 xi ∈ [0, xmax] ∩ yi ∈ [0, ymax] ∩ zi ∈ [0, zmax]

(53)

9. Simulation Results Analysis of the ISWO Algorithm and Other Intelligent Algorithms

To validate the effectiveness of the ILO algorithm in simulating three-dimensional
UAV paths over mountainous terrain, a complex experimental environment map was
established, with the relevant environmental parameters detailed in Table 3. Moreover,
the data presented in Table 4 were obtained by averaging the results from 30 trials; the
compared algorithms are among the latest intelligent algorithms introduced in 2024.

Table 3. Environmental parameters.

Parameter Notation Parameter Value

Map

Execution space (math.) 100 × 100 × 250
Starting point Start [10, 10, 80]
Target point Goal [80, 90, 150]

Number of peaks N 5
Population size SearchAgents_no 30

Number of iterations t 100

Based on Table 4, the average convergence iteration count for ISWO is 32, which
is significantly less than HO (57), BKA (91), SWO (90), and COA (72). Although CFOA
converges in fewer iterations (11 times), its solution quality is inferior. This demonstrates
that ISWO achieves efficient convergence by integrating Differential Evolution (DE), COA’s
adaptive update mechanisms, and the opposition-based learning (OBL) strategy to enhance
the balance between exploration and exploitation.
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Table 4. Comparison of average fitness value and convergence speed.

Scale Algorithm

Average
Number of

Convergence
Iterations

Mean Fitness
Value

Percentage of
ISWO

Adaptation
Values/%

Percentage of
ISWO

Converged
Iterations/%

Map

ISWO 32 128.5 100 100
HO 57 129.1 99.5 56.1
BKA 91 187.8 68.4 35.2
SWO 90 132.8 96.8 35.6

CFOA 11 339.2 37.9
COA 72 129.9 98.9 44.5

From Figures 14–16, it is evident that CFOA has the longest average path length
(339.2), highlighting its inefficiency. BKA also exhibits a relatively high average path length
of 187.8. In contrast, ISWO identifies shorter and more optimal paths, thereby reducing
UAV energy consumption and flight time. ISWO dynamically adjusts its exploration
and exploitation phases during iterations, enabling it to converge more rapidly while
maintaining solution quality. Conversely, other algorithms like CFOA and SWO tend to
become trapped in suboptimal solutions or converge slowly due to an imbalance between
exploration and exploitation.

The path generated by ISWO is relatively the most direct, with a shorter and smoother
trajectory from the “start point” to the “end point”, effectively avoiding obstacles along
the shortest possible route and selecting the optimal path to achieve the best outcome.
While HO’s path is also relatively effective, it is slightly more curved compared to ISWO,
indicating a marginally lesser optimization capability. BKA’s path is noticeably longer than
those of ISWO and HO, involving more detours in areas with significant terrain undulations,
resulting in a more complex route. This reflects certain limitations of BKA in finding the
shortest path and the difficulty it has in effectively avoiding complex terrain features.
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Table 5 compares several popular algorithms from recent years. According to the data,
the average convergence iteration count for ISWO is 22, which is the lowest among all
algorithms and significantly superior to the others. For example, DBO requires 96 iterations,
LO requires 98, and SWO also requires 98, indicating that ISWO has made significant
improvements in the efficiency of finding the optimal solution. The fitness and convergence
rates of other algorithms are also inferior to ISWO. For instance, DBO has a fitness of 96.5%
and LO has a fitness of 90.4%, suggesting that these algorithms may become trapped in
suboptimal solutions during the solving process.

From Figure 17, it can be observed that the paths generated by LO, SWO, and COA
involve more detours or are more complex, whereas ISWO is able to find shorter and more
direct paths. This implies that ISWO performs better in optimizing UAV flight paths and can
significantly reduce flight distance and energy consumption. Figure 18 shows that the ISWO
algorithm can find the optimal path more quickly, with a convergence speed significantly
faster than other algorithms, thereby saving computation time. Figure 19 indicates that the
average path length of ISWO is approximately 127.7, while other algorithms such as SWO,
KOA, and COA have average path lengths exceeding 140. This demonstrates that ISWO
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can find significantly better paths. Such shorter path lengths directly reflect the superior
optimization performance of ISWO, making UAV flight more efficient.

Table 5. Comparison of average fitness value and convergence speed.

Scale Algorithm

Average
Number of

Convergence
Iterations

Mean Fitness
Value

Percentage
of ISWO

Adaptation
Values/%

Percentage
of ISWO

Converged
Iterations/%

Map

DBO 96 132.4 96.5 22.9
LO 98 141.4 90.4 22.4

SWO 98 151.7 68.4 22.4
COA 81 148.4 84.2 27.2
LSO 88 145.0 88.1 25
KOA 41 151.1 84.5 53.7
ISWO 22 127.7 100 100
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10. Concluding Remarks 
This paper introduces an Improved Spider Wasp Optimizer (ISWO), which innova-

tively modifies the population iteration formula (25) of the original SWO algorithm to re-
solve inaccuracies in computing N during each iteration. By integrating the strengths of 
Differential Evolution (DE) and the Crayfish Optimization Algorithm (COA), and by in-
corporating the opposition-based learning (OBL) strategy, the ISWO achieves dynamic 
adaptive parameter balancing between the exploration and exploitation phases. This sig-
nificantly enhances the algorithm’s global search capability and convergence speed. 

