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Abstract: Cardiovascular diseases (CVDs) are the most common health threats worldwide. 2D X-ray
invasive coronary angiography (ICA) remains the most widely adopted imaging modality for CVD
assessment during real-time cardiac interventions. However, it is often difficult for the cardiologists
to interpret the 3D geometry of coronary vessels based on 2D planes. Moreover, due to the radiation
limit, often only two angiographic projections are acquired, providing limited information of the
vessel geometry and necessitating 3D coronary tree reconstruction based only on two ICA projections.
In this paper, we propose a self-supervised deep learning method called NeCA, which is based on
neural implicit representation using the multiresolution hash encoder and differentiable cone-beam
forward projector layer, in order to achieve 3D coronary artery tree reconstruction from two 2D
projections. We validate our method using six different metrics on a dataset generated from coronary
computed tomography angiography of right coronary artery and left anterior descending artery.
The evaluation results demonstrate that our NeCA method, without requiring 3D ground truth for
supervision or large datasets for training, achieves promising performance in both vessel topology
and branch-connectivity preservation compared to the supervised deep learning model.

Keywords: 3D coronary artery tree reconstruction; invasive coronary angiography; limited-projection
reconstruction; neural implicit representation; self-supervised learning; deep learning

1. Introduction

Cardiovascular diseases (CVDs) are the most common cause of death worldwide [1].
X-ray invasive coronary angiography (ICA) remains the most widely adopted imaging
modality for CVD assessment during real-time cardiac interventions [2]. ICA acquires
2D projections of the coronary tree, which makes it difficult for cardiologists in clinical
practice to understand the global vascular anatomical structure due to vessel overlap and
foreshortening. Moreover, potential adverse effects of the higher amount of radiographic
contrast agent and higher radiation required for long-time exposure to X-rays restrict
the number of angiographic projections acquired; typically, 2–5 projections are acquired,
providing limited information of the vessel structures. Therefore, it is of great significance
to perform 3D coronary tree reconstruction from only two 2D projections to provide spatial
vascular information, which can significantly reduce the risks of subjective interpretation
of the 3D coronary vasculature from 2D views and decrease the complexity of interventi-
onal surgeries.

Several conventional mathematical methods have been proposed for 3D coronary tree
reconstruction from ICA projections [3–6], but they usually depend on traditional stereo-
vision algorithms, requiring substantial manual interactions. The emergence and prosperity
of deep neural networks have enabled 3D automated reconstruction from limited views in
medical images [7–9]. Most of them need large training datasets and work in a supervised
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learning manner, but the acquisition of paired data has always been a challenge in real
clinics. Recently, Neural Radiance Fields (NeRF) [10] have made a significant contribution
to the field of computer vision, allowing for neural implicit representation and novel view
synthesis. In neural implicit representation learning, a bounded scene is parameterized
by a neural network as a continuous function that maps spatial coordinates to metrics
such as occupancy and color. The optimization of NeRF only relies on several images
from different viewpoints. Based on NeRF, Neural Attenuation Fields [11] (NAFs) are
proposed to tackle the problem of sparse-view cone-beam computed tomography (CT)
reconstruction, which require at least 50 projections. Shen et al. [12] proposed a neural
implicit representation learning methodology to reconstruct CT images, which performs
on 10, 20, and 30 projections.

Few studies have explored deep learning for 3D vessel reconstruction from limited
projections. Reconstructing the 3D cerebral vessels using deep learning has received some
attention in recent years. A self-supervised learning model [13] was proposed for the
3D reconstruction of cerebral vessels based on ultra-sparse X-ray projections. Zuo [14]
implemented an adversarial network for 3D neurovascular reconstruction based on biplane
angiograms, but the results are limited, with flaws occurring near crossed vessels. Some
deep learning-based studies also attempted 3D coronary tree reconstruction from limited
projections. Wang et al. [15] used coronary computed tomography angiography (CCTA)
data to simulate projections and trained a weakly supervised adversarial learning model
for 3D reconstruction from two projections. However, their model requires large training
datasets (8800 data in the experiments), with the 3D ground truth used in the discriminator.
Wang et al. [16] also used a large CCTA dataset to simulate projections for training. İbrahim
and GEDİK [17], Uluhan and Gedik [18], Iyer et al. [19] generated 3D synthetic coronary
tree data and simulated corresponding 2D projections to train supervised learning models;
their models require more than two projections for training. Bransby et al. [20] used bi-
planar ICA data to reconstruct a single coronary tree branch in a supervised learning setup.
Maas et al. [21] proposed a NeRF-based model to achieve 3D coronary tree reconstruction
from limited projections without involving 3D ground truth in training. However, they
tested the performance only on two 3D studies, and the number of required projections
is at least four. Despite the improvement in deep neural networks, 3D coronary tree
reconstruction from two projections without involving corresponding 3D ground truth and
large training datasets remains challenging.

