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Abstract: Multiple sequence alignment (MSA) has evolved into a fundamental tool in the biological
sciences, playing a pivotal role in predicting molecular structures and functions. With broad applica-
tions in protein and nucleic acid modeling, MSAs continue to underpin advancements across a range
of disciplines. MSAs are not only foundational for traditional sequence comparison techniques but
also increasingly important in the context of artificial intelligence (AI)-driven advancements. Recent
breakthroughs in AI, particularly in protein and nucleic acid structure prediction, rely heavily on the
accuracy and efficiency of MSAs to enhance remote homology detection and guide spatial restraints.
This review traces the historical evolution of MSA, highlighting its significance in molecular structure
and function prediction. We cover the methodologies used for protein monomers, protein complexes,
and RNA, while also exploring emerging AI-based alternatives, such as protein language models, as
complementary or replacement approaches to traditional MSAs in application tasks. By discussing
the strengths, limitations, and applications of these methods, this review aims to provide researchers
with valuable insights into MSA’s evolving role, equipping them to make informed decisions in
structural prediction research.

Keywords: pairwise sequence alignment; multiple sequence alignment; protein monomer; protein
complex; RNA; protein language model; function prediction; protein structure prediction; deep learning

1. Introduction

Multiple sequence alignment (MSA) is the process of aligning three or more biological
sequences, typically protein, DNA, or RNA, to identify regions of similarity. These align-
ments are essential for inferring evolutionary relationships through phylogenetic analysis
and highlighting homologous features between sequences. MSA also reveals mutation
events, such as point mutations, insertions, and deletions, which help assess sequence
conservation and infer the presence and function of protein domains, as well as secondary
and tertiary structures.

Traditionally, MSA is used to compare biological sequences to identify similarities and
differences, helping researchers study conserved regions, functional characteristics, and
evolutionary relationships. However, in structural prediction—also known as homology-
based sequence alignment—MSA plays a more specialized role. This approach allows users
to input a target sequence, search large-scale protein databases, and identify homologous
sequences for structure prediction.
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MSA is fundamental to protein structure prediction. Sequence profiles—such as
Position-Specific Scoring Matrices (PSSMs) and profile Hidden Markov Models
(HMMs)—are typically derived from MSAs and are crucial for detecting homologous pro-
teins and identifying conserved regions. In template-based modeling (TBM) for structure
prediction, methods such as LOMETS [1] and HHpred [2] utilize these profiles generated
from MSA for homology modeling (comparative modeling) and threading (fold recogni-
tion), enabling the identification of structural templates and facilitating the modeling of the
target protein’s structure. Additionally, MSAs allow for the extraction of coevolutionary
information to aid in structure prediction. For example, contact-based structure prediction
methods, such as CONFOLD2 [3], utilize the MSAs generated from database searches of
the query sequence to predict contact maps, which guide folding simulations to achieve
accurate structure prediction. End-to-end methods, such as AlphaFold2 [4], also utilize
MSAs as input data. These methods employ neural networks, specifically self-attention
transformers and structural modules, to bypass complex folding simulations and directly
achieve high-precision structure prediction.

Beyond structure prediction, MSA, as one of the most extensively utilized modeling
techniques in biology, has broad applications across various fields, particularly in functional
prediction. Sequence profiles, such as PSSMs and HMM profiles, generated from MSA
contain rich evolutionary information. This makes them valuable for applications that have
been widely explored and studied, such as Gene Ontology (GO) functional annotation,
protein–ligand binding site prediction, protein post-translational modifications (PTMs)
prediction, DNA/RNA binding site prediction, and disordered protein/region prediction.
By leveraging only protein sequence alignments, InterProScan [5] enables the identification
of potential functional domains, conserved regions, family members, and GO functional
annotations. GO is a framework for representing how genes, in an evolving context,
encode biological functions at the molecular, cellular, and tissue system levels. In the
MetaGO [6] algorithm, sequence and sequence profile matching are employed for the
identification of homologous sequences. In NsitePred [7], the PSSM profile generated by
PSI-BLAST [8], along with structural features, is used as input for a support vector machine
(SVM) classifier to predict protein-ligand binding sites. Similarly, S-SITE [9] combines
PSSMs and Position-Specific Frequency Matrices (PSFMs) to represent template profiles for
template recognition and complementary binding site prediction. In GlycoEP [10], PSSM is
used as one of the features to predict N-, O-, and C-linked glycosylation sites using an SVM.
It is noteworthy that PSSMs can also be used to predict binding sites in DNA- and RNA-
binding proteins, as exemplified by tools such as DP-Bind [11] and RBPmap [12]. Moreover,
features extracted from HMM profiles have been shown to further improve prediction
accuracy in the field of DNA-binding protein prediction compared to PSSM features, as
demonstrated by tools like HMMPred [13] and HMMBinder [14]. PSSM and HMM profiles
can also be used as input features for machine learning classifiers to identify functional
regions in intrinsically disordered proteins (IDPs), which lack stable 3D structures and
exhibit dynamic interactions and diverse functions in biological processes. For example,
molecular recognition features (MoRFs) are short sequences that undergo disorder-to-order
transitions upon specific binding, with relevant analytical methods such as MoRFpred [15]
and the approach proposed by Ronesh Sharma [16].