The experimental results indicate that ISWO surpasses other comparative algorithms 
in terms of minimum value, mean value, and standard deviation across 50-dimensional 
and 100-dimensional test functions, demonstrating superior stability and robustness. In 
UAV path planning applications, ISWO is capable of generating shorter and smoother 
flight paths with fewer iterations, thereby reducing energy consumption and flight time. 

The opposition-based learning strategy is applied once every 10 iterations. In high-
dimensional complex problems, this low-frequency application may not effectively main-
tain population diversity, especially during the early iterations when the population may 
quickly converge to certain local regions, lacking sufficient diversity to explore the global 
search space. Consequently, ISWO exhibits certain limitations when handling highly com-
plex multimodal functions (such as F30) and functions requiring fine-grained exploitation 
(such as F5 and F6). It tends to become trapped in local optima, affecting the efficiency of 
global optimum search. Future research could consider introducing new mechanisms, 
such as strategies to enhance population diversity, dynamic parameter adjustments, or 
hybridization with other optimization algorithms, to further improve ISWO’s perfor-
mance on complex optimization problems. Overall, ISWO demonstrates exceptional ad-
vantages in both algorithmic performance and practical applications. It adapts well to 
complex terrains and provides efficient and reliable solutions, yet there remains room for 
improvement to enhance its optimization capabilities on intricate functions. 
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10. Concluding Remarks

This paper introduces an Improved Spider Wasp Optimizer (ISWO), which innova-
tively modifies the population iteration formula (25) of the original SWO algorithm to
resolve inaccuracies in computing N during each iteration. By integrating the strengths
of Differential Evolution (DE) and the Crayfish Optimization Algorithm (COA), and by
incorporating the opposition-based learning (OBL) strategy, the ISWO achieves dynamic
adaptive parameter balancing between the exploration and exploitation phases. This
significantly enhances the algorithm’s global search capability and convergence speed.

The experimental results indicate that ISWO surpasses other comparative algorithms
in terms of minimum value, mean value, and standard deviation across 50-dimensional
and 100-dimensional test functions, demonstrating superior stability and robustness. In
UAV path planning applications, ISWO is capable of generating shorter and smoother
flight paths with fewer iterations, thereby reducing energy consumption and flight time.

The opposition-based learning strategy is applied once every 10 iterations. In high-
dimensional complex problems, this low-frequency application may not effectively main-
tain population diversity, especially during the early iterations when the population may
quickly converge to certain local regions, lacking sufficient diversity to explore the global
search space. Consequently, ISWO exhibits certain limitations when handling highly com-
plex multimodal functions (such as F30) and functions requiring fine-grained exploitation
(such as F5 and F6). It tends to become trapped in local optima, affecting the efficiency
of global optimum search. Future research could consider introducing new mechanisms,
such as strategies to enhance population diversity, dynamic parameter adjustments, or
hybridization with other optimization algorithms, to further improve ISWO’s performance
on complex optimization problems. Overall, ISWO demonstrates exceptional advantages in
both algorithmic performance and practical applications. It adapts well to complex terrains
and provides efficient and reliable solutions, yet there remains room for improvement to
enhance its optimization capabilities on intricate functions.
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Appendix A

Table A1. Comparison of 6 algorithms of 50 dimensions.