In this paper, we propose a self-supervised deep learning method named NeCA, which
is based on neural implicit representation to achieve 3D coronary artery tree reconstruction
from only two projections. Our method neither requires 3D ground truth for supervision nor
large training datasets. It iteratively optimizes the reconstruction results in a self-supervised
fashion with only the projection data of one subject as input. Our proposed method utilizes
the advantages of the multiresolution hash encoder [22] to encode point coordinates,
residual multilayer perceptrons (MLP) to predict point occupancy, and a differentiable
cone-beam forward projector layer [23] to simulate projections. The simulated projections
are then learned from the input projections by minimzsing the projection error in a self-
supervised manner. Our method aims to learn and optimize the neural representation for
the entire image and can directly reconstruct the target image by incorporating the forward
model of the imaging system. We use a public CCTA dataset [24] to validate our model’s
feasibility on the task based on six metrics. The evaluation results indicate that our proposed
NeCA model, without 3D ground truth for supervision or large datasets for training,
achieves promising performance in both vessel topology preservation and maintaining
branch connectivity compared to an equivalent supervised learning model. The code of our
work is available at https://github.com/WangStephen/NeCA, 10 November 2024. The
main contributions of this work are:

1. 3D coronary tree reconstruction using self-supervised learning from only two
projections: Our proposed deep learning method achieves 3D coronary artery tree

https://github.com/WangStephen/NeCA
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reconstruction from two projections where neither 3D ground truth for supervision
nor large training datasets are required.

2. Neural implicit representation learning: We leverage the advantages of MLP neural
networks as a continuous function to represent the coronary tree in 3D space in order
to enable mapping from encoded coordinates to corresponding occupancies.

3. The applications of multiresolution hash encoder and differentiable cone-beam
forward projector layer: We combine a learnable hash encoder and a differentiable
projector layer in our model to allow for efficient feature encoding and self-supervised
learning from 2D input projections.

4. Evaluations: We perform thorough evaluation of our model on the right coronary
artery and left anterior descending artery in terms of six quantitative metrics.

2. Materials and Methods
2.1. Dataset

We use a public CCTA dataset [24] containing binary segmented coronary trees for
our study, splitting the coronary trees into the right coronary artery (RCA) and left anterior
descending (LAD) artery. Since our model is an optimization-based method for each
individual data point, we do not need training/validation split. We use 67 RCA data and
79 LAD data points as the test set. We perform cone-beam forward projections on the
CCTA data to generate the input projections with simulated attenuated X-ray intensities
based on the Operator Discretization Library (ODL) [23]. For each CCTA data point, we
generate only two projections to use in our model for 3D coronary tree reconstruction. The
projection geometries for RCA and LAD are illustrated in Table 1, which mimic the ones
generally used in clinics. Figure 1 illustrates an example of two projections generated from
both RCA and LAD.

Table 1. The projection geometry to simulate cone-beam forward projections for both RCA and LAD.
DSD: distance for source to detector; DSO: distance for source to origin.

Data Geometry First Projection Plane Second Projection Plane

RCA and LAD

Detector spacing 0.2769 × 0.2769 mm2 to 0.2789 × 0.2789 mm2

Detector size 512 × 512

Volume spacing 90 × 90 × 90 mm3 to 105 × 105 × 105 mm3

Volume size 128 × 128 × 128

RCA

DSD 970 mm to 1010 mm 1050 mm to 1070 mm

DSO 745 mm to 785 mm ±3 mm to the 1st projection

Primary angle 18◦ to 42◦ −8◦ to 8◦

Secondary angle −8◦ to 8◦ 18◦ to 42◦

LAD

DSD 1030 mm to 1090 mm +70 mm to the 1st projection

DSO 740 mm to 760 mm +3 mm to the 1st projection

Primary angle −8◦ to 8◦ −47◦ to −23◦

Secondary angle 18◦ to 42◦ 21◦ to 45◦
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RCA

1st projection 2nd projection

LAD

1st projection 2nd projection

Figure 1. An example of two projections generated from RCA and LAD data.