As sequencing technologies advance and the amount of available sequence data grows
exponentially, the role of MSA will continue to be pivotal in decoding the complexities of
biological systems. However, MSA construction has constraints, including a time-intensive
process [17], labor-intensive manual design, and quality limitations for certain targets.
With the advancement of deep learning technology, protein language models (PLMs) can
not only be directly used to generate MSAs, but more importantly, they are now being
employed to extract features from protein sequences as an alternative to MSAs in various
application tasks.

In this work, we provide an overview of the history of constructing MSA for pro-
tein monomers, protein complexes, and RNA. For protein monomers, methods include
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sequence-based approaches represented by FASTA [18], HMM-based approaches repre-
sented by SAM [19], k-mer-based approaches represented by MMseqs2 [20], multi-stage hy-
brid approaches represented by DeepMSA2 [21], and deep learning-based approaches rep-
resented by pLM-BLAST [22]. For protein complexes, methods include genomic distance-
based approaches represented by EVcomplex [23], phylogeny-based approaches repre-
sented by ComplexContact [24], protein–protein interaction-based approaches represented
by cpxDeepMSA [25], PLM-based approaches represented by ESMpair [26], and hybrid
approaches represented by DeepMSA2-Multimer [21]. MSA construction methods for
RNA include sequence-based approaches such as BLASTn [27], HMM-based approaches
such as nhmmer [28], covariance model (CM)-based approaches such as Infernal [29], and
hybrid approaches combining multiple approaches like RNAlien [30]. Finally, we discuss
alternative methods to MSA in application tasks, namely PLM-based methods, which
include methods that use MSA as input like MSA transformer [31], autoencoding methods
with single-sequence input like ESM-1b [32], autoregressive methods with single-sequence
input like ProtGPT2 [33], and methods based on alternative frameworks like ProtT5 [34].

Table 1 provides links to and classifications of the methods discussed in this work,
while Table 2 summarizes the advantages and limitations of each type of method for ease
of reference.

Table 1. Tools for constructing MSA and protein language model.

Methods URLs Classification Objective

PEbA https://github.com/mgtools/PEbA Dynamic programming-based
pairwise alignment

MSA for protein
monomer

EBA https://git.scicore.unibas.ch/schwede/EBA

ClustalW https://www.genome.jp/tools-bin/clustalw

Multiple sequence alignment
MAFFT https://www.ebi.ac.uk/jdispatcher/msa

MUSCLE https://www.ebi.ac.uk/jdispatcher/msa/muscle?stype=protein
T-Coffee https://www.ebi.ac.uk/jdispatcher/msa
vcMSA https://github.com/clairemcwhite/vcmsa

FASTP https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi

Sequence-based approaches

FASTA https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi

Gapped BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
PSI-BLAST https://github.com/ianpotpie/psi-blast
DIAMOND https://github.com/bbuchfink/diamond

SAM http://www.cse.ucsc.edu/research/compbio/

HMM-based approachesHMMER https://github.com/EddyRivasLab/hmmer
HHsearch https://github.com/soedinglab/hh-suite
HHblits https://github.com/soedinglab/hh-suite

USEARCH https://github.com/rcedgar/usearch12 k-mer-based approaches
MMseqs2 https://github.com/soedinglab/MMseqs2/releases

DeepMSA2 https://zhanggroup.org/DeepMSA/ Multi-stage hybrid
approaches

pLM-BLAST https://github.com/labstructbioinf/pLM-BLAST Deep learning-based
approachesPLMsearch https://github.com/maovshao/PLMSearch

DCTdomain https://github.com/mgtools/DCTdomain

Evcomplex http://evcomplex.org/ Genomic distance-based
approaches

MSA for protein
complex

GremlinComplex http://gremlin.bakerlab.org/complexes/

ComplexContact http://raptorx6.uchicago.edu/ComplexContact/ Phylogeny-based approaches

cpxDeepMSA https://zhanggroup.org/cpxDeepMSA/ Protein-protein interactions
databases-based approaches