Dim = 50

HO BKA CFOA SWO COA ISWO

F1

Max 1.81E+10 1.03E+11 1.40E+11 7.78E+08 2.42E+10 1.39E+09

Mean 1.07E+10 4.25E+10 1.06E+11 4.27E+08 1.14E+10 2.61E+08

Min 4.51E+09 1.54E+10 8.55E+10 1.90E+08 3.54E+09 5.64E+07

p-value 3.02E−11 3.02E−11 3.02E−11 2.15E−06 3.02E−11 1.00E+00

Std 3.63E+09 2.26E+10 1.26E+10 1.56E+08 5.66E+09 2.68E+08

F2

Max 1.26E+66 6.96E+75 1.38E+87 2.84E+48 1.63E+61 2.98E+49

Mean 6.84E+64 2.42E+74 5.39E+85 1.23E+47 5.43E+59 1.93E+48

Min 9.37E+54 2.19E+46 1.33E+70 5.65E+38 1.02E+42 4.50E+37

p-value 3.02E−11 9.92E−11 3.02E−11 1.63E−02 1.20E−08 1.00E+00

Std 2.46E+65 1.27E+75 2.52E+86 5.20E+47 2.97E+60 7.33E+48

F3

Max 1.62E+05 2.26E+05 7.82E+05 1.91E+05 3.00E+05 1.29E+05

Mean 1.40E+05 9.41E+04 4.67E+05 1.20E+05 2.35E+05 8.95E+04

Min 1.20E+05 5.34E+04 3.15E+05 7.86E+04 1.66E+05 6.60E+04

p-value 4.98E−11 6.63E−01 3.02E−11 2.32E−06 3.02E−11 1.00E+00

Std 1.14E+04 3.67E+04 1.12E+05 2.48E+04 3.40E+04 1.51E+04

F4

Max 3.57E+03 3.06E+04 4.34E+04 8.54E+02 4.49E+03 8.79E+02

Mean 2.28E+03 9.16E+03 2.95E+04 7.43E+02 2.02E+03 7.39E+02

Min 1.43E+03 1.75E+03 1.81E+04 5.86E+02 1.03E+03 6.09E+02

p-value 3.02E−11 3.02E−11 3.02E−11 6.52E−01 3.02E−11 1.00E+00

Std 4.95E+02 8.69E+03 5.62E+03 6.14E+01 8.97E+02 6.64E+01

F5

Max 9.54E+02 1.18E+03 1.30E+03 8.73E+02 9.46E+02 8.71E+02

Mean 8.93E+02 9.10E+02 1.21E+03 7.51E+02 8.95E+02 8.06E+02

Min 8.39E+02 7.79E+02 1.08E+03 6.76E+02 8.20E+02 7.09E+02

p-value 2.87E−10 9.76E−10 3.02E−11 2.96E−05 2.15E−10 1.00E+00

Std 2.83E+01 8.19E+01 4.78E+01 4.21E+01 2.54E+01 4.32E+01

F6

Max 6.85E+02 7.04E+02 7.18E+02 6.27E+02 6.80E+02 6.56E+02

Mean 6.75E+02 6.74E+02 7.01E+02 6.17E+02 6.66E+02 6.43E+02

Min 6.56E+02 6.63E+02 6.80E+02 6.09E+02 6.38E+02 6.28E+02

P-value 3.02E−11 3.02E−11 3.02E−11 3.02E−11 2.23E−09 1.00E+00

Std 5.78E+00 1.01E+01 8.10E+00 4.58E+00 9.02E+00 7.32E+00
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Table A1. Cont.

Dim = 50

HO BKA CFOA SWO COA ISWO

F7

Max 1.84E+03 1.92E+03 2.86E+03 1.28E+03 1.85E+03 1.53E+03

Mean 1.69E+03 1.71E+03 2.51E+03 1.14E+03 1.76E+03 1.29E+03

Min 1.41E+03 1.57E+03 1.95E+03 1.01E+03 1.47E+03 1.05E+03

p-value 4.98E−11 3.02E−11 3.02E−11 2.68E−06 4.50E−11 1.00E+00

Std 7.84E+01 6.81E+01 2.26E+02 7.38E+01 8.28E+01 1.19E+02

F8

Max 1.24E+03 1.47E+03 1.60E+03 1.13E+03 1.30E+03 1.22E+03

Mean 1.16E+03 1.26E+03 1.51E+03 1.06E+03 1.23E+03 1.11E+03

Min 1.04E+03 1.18E+03 1.38E+03 9.72E+02 1.07E+03 1.00E+03

p-value 4.35E−05 1.96E−10 3.02E−11 1.30E−03 8.89E−10 1.00E+00

Std 4.23E+01 7.35E+01 5.75E+01 4.28E+01 4.05E+01 5.33E+01

F9

Max 2.40E+04 3.58E+04 6.57E+04 1.39E+04 3.64E+04 2.17E+04

Mean 1.99E+04 1.76E+04 4.64E+04 7.52E+03 2.51E+04 1.31E+04

Min 8.51E+03 1.38E+04 2.91E+04 3.47E+03 1.40E+04 6.53E+03

p-value 2.20E−07 4.46E−04 3.02E−11 1.73E−07 1.20E−08 1.00E+00

Std 3.17E+03 4.58E+03 1.08E+04 2.22E+03 6.87E+03 4.35E+03

F10

Max 1.25E+04 1.47E+04 1.72E+04 1.20E+04 1.47E+04 1.04E+04

Mean 9.69E+03 9.37E+03 1.59E+04 9.39E+03 1.34E+04 8.43E+03

Min 7.82E+03 6.78E+03 1.35E+04 7.45E+03 1.11E+04 6.57E+03

p-value 1.49E−04 3.78E−02 3.02E−11 5.83E−03 3.02E−11 1.00E+00

Std 1.28E+03 1.97E+03 7.89E+02 1.31E+03 7.29E+02 8.94E+02

F11

Max 7.09E+03 2.77E+04 6.64E+04 2.50E+03 1.27E+04 2.15E+03

Mean 4.78E+03 5.42E+03 4.63E+04 1.80E+03 4.81E+03 1.65E+03

Min 3.54E+03 2.00E+03 2.57E+04 1.49E+03 2.04E+03 1.33E+03

p-value 3.02E−11 4.98E−11 3.02E−11 7.29E−03 4.08E−11 1.00E+00

Std 1.04E+03 4.97E+03 1.30E+04 2.30E+02 2.47E+03 1.92E+02

F12

Max 2.82E+09 4.81E+10 9.14E+10 5.67E+07 6.87E+09 1.76E+08

Mean 1.22E+09 6.63E+09 6.20E+10 2.68E+07 7.50E+08 2.49E+07

Min 1.93E+08 5.29E+07 2.41E+10 6.95E+06 5.72E+07 2.82E+06

p-value 3.02E−11 3.69E−11 3.02E−11 6.35E−02 1.33E−10 1.00E+00

Std 6.71E+08 1.11E+10 1.50E+10 1.38E+07 1.51E+09 3.14E+07

F13

Max 1.44E+08 2.74E+10 5.26E+10 5.35E+04 7.76E+06 1.20E+05

Mean 7.28E+06 2.37E+09 2.89E+10 2.06E+04 1.88E+06 2.87E+04

Min 2.05E+05 4.36E+05 6.34E+09 7.70E+03 1.04E+05 1.26E+04

p-value 3.02E−11 3.02E−11 3.02E−11 3.92E−02 3.34E−11 1.00E+00

Std 2.72E+07 6.40E+09 1.18E+10 1.03E+04 2.14E+06 2.01E+04

F14

Max 7.44E+06 1.30E+07 1.31E+08 6.28E+05 4.39E+06 1.30E+05

Mean 2.90E+06 5.94E+05 3.68E+07 1.69E+05 1.48E+06 4.54E+04

Min 4.18E+05 1.18E+04 4.40E+06 6.54E+03 1.09E+05 4.93E+03

p-value 3.02E−11 8.66E−05 3.02E−11 1.41E−04 3.69E−11 1.00E+00

Std 2.29E+06 2.36E+06 2.81E+07 1.60E+05 1.09E+06 3.60E+04
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Dim = 50