2.2. Proposed Model

Our proposed model NeCA consists of five stages and allows for end-to-end learning.
First, we normalize the coordinate index in the image spatial field according to resolution.
Then, for each voxel point, we use a multiresolution hash encoder [22] to encode their
normalized coordinates to obtain the corresponding multiresolution spatial feature vectors.
These feature vectors are next sent to the residual MLP to predict the occupancy at the
position of that point. The occupancy predictions of all the points form the 3D coronary
tree reconstruction results. After that, we simulate the X-ray forward projections from
the 3D predicted reconstruction based on the projection geometry of the input. Finally,
these simulated projections are learned iteratively against the input projections in a self-
supervised way. Stages 2 to 5 of our proposed model are illustrated in Figure 2.

Predicted Reconstruction

The First Projection

The Second Projection

Differentiable Cone-beam  
Forward Projector Layer

(First Projection Geometry)

(Second Projection Geometry)
Loss and Optimisation 

The Input Projections 
(Ground Truth) 

((x', y', z'))
Predicted Occupancy

Multiresolution Hash Encoding Residual Multilayer Perceptrons

Normalised Coordinates
(x', y', z') Hv((x', y', z'))

Hash-encoded Coordinates

Figure 2. The proposed NeCA model (stages 2–5). The multiresolution hash encoder illustrates an
example of 2 resolution levels (coloured in green and blue) from fine to coarse resolution for one
sampled point (in black).

2.2.1. Coordinate Normalization

The input to the model is a set of integer coordinates x = (x, y, z) based on the number
of voxels nvx × nvy × nvz in 3D volume ranging in (1 to nvx, 1 to nvy, 1 to nvz). We normalize
the coordinates from these voxels according to the voxel spacing svx,vy,vz along each axis,
as calculated in Equation (1). These normalized coordinates x′ = (x′, y′, z′) are then sent
to a multiresolution hash encoder at the next stage to efficiently obtain the corresponding
spatial feature vectors.
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n′
x,y,z =

nvx,vy,vz × svx,vy,vz − svx,vy,vz

2
,

x′ = Norm((x, y, z)) = (−n′
x + (x − 1)× svx,−n′

y + (y − 1)× svy,−n′
z + (z − 1)× svz).

(1)

2.2.2. Multiresolution Hash Encoding

We use the multiresolution hash encoder [22] Hv = enc(x′; Θ) to encode the normal-
ized positions of sampled points, which enables fast encoding without sacrificing perfor-
mance. With the multiresolution structure, it allows the encoder to disambiguate hash
collisions. The multiple resolutions are arranged into L levels with different T-dimensional
learnable hash tables at each level containing feature vectors with size F. The hyperparam-
eters of our multiresolution hash encoder are shown in Table 2, and the structure of the
encoder is illustrated in Figure 2.

Table 2. The hyperparameters for the multiresolution hash encoder used in our work.

Parameter Symbol Value

Number of levels L 16

Maximum entries per level
(hash table size) T 219

Number of feature dimensions per entry F 2

Coarsest resolution Nmin 16

Resolution growth factor b 2

Input dimension d 3

For each voxel, we apply L resolution levels, which are independent of each other.
The resolution size N is chosen based on an exponential increment between the coarsest
and finest resolutions ⌊Nmin, Nmax⌋, where Nmax is selected to match the finest detail in the
training data. It is defined as:

Nl :=
⌊

Nmin ∗ bl
⌋

, (2)

where l ∈ {0, 1, . . . L − 1}, and b = 2 is the growth factor. For a single level Nl , the input
point with normalized coordinates x′ = (x′, y′, z′) ∈ R3 is geometrically scaled to a grid
cube containing 23 vertices according to the grid resolution at this level. To implement this
functionality, the original 3D volume is evenly split into a number of grid cubes according to
the resolution N3

l , and the grid cube containing the desired sampled point is assigned to this
point as the spanned grid cube. The multiresolution property in the hash encoder covers
the full range from the coarsest resolution Nmin to the finest resolution Nmax, which ensures
that all scales are contained, in spite of sparsity. The four parts of the multiresolution hash
encoder are discussed in detail below.

Hashing of Voxel Vertices

For all normalized voxels after scaling at resolution level Nl , we have (Nl + 1)d vertices
in total. For coarse levels when (Nl + 1)d <= T, we have one-to-one mapping from all the
vertices at this resolution level Nl to hash table entries, so there is no collision. Regarding
finer levels when (Nl + 1)d > T, we use a hash function h to index into the feature vector
array, effectively treating it as a hash table. In this case, we do not explicitly tackle hash
collisions, but instead we reply on gradient-based optimization in the backpropagation of
the subsequent residual MLP to automatically handle them. For instance, if two voxels
have the same hash value on one or more vertices, the voxel closer to the desired object
which our model is more focused on tends to have larger gradients during optimization, so
this voxel takes the domination to update the collided feature vector entry. In this way, the
collision issue is handled implicitly.
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We assign indices to these vertices by hashing their coordinates. The spatial hash
function [25] h is defined in the following form:

h(x′) = (⊕i=1,2,3x′iπi) mod T (3)

where x′ is the input point, x′i=1,2,3 are the corresponding spatial normalized coordinate
values, ⊕ denotes the bit-wise XOR operation, πi are unique large primary numbers, and T
is the hash table size.