HO BKA CFOA SWO COA ISWO

F15

Max 2.44E+05 5.10E+09 9.80E+09 2.67E+04 1.00E+06 2.33E+04

Mean 9.03E+04 4.18E+08 4.30E+09 9.28E+03 9.30E+04 1.19E+04

Min 2.90E+04 3.72E+04 9.83E+08 2.50E+03 9.12E+03 3.18E+03

p-value 3.02E−11 3.02E−11 3.02E−11 9.33E−02 3.82E−10 1.00E+00

Std 5.66E+04 1.09E+09 2.35E+09 6.24E+03 1.78E+05 6.47E+03

F16

Max 8.18E+03 8.90E+03 1.05E+04 4.13E+03 4.62E+03 4.42E+03

Mean 5.41E+03 4.61E+03 7.78E+03 3.44E+03 3.72E+03 3.40E+03

Min 3.96E+03 3.06E+03 5.71E+03 2.71E+03 2.53E+03 2.76E+03

p-value 4.98E−11 4.44E−07 3.02E−11 3.95E−01 9.47E−03 1.00E+00

Std 8.47E+02 1.35E+03 1.30E+03 3.32E+02 5.08E+02 4.18E+02

F17

Max 4.67E+03 5.16E+03 3.19E+04 3.57E+03 4.35E+03 3.51E+03

Mean 3.84E+03 3.69E+03 1.01E+04 2.97E+03 3.59E+03 3.07E+03

Min 3.07E+03 3.03E+03 4.65E+03 2.50E+03 2.92E+03 2.47E+03

p-value 3.50E−09 3.50E−09 3.02E−11 2.28E−01 6.01E−08 1.00E+00

Std 4.47E+02 4.69E+02 6.72E+03 2.62E+02 3.64E+02 2.18E+02

F18

Max 1.83E+07 7.01E+07 4.14E+08 5.38E+06 2.38E+07 2.78E+06

Mean 6.18E+06 5.19E+06 1.12E+08 1.48E+06 6.51E+06 5.97E+05

Min 3.39E+05 1.59E+05 2.08E+07 1.47E+05 6.70E+05 6.62E+04

p-value 3.47E−10 9.03E−04 3.02E−11 1.25E−04 4.20E−10 1.00E+00

Std 4.21E+06 1.43E+07 8.60E+07 1.21E+06 4.65E+06 5.91E+05

F19

Max 3.52E+07 1.78E+09 6.77E+09 4.15E+04 9.89E+05 3.12E+04

Mean 1.17E+07 9.67E+07 2.23E+09 1.77E+04 2.40E+05 1.49E+04

Min 5.50E+04 8.65E+04 5.13E+08 2.06E+03 3.45E+04 2.70E+03

p-value 3.02E−11 3.02E−11 3.02E−11 3.63E−01 3.02E−11 1.00E+00

Std 1.06E+07 3.42E+08 1.35E+09 1.12E+04 2.17E+05 7.75E+03

F20

Max 3.78E+03 3.85E+03 5.29E+03 3.65E+03 3.93E+03 3.58E+03

Mean 3.30E+03 3.27E+03 4.47E+03 3.01E+03 3.63E+03 3.04E+03

Min 2.91E+03 2.74E+03 3.45E+03 2.43E+03 2.79E+03 2.52E+03

p-value 2.53E−04 4.64E−03 3.69E−11 8.07E−01 7.09E−08 1.00E+00

Std 1.97E+02 2.76E+02 4.82E+02 2.43E+02 3.17E+02 2.71E+02

F21

Max 3.02E+03 3.28E+03 3.34E+03 2.61E+03 2.74E+03 2.62E+03

Mean 2.83E+03 2.89E+03 3.11E+03 2.54E+03 2.61E+03 2.53E+03

Min 2.68E+03 2.73E+03 2.96E+03 2.48E+03 2.50E+03 2.44E+03

p-value 3.02E−11 3.02E−11 3.02E−11 3.87E−01 6.28E−06 1.00E+00

Std 8.40E+01 1.19E+02 9.51E+01 4.17E+01 6.67E+01 4.71E+01

F22

Max 1.39E+04 1.60E+04 1.89E+04 1.39E+04 1.66E+04 1.35E+04

Mean 1.18E+04 1.13E+04 1.74E+04 1.07E+04 1.45E+04 8.06E+03

Min 8.88E+03 9.73E+03 1.55E+04 2.83E+03 4.99E+03 2.43E+03

p-value 8.20E−07 1.43E−05 3.02E−11 1.17E−03 4.20E−10 1.00E+00

Std 1.19E+03 1.39E+03 8.75E+02 1.82E+03 2.16E+03 3.64E+03



Biomimetics 2024, 9, 765 33 of 45

Table A1. Cont.