Hash Tables Lookup

We now have the hash value for each vertex at each resolution level of each point.
We then maintain an individual learnable hash table, which contains T numbers of F-
dimensional feature vectors for each resolution level. For the hash values on all the vertices
of each resolution level, we look up the corresponding entries in the level’s respective
feature vector array, i.e., the hash table. Next, the previously assigned indices on the
vertices are replaced by the corresponding lookup feature vectors, so each resolution level
conceptually stores feature vectors at the vertices of a grid cube. The hash tables at different
resolution levels are the only trainable parameters Θ in the multiresolution hash encoder,
and the size of these parameters is L × T × F.

Linear Interpolation

For each resolution level, we linearly interpolate the feature vectors on the vertices
according to their relative positions to the sampled point within this resolution level cube.
Interpolating the queried hash table entries guarantees the encoded feature vectors with
the later residual MLP are continuous during network training. After interpolation, the
final feature vectors with the dimension F for the sampled voxel at this resolution level
are produced.

Concatenation

We concatenate the interpolated feature vectors for each resolution level to generate
the final multiresolution hash encoding feature vectors Hv ∈ RL×F for the sampled point,
which can then be utilized to predict the occupancy of coronary tree for this point position
by the residual MLP at the next stage. The dimension L · F for the final encoded feature
vectors of each voxel is regarded as the channel dimension for later residual MLP training.

2.2.3. Residual MLP

We exploit residual [26] MLP m(Hv; Φ) to predict the occupancy value µ from the
position-encoded feature vectors Hv of each point, where Φ is the trainable weight param-
eters of the residual MLP. The residual MLP network serves as a continuous function to
implicitly parameterize a bounded scene, i.e., the 3D coronary tree in our case, which maps
spatial coordinate features to the predicted occupancy values. This, in fact, encodes the
internal information of an entire 3D coronary tree into the network parameters.

The residual MLP contains eight fully connected layers, as depicted in Figure 2. We
apply residual learning in the middle layer to preserve the original feature information.
The residual MLP receives the feature vectors as input with L · F-dimensional channels
and produces predicted occupancy values with a 1-dimensional channel. The feature
dimensions for all the hidden layers are 256-wide. Except for the last layer followed by a
sigmoid activation, all the layer outputs are followed by LeakyReLU activation [27].

2.2.4. Differentiable Forward Projector Layer

At this stage, we have all the predicted occupancy values for all the voxels, which
construct the 3D coronary tree reconstruction results. After that, we simulate the X-ray
cone-beam forward projections from the 3D reconstruction results based on the same
projection geometry as the input projections to generate two predicted projections. The
forward projection simulation is based on the theory that the intensity of an X-ray beam is
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reduced by the exponential integration of attenuation coefficients along the ray path. We
use ODL [23] to implement this differentiable X-ray forward projector layer that enables
self-supervised loss optimization at the final stage.

2.2.5. Loss

We use Mean Square Error (MSE) loss to calculate the differences between the input
projections and simulated forward projections. The loss function L is defined as follows:

L(Θ, Φ) =
1

N × I

N

∑
n

I

∑
i
(Pni − Gni)

2 (4)

where N (= 2 in our work) is the number of projections, I (= 512 in our work) is the
number of pixels in one projection, P is the simulated projection, and G is the corresponding
input projection.

The loss function is used to learn the multiresolution hash tables Θ and the residual
MLP Φ during training. With this, the 3D occupancy predictions are improved iteratively
based on the optimization of 2D projection errors. After training, the final 3D coronary
tree can be rendered with the predicted occupancy values, after binarisation with 0.5, by
querying all the voxels with their coordinates from the model.

2.3. Training Setup

We implement our proposed model using PyTorch [28] and choose the Adam optim-
izer [29] with a learning rate of 10−4. The number of epochs for optimization is 5000. The
learning was performed on an HPC cluster utilizing Nvidia Tesla v100 GPUs. The package
versions we used for NeCA are Python 3.8.17, PyTorch 1.9.0, and ODL 1.0.0.dev0.

2.4. Baseline Model

We use the supervised learning model 3D U-Net [30] as our baseline model. We
follow the original 3D U-Net architecture with three sampling levels and a bottleneck layer
using the same number of convolutional filters. The channel size for both the input and
output to 3D U-Net model in our work is 1. The input to 3D U-Net is an ill-posed volume
reconstructed from two clinical-angle projections of the 3D coronary tree by a conventional
back-projection method, and the output is the 3D coronary tree reconstruction result. We
train two 3D U-Net models based on the CCTA dataset [24] using 669 RCA data points and
788 LAD data points, respectively, where we split them into 75% training, 15% validation,
and 10% test data. The test datasets here are the same datasets used for testing our prop-
osed model.

We implement the 3D U-Net baseline model using PyTorch [28] and choose the Adam
optimizer [29] with an initial learning rate of 10−4. A learning rate decay policy is used,
where the learning rate is decayed by 0.1 if no improvement is observed after 10 epochs.
We use an early stopping strategy to avoid overfitting when there is no more improvement
after 15 epochs. The training was performed with a batch size of 3 on an HPC cluster
utilizing Nvidia Tesla v100 GPUs. The models are trained with MSE loss.

2.5. Evaluation Metrics

We employ six metrics for evaluation between the 3D coronary tree reconstruction
results and the original CCTA data (ground truth): centerline Dice score (termed as
clDice) [31], Dice score (termed as Dice), intersection over union (termed as IoU), reconstruc-
tion error (termed as reError) [32], Chamfer ℓ2 distance (termed as CDℓ2 ), and reconstruction
MSE (termed as reMSE). clDice ∈ [0, 1] where a larger value suggests a better performance
in vessel topology preservation. Dice (∈ [0, 1]) and IoU (∈ [0, 1]) also suggest a better per-
formance if measurement values are bigger. In terms of reError, CDℓ2 , and reMSE, a smaller
value represents a better reconstruction result. Before evaluation, we apply connected
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component analysis [33] on our reconstructed coronary tree to remove sparse disconnected
objects with less than 25 voxels.

3. Results

We perform both quantitative and qualitative evaluations on both RCA and LAD
datasets. Apart from the clinical-angle projections simulated according to Table 1, we
additionally test 3D reconstructions based on two orthogonal views using our NeCA model
for comparison (termed as NeCA (90◦)).

3.1. Quantitative Results

We quantitatively evaluate our NeCA model, NeCA (90◦), and supervised 3D U-Net
model on 67 RCA test data points and 79 LAD test data points.

3.1.1. RCA Dataset
Performance over Six Metrics

We evaluate NeCA, NeCA (90◦), and the 3D supervised U-Net model in terms of six
metrics, namely clDice, Dice, IoU, reError, CDℓ2 , and reMSE. The quantitative results are
presented in Table 3.

Table 3. The quantitative evaluation results of NeCA, NeCA (90◦), and supervised 3D U-Net model
on 67 RCA test data in terms of six metrics. The best results of each metric are in bold.

Model clDice
(%)

Dice
(%)

IoU
(%) reError CDℓ2

(mm)
reMSE

(1 × 10−4)

NeCA 87.01 ± 9.93 90.43 ± 7.46 83.29 ± 11.42 0.139 ± 0.101 0.27 ± 0.37 2.74 ± 2.14
NeCA (90◦) 89.07 ± 8.33 91.03 ± 6.93 84.17 ± 10.25 0.111 ± 0.087 0.22 ± 0.26 2.73 ± 2.60
3D U-Net 95.34 ± 4.16 85.18 ± 4.22 74.42 ± 6.24 0.188 ± 0.054 0.31 ± 0.16 4.63 ± 2.91

All values represent mean ± standard deviation.

From the results presented in Table 3, we can observe that our NeCA model performs
better than 3D U-Net model, with relative improvements of 6.16%, 11.92%, 26.06%, 12.90%,
and 40.82% in terms of Dice, IoU, reError, CDℓ2 , and reMSE metrics, respectively. 3D U-
Net model is better than our NeCA model based on the clDice metric, with a respective
improvement of 9.57%. 3D reconstruction from two orthogonal projections by our NeCA
model produces the best performance in all metrics compared to our NeCA model using
two clinical-angle projections. 3D U-Net model maintains the smallest standard deviations
among all metrics except for reMSE, where our NeCA model performs the best.