Dim = 50

HO BKA CFOA SWO COA ISWO

F23

Max 3.98E+03 4.35E+03 4.40E+03 3.17E+03 3.51E+03 3.27E+03

Mean 3.59E+03 3.86E+03 4.16E+03 3.06E+03 3.22E+03 3.10E+03

Min 3.38E+03 3.36E+03 3.85E+03 2.96E+03 3.09E+03 2.98E+03

p-value 3.02E−11 3.02E−11 3.02E−11 2.61E−02 2.03E−07 1.00E+00

Std 1.46E+02 2.54E+02 1.64E+02 5.67E+01 8.93E+01 6.74E+01

F24

Max 4.27E+03 4.17E+03 4.71E+03 3.35E+03 3.66E+03 3.46E+03

Mean 3.88E+03 3.83E+03 4.29E+03 3.24E+03 3.43E+03 3.29E+03

Min 3.53E+03 3.46E+03 3.81E+03 3.13E+03 3.22E+03 3.14E+03

p-value 3.02E−11 3.34E−11 3.02E−11 4.64E−03 5.61E−05 1.00E+00

Std 1.75E+02 1.57E+02 2.05E+02 6.16E+01 1.27E+02 8.06E+01

F25

Max 5.20E+03 1.55E+04 2.46E+04 3.51E+03 4.69E+03 3.50E+03

Mean 4.28E+03 6.95E+03 1.58E+04 3.28E+03 4.06E+03 3.28E+03

Min 3.63E+03 4.32E+03 9.97E+03 3.15E+03 3.50E+03 3.15E+03

p-value 3.02E−11 3.02E−11 3.02E−11 7.39E−01 3.34E−11 1.00E+00

Std 4.18E+02 3.42E+03 2.93E+03 9.70E+01 3.57E+02 9.20E+01

F26

Max 1.38E+04 1.83E+04 2.06E+04 8.53E+03 1.38E+04 1.16E+04

Mean 1.21E+04 1.34E+04 1.78E+04 7.28E+03 1.15E+04 6.53E+03

Min 8.08E+03 1.06E+04 1.47E+04 6.24E+03 7.10E+03 3.60E+03

p-value 9.76E−10 5.49E−11 3.02E−11 1.19E−01 1.31E−08 1.00E+00

Std 1.27E+03 1.88E+03 1.65E+03 5.85E+02 1.75E+03 2.65E+03

F27

Max 6.03E+03 5.40E+03 7.11E+03 3.92E+03 4.55E+03 4.13E+03

Mean 4.54E+03 4.32E+03 5.70E+03 3.73E+03 4.10E+03 3.85E+03

Min 3.78E+03 3.69E+03 4.39E+03 3.56E+03 3.58E+03 3.64E+03

p-value 9.76E−10 6.53E−07 3.02E−11 4.71E−04 2.32E−06 1.00E+00

Std 4.45E+02 4.33E+02 6.71E+02 1.14E+02 2.07E+02 1.22E+02

F28

Max 6.08E+03 9.35E+03 1.40E+04 4.07E+03 5.43E+03 3.85E+03

Mean 5.21E+03 5.98E+03 1.22E+04 3.81E+03 4.60E+03 3.63E+03

Min 4.16E+03 4.36E+03 9.86E+03 3.48E+03 4.11E+03 3.43E+03

p-value 3.02E−11 3.02E−11 3.02E−11 5.09E−06 3.02E−11 1.00E+00

Std 4.30E+02 9.30E+02 1.07E+03 1.55E+02 3.51E+02 9.41E+01

F29

Max 1.26E+04 1.84E+04 1.92E+05 5.35E+03 6.09E+03 5.57E+03

Mean 8.38E+03 7.63E+03 4.43E+04 4.63E+03 5.32E+03 4.86E+03

Min 6.18E+03 4.96E+03 9.47E+03 3.97E+03 4.87E+03 4.20E+03

p-value 3.02E−11 1.09E−10 3.02E−11 1.50E−02 2.88E−06 1.00E+00

Std 1.34E+03 2.69E+03 4.72E+04 3.41E+02 2.70E+02 3.41E+02

F30

Max 5.60E+08 1.80E+09 1.01E+10 1.22E+07 9.11E+07 3.88E+07

Mean 2.85E+08 1.96E+08 4.97E+09 7.02E+06 4.73E+07 1.85E+07

Min 1.04E+08 3.02E+07 1.55E+09 3.65E+06 1.73E+07 9.72E+06

p-value 3.02E−11 3.69E−11 3.02E−11 1.09E−10 8.89E−10 1.00E+00

Std 1.29E+08 4.16E+08 2.31E+09 2.12E+06 1.89E+07 6.77E+06
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Appendix B

Table A2. Comparison of 6 algorithms of 100 dimensions.