Statistical Analysis

The choice of the statistical test is very important, as different tests can have different
conclusions for the same evaluation. For this reason and the nature of deep learning
in our work, we use the Almost Stochastic Order (ASO) test [34,35] as implemented
by [36] specifically for deep leaning models to compare score distributions from different
models, with a significance level α. ASO returns a confidence score ϵmin, which indicates
(an upper bound to) the amount of violation of stochastic order. In terms of analysis
between model A and B using ASO, if ϵmin < τ (where the rejection threshold τ is 0.5 or
less), model A is said to be stochastically dominant over model B in more cases, and model
A is considered superior. The lower ϵmin is, the more confidently we can conclude that
model A outperforms model B. The tests from [36] show that τ = 0.2 is the most effective
threshold value that has a satisfactory tradeoff between Type I and Type II errors across
different scenarios. Please note for metrics such as errors where a smaller value expresses
a better performance, the final confidence score ϵmin should be 1 minus the returned ϵmin
from ASO.
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With regard to statistical significance test in our work using ASO, we choose a sig-
nificance level α = 0.05 and τ = 0.2. The confidence scores for all six metrics between
our NeCA model and 3D U-Net model using the ASO testing on the RCA test dataset is
demonstrated in Table 4.

Table 4. The confidence scores ϵmin for six metrics between our NeCA model and 3D U-Net model
using the ASO testing with a significance level α = 0.05 on the RCA test dataset. The confidence
scores where our NeCA model is found to be stochastically dominant over 3D U-Net are in bold, i.e.,
ϵmin < τ = 0.2.

clDice Dice IoU reError CDℓ2 reMSE

ϵmin 0.982350 0.198873 0.127973 0.0 0.287172 0

From Table 4, we can find that the score distributions of our NeCA model in terms
of Dice, IoU, reError, and reMSE are stochastically dominant over the 3D U-Net model.
Regarding the metric CDℓ2 , according to threshold τ = 0.2, our NeCA model is better but
not stochastically dominant over 3D U-Net. For the clDice, the 3D U-Net model is found to
be stochastically dominant over our NeCA model.

Optimizing the Performance of our NeCA Model over Iterations

Our NeCA model is optimized for each individual data point, and we record the
quantitative evaluation results of different metrics every 100 iterations. Here, we use two
RCA example data points to show how the performance improves iteratively using our
NeCA model with clinical-angle projections, as illustrated in Figure 3.

Figure 3. The results of all six metrics every 100 iterations for two RCA example data points (R1 and
R2) using our NeCA model with two clinical-angle projections.

We can see from Figure 3 that the performance starts to improve after 2000 iterations.
We can also find that it usually takes less than 2000 iterations to reach good results after the
improvement starts.

3.1.2. LAD Dataset
Performance over Six Metrics

We perform the quantitative evaluations on the LAD test dataset the same as for the
RCA data, as described in Section 3.1.1. The results are presented in Table 5.
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Table 5. The quantitative evaluation results of NeCA, NeCA (90◦), and 3D U-Net model on 79 LAD
test data points in terms of 6 metrics. The best results of each metric are in bold.

Model clDice
(%)

Dice
(%)

IoU
(%) reError CDℓ2

(mm)
reMSE

(1 × 10−4)

NeCA 76.08 ± 10.42 77.48 ± 9.93 64.28 ± 13.00 0.322 ± 0.129 0.75 ± 0.49 7.28 ± 3.61
NeCA (90◦) 91.69± 5.62 94.27 ± 3.91 89.41± 6.70 0.077 ± 0.051 0.17 ± 0.18 2.26 ± 1.89
3D U-Net 83.36 ± 7.50 68.54 ± 6.87 52.54 ± 7.91 0.415 ± 0.081 0.99 ± 0.51 10.38 ± 4.22

All values represent mean ± standard deviation.

In Table 5, in contrast to the 3D U-Net model, our NeCA model shows improvements
of 13.04%, 22.34%, 22.41%, 24.24%, and 29.87% in terms of Dice, IoU, reError, CDℓ2 , and
reMSE, respectively. The 3D U-Net model is 9.57% better than our NeCA model with respect
to clDice. Our NeCA model with two orthogonal projections as input maintains the best
performance among all six metrics compared to both our NeCA model with clinical-angle
projections and the 3D U-Net model. Furthermore, our NeCA model with two orthogonal
projections as input has the smallest standard deviations among all six metrics compared
to both the 3D U-Net model and NeCA with clinical-angle projections.

Statistical Analysis

For the statistical significance analysis on the LAD test dataset, we use the ASO test,
as described in Section 3.1.1, where we choose a significance level of α = 0.05 and τ = 0.2.
The confidence scores in terms of all six metrics between our NeCA model and the 3D
U-Net model are presented in Table 6.

Table 6. The confidence scores ϵmin for six metrics between our NeCA model and the 3D U-Net
model on the LAD test dataset using ASO testing with a significance level of α = 0.05. The confidence
scores where our NeCA model is tested to be stochastically dominant over 3D U-Net are in bold, i.e.,
ϵmin < τ = 0.2.

clDice Dice IoU reError CDℓ2 reMSE

ϵmin 0.992092 0.010340 0.005389 0 0 0

Table 6 demonstrates that our NeCA model evidently outperforms the 3D U-Net
model in terms of five metrics, namely Dice, IoU, reError, CDℓ2 , and reMSE. In terms of the
clDice metric, the 3D U-Net model is stochastically dominant over the NeCA model.

Optimizing the Performance of our NeCA Model Over Iterations

We record the quantitative evaluation results of different metrics every 100 iterations
for each individual data point our NeCA model optimizes for. Here, we report two
LAD example data points to demonstrate how the NeCA model’s performance improves
iteratively, as illustrated in Figure 4.

From Figure 4, we can see that the performance does not start to improve until at least
2000 iterations, and it often takes about 2000 iterations to reach satisfactory performance
after the improvement starts. The same phenomenon is also observed for the RCA dataset
in Section 3.1.1.
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Figure 4. The quantitative results of our NeCA model over two LAD example data points (L2 and L3)
every 100 iterations with respect to all 6 metrics and evaluated with 2 clinical-angle projections.

3.2. Qualitative Results

We present the qualitative results of 3D coronary artery tree reconstruction based on
our NeCA model, NeCA (90◦), and the 3D U-Net model on both the RCA and LAD test
datasets. Here, we use five example data points for each dataset.

3.2.1. RCA Dataset
3D Reconstruction Results

Figure 5 illustrates five RCA examples of 3D coronary tree reconstruction using our
NeCA model, NeCA (90◦), and 3D U-Net model, along with the corresponding ground
truth for each case. The results show that all three models can successfully perform
satisfactory 3D RCA reconstruction.

NeCA

NeCA (90◦)

3D U-Net

GT

R1 R2 R3 R4 R5

Figure 5. Five qualitative results of 3D RCA reconstruction. From left to right: five RCA data points
R1,2,3,4,5. From top to bottom: the reconstruction results from our NeCA model, NeCA (90◦), 3D
U-Net model, and the corresponding ground truth (GT).

Comparison Between 3D Reconstruction and Ground Truth

We additionally compare the 3D RCA reconstruction results using the NeCA, NeCA
(90◦), and 3D U-Net model with the corresponding ground truth in the same 3D space,
as illustrated in Figure 6. These figures show that our NeCA model demonstrates better
reconstruction overlap than the 3D U-Net model.
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NeCA

NeCA (90◦)

3D U-Net

R1 R2 R3 R4 R5

Figure 6. Five 3D RCA reconstruction results compared with the corresponding ground truth in the
same 3D space. From left to right: five RCA data points R1,2,3,4,5. From top to bottom: the comparison
results from our NeCA model, NeCA (90◦), and 3D U-Net model. The purple color represents the
reconstruction results; green represents the ground truth; and red shows the overlap between them.

3.2.2. LAD Dataset
3D Reconstruction Results

We show in Figure 7 five 3D LAD reconstruction results using our NeCA model, NeCA
(90◦), and the 3D U-Net model, with the corresponding ground truth. From the results, we
can observe that our NeCA model successfully reconstructs the vasculature of LAD in all
five cases. On the other hand, the 3D U-Net model fails to reconstruct some branches in
L2,4,5 and loses vessel connectivity, as presented in red boxes.

NeCA

NeCA (90◦)

3D U-Net

GT

L1 L2 L3 L4 L5

Figure 7. Five qualitative 3D LAD reconstruction results. From left to right: five LAD data points
L1,2,3,4,5. From top to bottom: the reconstruction results using our NeCA model, NeCA (90◦), and 3D
U-Net model, along with the corresponding ground truth.

Comparison Between 3D Reconstruction and Ground Truth

We also compare in Figure 8 the five 3D LAD reconstruction results using NeCA,
NeCA (90◦), and the 3D U-Net models with the corresponding ground truth in the same
3D space. The results show a similar performance to the RCA dataset; our NeCA model
demonstrates better reconstruction overlap than the 3D U-Net model.
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NeCA

NeCA (90◦)

3D U-Net

L1 L2 L3 L4 L5

Figure 8. Five 3D LAD reconstruction results compared with the corresponding ground truth in the
same 3D space. From left to right: five LAD data points L1,2,3,4,5. From top to bottom: the comparison
results from our NeCA model, NeCA (90◦), and 3D U-Net model. The purple color represents the
reconstruction results; green represents the ground truth; and red shows the overlap between them.