Dim = 100

HO BKA CFOA SWO COA ISWO

F1

Max 8.96E+10 1.97E+11 3.27E+11 2.48E+10 1.13E+11 2.77E+10

Mean 7.48E+10 1.42E+11 2.84E+11 1.78E+10 7.44E+10 1.51E+10

Min 5.02E+10 1.18E+11 2.23E+11 9.52E+09 5.34E+10 6.66E+09

p-value 3.02E−11 3.02E−11 3.02E−11 6.97E−03 3.02E−11 1.00E+00

Std 9.22E+09 1.57E+10 2.79E+10 3.43E+09 1.51E+10 4.73E+09

F2

Max 3.74E+159 9.52E+166 3.15E+186 4.74E+133 2.86E+143 3.68E+128

Mean 1.32E+158 3.18E+165 1.17E+185 1.58E+132 1.04E+142 1.24E+127

Min 4.37E+138 1.35E+123 4.32E+166 1.27E+113 7.59E+120 8.53E+109

p-value 3.02E−11 6.70E−11 3.02E−11 1.56E−02 1.09E−10 1.00E+00

Std Infinity Infinity Infinity 8.66E+132 5.22E+142 6.71E+127

F3

Max 3.35E+05 4.52E+05 1.65E+06 3.91E+05 7.38E+05 3.27E+05

Mean 3.17E+05 2.83E+05 1.03E+06 3.30E+05 5.35E+05 2.74E+05

Min 2.85E+05 2.25E+05 5.65E+05 2.76E+05 3.96E+05 1.99E+05

p-value 4.31E−08 9.00E−01 3.02E−11 5.09E−08 3.02E−11 1.00E+00

Std 1.46E+04 4.78E+04 2.87E+05 3.34E+04 8.14E+04 2.86E+04

F4

Max 1.53E+04 7.16E+04 1.40E+05 3.59E+03 2.29E+04 4.68E+03

Mean 1.23E+04 2.57E+04 9.50E+04 2.68E+03 1.12E+04 2.61E+03

Min 9.63E+03 1.32E+04 7.37E+04 1.89E+03 5.45E+03 1.53E+03

p-value 3.02E−11 3.02E−11 3.02E−11 3.87E−01 3.02E−11 1.00E+00

Std 1.38E+03 1.30E+04 1.65E+04 3.99E+02 4.27E+03 6.71E+02

F5

Max 1.64E+03 2.14E+03 2.33E+03 1.54E+03 1.66E+03 1.49E+03

Mean 1.54E+03 1.60E+03 2.19E+03 1.35E+03 1.53E+03 1.36E+03

Min 1.47E+03 1.37E+03 2.08E+03 1.15E+03 1.47E+03 1.20E+03

p-value 6.70E−11 1.07E−09 3.02E−11 6.00E−01 1.21E−10 1.00E+00

Std 4.18E+01 2.06E+02 7.69E+01 9.20E+01 4.91E+01 8.17E+01

F6

Max 6.88E+02 6.96E+02 7.27E+02 6.53E+02 6.80E+02 6.75E+02

Mean 6.82E+02 6.79E+02 7.15E+02 6.42E+02 6.74E+02 6.65E+02

Min 6.74E+02 6.69E+02 6.95E+02 6.31E+02 6.69E+02 6.52E+02

p-value 3.34E−11 2.61E−10 3.02E−11 3.34E−11 1.20E−08 1.00E+00

Std 3.25E+00 4.91E+00 6.64E+00 5.64E+00 2.56E+00 5.97E+00

F7

Max 3.61E+03 4.05E+03 6.05E+03 3.00E+03 3.66E+03 3.10E+03

Mean 3.43E+03 3.35E+03 5.29E+03 2.41E+03 3.41E+03 2.68E+03

Min 3.30E+03 3.15E+03 4.60E+03 1.92E+03 3.11E+03 2.30E+03

p-value 3.02E−11 3.02E−11 3.02E−11 3.83E−06 3.02E−11 1.00E+00

Std 8.75E+01 2.02E+02 3.68E+02 2.08E+02 1.23E+02 1.83E+02
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Dim = 100