4. Discussions and Conclusions

Our evaluation on both the RCA and LAD datasets demonstrates that the NeCA
model performs better than the supervised 3D U-Net model in terms of five metrics: Dice,
IoU, reError, CDℓ2 , and reMSE. The NeCA model performs statistically significantly better
than 3D U-Net model in four metrics for the RCA dataset and five metrics for the LAD
dataset out of a total of six metrics. This indicates that our self-supervised learning model,
where neither 3D ground truth for supervision nor large training datasets are required, is
better than the supervised 3D U-Net model in 3D coronary tree reconstruction from only
two projections. It is also demonstrated qualitatively in Section 3.2 that our NeCA model
presents good vasculature reconstruction. In addition, due to the intrinsic properties of our
model, we do not need to train two models for RCA and LAD separately, and as a result, it
has significant potential to generalize to other tasks.

Our model optimized with two orthogonal projections (NeCA (90◦)) shows consis-
tently better performance than our model with two clinical-angle projections (Table 5), since
two orthogonal projections usually contain more feature coverage and less overlapped
redundant information (Figure 1). However, in real clinics such as cardiac catheterization
laboratories, projections are generally not acquired at orthogonal views, thus necessitating
this feature of our NeCA model.

Our NeCA model contains two trainable components: the hash tables with feature
vectors Θ from the multiresoultion hash encoder and network parameters Φ from the
residual MLP. The residual MLP is the backbone of the neural implicit representation, so it
cannot be replaced. For the multiresolution hash encoder to encode the coordinates, there
are alternative encoders available, such as a frequency encoder, which is not learnable. We
have tested the coordinate encoder where we have replaced our multiresolution encoder
with a frequency encoder and used the same projection geometry for validation. According
to our experiments, the model could not reconstruct any vessels for every case of the RCA
and LAD datasets under 5000 iterations.

The supervised 3D U-Net model, once trained, can perform real-time 3D coronary
tree reconstruction, while our model takes around one hour to optimize the results with
a volume size of 128 × 128 × 128 for 5000 iterations. We have also tested our model to
optimize a coronary tree of size 64 × 64 × 64, which takes on average of 11 minutes for
reconstruction. Therefore, there is a tradeoff between lower reconstruction time and better
reconstruction resolution for our NeCA model. The 3D U-Net model applies a pre-trained
model during evaluation, so when reconstructing out-of-distribution data, it may fail to
generalize, which is a serious threat during clinical applications, whereas our model is
optimized for each individual data points and can generalize well. Hence, there is also a
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tradeoff between real-time reconstruction and stable performance between the 3D U-Net
and our NeCA model.

The input cone-beam projections to our NeCA model are based on simulation of X-ray
intensity attenuation though the object, i.e., the 3D coronary tree. In our experiments using
3D segmented CCTA data, the attenuation coefficients for the coronary tree are assumed
to be uniform as a value of 1. However, in real scenarios, the actual coefficients vary,
usually within a certain range due to different vessel conditions. Moreover, blood and
contrast injected in the vessel contribute to the X-ray attenuation as well as the other tissues
and organs in the background. Though the background removal could be solved with
automated coronary vessels segmentation [37,38], the 3D coronary tree reconstruction based
on real X-ray projections with contrast injected and different vessel conditions needs to be
explored further.

In summary, we have proposed a self-supervised deep learning method—NeCA—using
neural implicit representation to achieve 3D coronary artery tree reconstruction from only
two projections. Our method neither requires 3D ground truth for supervision nor large
training datasets and optimizes the reconstruction results in an iterative self-supervised
fashion with only the projection data of one patient as input. We leverage the advantages
of a learnable multiresolution hash encoder [22] to allow for efficient feature encoding,
residual MLP neural networks as a continuous function to represent the coronary tree in
3D space, and a differentiable projector layer [23] to enable self-supervised learning from
2D input projections. We use a public CCTA dataset [24] containing both RCA and LAD
data to validate our model’s feasibility on the task based on six quantitative metrics, and
we perform a thorough evaluation. The results demonstrate that our proposed NeCA
model achieves promising performance in both vessel topology preservation and branch-
connectivity maintenance compared to the supervised 3D U-Net model. Our proposed
model also has a high possibility to generalize to other clinical tasks where the ground
truth is usually unavailable and hard to acquire.
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