HO BKA CFOA SWO COA ISWO

F8

Max 2.10E+03 2.57E+03 2.84E+03 1.82E+03 2.15E+03 1.95E+03

Mean 1.97E+03 2.06E+03 2.61E+03 1.66E+03 2.03E+03 1.72E+03

Min 1.75E+03 1.82E+03 2.40E+03 1.48E+03 1.90E+03 1.51E+03

p-value 5.57E−10 1.78E−10 3.02E−11 1.12E−02 3.69E−11 1.00E+00

Std 8.79E+01 1.91E+02 9.66E+01 8.53E+01 5.40E+01 9.55E+01

F9

Max 5.27E+04 8.84E+04 1.32E+05 7.75E+04 7.33E+04 5.24E+04

Mean 4.48E+04 4.11E+04 1.00E+05 4.36E+04 4.51E+04 3.77E+04

Min 3.59E+04 3.11E+04 7.53E+04 2.30E+04 3.24E+04 2.32E+04

p-value 8.66E−05 5.69E−01 3.02E−11 2.46E−01 6.10E−03 1.00E+00

Std 4.65E+03 1.61E+04 1.40E+04 1.40E+04 1.06E+04 6.98E+03

F10

Max 2.35E+04 3.20E+04 3.57E+04 2.97E+04 3.02E+04 2.13E+04

Mean 2.13E+04 2.19E+04 3.35E+04 2.36E+04 2.51E+04 1.88E+04

Min 1.80E+04 1.77E+04 3.11E+04 1.86E+04 1.95E+04 1.49E+04

p-value 7.09E−08 1.89E−04 3.02E−11 2.03E−09 1.61E−10 1.00E+00

Std 1.25E+03 4.32E+03 1.31E+03 2.50E+03 2.86E+03 1.54E+03

F11

Max 1.41E+05 2.14E+05 1.04E+06 9.54E+04 2.66E+05 6.54E+04

Mean 1.13E+05 9.08E+04 5.49E+05 5.93E+04 1.75E+05 4.02E+04

Min 8.72E+04 5.02E+04 3.08E+05 4.12E+04 1.30E+05 1.83E+04

p-value 3.02E−11 1.96E−10 3.02E−11 2.78E−07 3.02E−11 1.00E+00

Std 1.68E+04 4.62E+04 1.78E+05 1.18E+04 3.50E+04 1.06E+04

F12

Max 2.17E+10 1.82E+11 2.01E+11 2.11E+09 4.23E+10 3.09E+09

Mean 1.57E+10 5.99E+10 1.61E+11 1.34E+09 1.85E+10 1.11E+09

Min 8.91E+09 2.27E+10 1.12E+11 8.21E+08 2.99E+09 5.12E+08

p-value 3.02E−11 3.02E−11 3.02E−11 7.96E−03 3.34E−11 1.00E+00

Std 3.49E+09 3.74E+10 2.39E+10 3.89E+08 1.07E+10 5.46E+08

F13

Max 1.47E+09 4.07E+10 5.34E+10 2.55E+06 3.28E+09 5.13E+06

Mean 5.06E+08 8.49E+09 3.98E+10 1.08E+06 7.77E+08 8.92E+05

Min 8.12E+07 1.95E+09 2.93E+10 2.69E+05 3.26E+06 6.90E+04

p-value 3.02E−11 3.02E−11 3.02E−11 1.17E−03 4.08E−11 1.00E+00

Std 3.45E+08 8.78E+09 6.65E+09 6.21E+05 9.26E+08 1.36E+06

F14

Max 1.75E+07 4.03E+07 1.93E+08 6.15E+06 1.79E+07 2.32E+06

Mean 8.27E+06 4.80E+06 1.13E+08 2.54E+06 9.94E+06 1.04E+06

Min 2.61E+06 6.12E+05 3.90E+07 2.82E+05 2.20E+06 2.86E+05

p-value 3.02E−11 1.00E−03 3.02E−11 5.09E−06 3.34E−11 1.00E+00

Std 3.79E+06 9.24E+06 4.50E+07 1.54E+06 4.25E+06 4.64E+05

F15

Max 6.68E+07 3.13E+10 2.45E+10 8.78E+04 1.52E+09 9.59E+04

Mean 4.67E+06 2.35E+09 1.73E+10 2.62E+04 9.29E+07 3.03E+04

Min 1.66E+05 1.37E+06 8.72E+09 1.08E+04 1.47E+05 1.24E+04

p-value 3.02E−11 3.02E−11 3.02E−11 8.77E−02 3.02E−11 1.00E+00

Std 1.28E+07 6.12E+09 3.94E+09 1.60E+04 3.04E+08 1.54E+04
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Dim = 100

HO BKA CFOA SWO COA ISWO

F16

Max 1.38E+04 1.31E+04 2.58E+04 8.63E+03 1.18E+04 8.14E+03

Mean 1.13E+04 1.04E+04 2.02E+04 7.33E+03 8.88E+03 6.47E+03

Min 7.79E+03 7.60E+03 1.53E+04 6.38E+03 6.77E+03 5.37E+03

p-value 3.69E−11 4.08E−11 3.02E−11 1.25E−05 1.55E−09 1.00E+00

Std 1.43E+03 1.41E+03 2.65E+03 6.46E+02 1.40E+03 6.95E+02

F17

Max 1.09E+04 1.85E+06 1.03E+07 6.15E+03 8.34E+03 6.16E+03

Mean 8.03E+03 1.06E+05 2.76E+06 5.29E+03 6.10E+03 5.45E+03

Min 6.48E+03 5.62E+03 2.66E+05 4.70E+03 4.47E+03 4.56E+03

p-value 3.02E−11 2.15E−10 3.02E−11 2.17E−01 6.67E−03 1.00E+00

Std 1.16E+03 3.60E+05 2.39E+06 4.29E+02 9.41E+02 5.15E+02

F18

Max 1.39E+07 5.51E+07 4.42E+08 9.87E+06 2.68E+07 3.77E+06

Mean 6.70E+06 5.47E+06 1.75E+08 3.69E+06 9.98E+06 1.39E+06

Min 1.46E+06 6.61E+05 6.54E+07 1.39E+06 3.07E+06 4.34E+05

p-value 2.61E−10 4.35E−05 3.02E−11 2.83E−08 4.50E−11 1.00E+00

Std 3.20E+06 1.08E+07 7.32E+07 2.02E+06 6.29E+06 6.98E+05

F19

Max 1.88E+08 4.48E+09 3.05E+10 1.46E+05 2.53E+08 7.55E+05

Mean 4.00E+07 8.88E+08 1.89E+10 5.36E+04 1.78E+07 2.06E+05

Min 1.87E+06 1.91E+07 9.67E+09 9.66E+03 9.77E+05 2.01E+04

p-value 3.02E−11 3.02E−11 3.02E−11 1.29E−06 3.02E−11 1.00E+00

Std 4.23E+07 1.11E+09 5.30E+09 3.71E+04 4.54E+07 1.80E+05

F20

Max 6.38E+03 7.66E+03 9.29E+03 6.94E+03 7.70E+03 6.06E+03

Mean 5.65E+03 5.62E+03 8.42E+03 5.63E+03 7.04E+03 5.28E+03

Min 4.62E+03 4.63E+03 7.26E+03 4.44E+03 6.16E+03 4.15E+03

p-value 3.85E−03 5.55E−02 3.02E−11 4.36E−02 3.02E−11 1.00E+00

Std 4.39E+02 6.46E+02 5.66E+02 6.36E+02 3.82E+02 4.82E+02

F21

Max 4.41E+03 4.70E+03 5.17E+03 3.37E+03 3.84E+03 3.35E+03

Mean 3.85E+03 4.13E+03 4.74E+03 3.18E+03 3.39E+03 3.14E+03

Min 3.45E+03 3.63E+03 4.34E+03 3.01E+03 3.16E+03 2.96E+03

p-value 3.02E−11 3.02E−11 3.02E−11 1.22E−01 2.23E−09 1.00E+00

Std 1.71E+02 2.28E+02 1.82E+02 1.02E+02 1.52E+02 9.74E+01

F22

Max 2.71E+04 3.46E+04 3.80E+04 3.02E+04 3.39E+04 2.55E+04

Mean 2.46E+04 2.37E+04 3.59E+04 2.55E+04 2.92E+04 2.23E+04

Min 2.20E+04 2.02E+04 3.33E+04 2.15E+04 2.37E+04 8.03E+03

p-value 2.49E−06 3.04E−01 3.02E−11 7.60E−07 1.21E−10 1.00E+00

Std 1.32E+03 3.26E+03 1.34E+03 2.19E+03 2.84E+03 2.90E+03

F23

Max 5.61E+03 6.11E+03 6.30E+03 3.95E+03 4.50E+03 4.37E+03

Mean 5.04E+03 5.18E+03 5.80E+03 3.78E+03 4.14E+03 3.93E+03

Min 4.30E+03 4.41E+03 5.30E+03 3.59E+03 3.77E+03 3.67E+03

p-value 3.34E−11 3.02E−11 3.02E−11 1.09E−05 3.83E−06 1.00E+00

Std 3.59E+02 3.90E+02 2.51E+02 8.41E+01 1.63E+02 1.42E+02
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Table A2. Cont.

Dim = 100

HO BKA CFOA SWO COA ISWO

F24

Max 9.17E+03 8.62E+03 9.74E+03 4.90E+03 8.03E+03 5.74E+03

Mean 7.00E+03 6.85E+03 8.76E+03 4.57E+03 5.99E+03 5.12E+03

Min 5.33E+03 5.89E+03 7.74E+03 4.38E+03 5.10E+03 4.69E+03

p-value 5.49E−11 3.02E−11 3.02E−11 8.89E−10 1.43E−08 1.00E+00

Std 7.70E+02 6.40E+02 5.86E+02 1.43E+02 7.07E+02 2.96E+02

F25

Max 8.56E+03 2.65E+04 4.31E+04 6.23E+03 1.21E+04 6.01E+03

Mean 7.58E+03 1.34E+04 3.41E+04 5.36E+03 8.89E+03 5.00E+03

Min 6.48E+03 8.74E+03 2.64E+04 4.63E+03 6.37E+03 4.30E+03

p-value 3.02E−11 3.02E−11 3.02E−11 4.71E−04 3.02E−11 1.00E+00

Std 5.09E+02 4.38E+03 4.47E+03 3.58E+02 1.36E+03 4.21E+02

F26

Max 3.75E+04 5.74E+04 6.64E+04 2.27E+04 3.96E+04 2.97E+04

Mean 3.26E+04 3.91E+04 5.37E+04 1.94E+04 3.24E+04 2.41E+04

Min 2.36E+04 2.84E+04 4.61E+04 1.61E+04 2.41E+04 1.01E+04

p-value 4.57E−09 3.34E−11 3.02E−11 6.05E−07 1.55E−09 1.00E+00

Std 3.49E+03 8.08E+03 4.50E+03 1.65E+03 3.48E+03 4.49E+03

F27

Max 7.14E+03 1.19E+04 1.45E+04 4.73E+03 6.90E+03 5.45E+03

Mean 5.81E+03 6.07E+03 1.13E+04 4.32E+03 5.30E+03 4.66E+03

Min 4.81E+03 4.58E+03 7.50E+03 4.01E+03 4.59E+03 4.17E+03

p-value 3.16E−10 1.85E−08 3.02E−11 1.34E−05 2.57E−07 1.00E+00

Std 5.57E+02 1.47E+03 1.40E+03 1.90E+02 5.30E+02 3.09E+02

F28

Max 1.27E+04 3.61E+04 4.26E+04 9.20E+03 1.43E+04 8.54E+03

Mean 1.09E+04 1.89E+04 3.65E+04 7.10E+03 1.14E+04 6.37E+03

Min 8.32E+03 1.35E+04 3.09E+04 5.73E+03 8.32E+03 5.18E+03

p-value 3.34E−11 3.02E−11 3.02E−11 1.04E−04 3.34E−11 1.00E+00

Std 1.01E+03 5.52E+03 3.40E+03 8.16E+02 1.59E+03 6.56E+02

F29

Max 2.04E+04 1.52E+05 1.68E+06 9.98E+03 1.50E+04 1.09E+04

Mean 1.57E+04 2.12E+04 4.31E+05 8.90E+03 1.10E+04 9.16E+03

Min 1.12E+04 1.08E+04 4.78E+04 8.07E+03 7.97E+03 7.69E+03

p-value 3.02E−11 3.34E−11 3.02E−11 1.54E−01 2.20E−07 1.00E+00

Std 2.28E+03 2.95E+04 4.24E+05 5.65E+02 1.46E+03 8.07E+02

F30

Max 2.78E+09 3.85E+10 4.42E+10 3.04E+07 8.66E+09 1.24E+08

Mean 1.27E+09 1.32E+10 3.34E+10 1.39E+07 2.19E+09 4.45E+07

Min 2.53E+08 2.11E+08 1.39E+10 4.87E+06 9.38E+07 7.47E+06

p-value 3.02E−11 3.02E−11 3.02E−11 3.01E−07 1.33E−10 1.00E+00

Std 6.77E+08 1.34E+10 7.19E+09 7.14E+06 2.88E+09 3.39E+07
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