ESMpair https://github.com/allanchen95/ESMPair PLM-based approaches
DiffPALM https://github.com/Bitbol-Lab/DiffPALM

DeepMSA2-
Multimer https://zhanggroup.org/DeepMSA/ Hybrid approaches

MULTICOM https://github.com/BioinfoMachineLearning/MULTICOM3

https://github.com/mgtools/PEbA
https://git.scicore.unibas.ch/schwede/EBA
https://www.genome.jp/tools-bin/clustalw
https://www.ebi.ac.uk/jdispatcher/msa
https://www.ebi.ac.uk/jdispatcher/msa/muscle?stype=protein
https://www.ebi.ac.uk/jdispatcher/msa
https://github.com/clairemcwhite/vcmsa
https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi
https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/ianpotpie/psi-blast
https://github.com/bbuchfink/diamond
http://www.cse.ucsc.edu/research/compbio/
https://github.com/EddyRivasLab/hmmer
https://github.com/soedinglab/hh-suite
https://github.com/soedinglab/hh-suite
https://github.com/rcedgar/usearch12
https://github.com/soedinglab/MMseqs2/releases
https://zhanggroup.org/DeepMSA/
https://github.com/labstructbioinf/pLM-BLAST
https://github.com/maovshao/PLMSearch
https://github.com/mgtools/DCTdomain
http://evcomplex.org/
http://gremlin.bakerlab.org/complexes/
http://raptorx6.uchicago.edu/ComplexContact/
https://zhanggroup.org/cpxDeepMSA/
https://github.com/allanchen95/ESMPair
https://github.com/Bitbol-Lab/DiffPALM
https://zhanggroup.org/DeepMSA/
https://github.com/BioinfoMachineLearning/MULTICOM3
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Table 1. Cont.

Methods URLs Classification Objective

FASTN https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi Sequence-based approaches

MSA for RNA

BLASTn https://blast.ncbi.nlm.nih.gov/Blast.cgi

Nhmmer http://hmmer.org/download.html HMM-based approaches

Infernal https://github.com/EddyRivasLab/infernal CM-based approaches

RNAlien https://github.com/eggzilla/RNAlien
Hybrid approachesRNAcmap https://github.com/jaswindersingh2/RNAcmap

rMSA https://github.com/pylelab/rMSA

MSA transformer https://github.com/rmrao/msa-transformer With MSA as input

PLMs

MSA2Prot /

ESM-1b https://github.com/facebookresearch/esm

Autoencoding objectives
with single-sequence input

ProteinBERT https://github.com/nadavbra/protein_bert
Saprot https://github.com/westlake-repl/SaProt

AminoBERT https://github.com/zengsihang/AminoBERT-PyTorch
ESM-2 https://github.com/facebookresearch/esm

OmegaPLM https://github.com/HeliXonProtein/OmegaFold

ProtTrans https://github.com/agemagician/ProtTrans Hybrid objectives
with single-sequence input

ProGen https://github.com/salesforce/progen

Autoregressive objectives
with single-sequence input

ProGen2 https://github.com/enijkamp/progen2
RITA https://github.com/lightonai/RITA

ProtGPT2 https://huggingface.co/docs/transformers/main_classes/trainer
Tranception https://github.com/OATML-Markslab/Tranception

xTrimoPGLM https://github.com/ONERAI/xTrimoPGLM Others

The date of access for all links (accessed on 9 September 2024).

Table 2. The advantages and limitations of each type of methods.

Advantages Limitations Classification Objective

Such methods perform well on short sequences or
sequences with high similarity.

Such methods have limited sensitivity
to distantly related homologous

sequences.

Sequence-based
approaches

MSA for protein
monomer

Such methods can significantly improve sensitivity
and alignment quality, allowing for better capture of

distant homology.

When the database is very large, the
running speed can be slow, especially

for complex model training and
alignment processes.

HMM-based
approaches

Such methods enable fast and accurate searching of
large-scale databases, further enhancing speed and

sensitivity.

There is still potential for improving
the precision of the MSAs it generates.

k-mer-based
approaches

Such methods enable fast and highly sensitive
exploration of metagenomic databases, integrating

multiple specialized tools to generate optimal MSAs.

The algorithm is complex and requires
substantial computational resources.

Multi-stage hybrid
approaches

Such methods significantly improve the sensitivity for
identifying homologous query target pairs with low
sequence consistency but high structural similarity.

In the local mode, alignments are
often shorter yet more accurate, and
their evolutionary significance is still

to be explored.

Deep learning-based
approaches

The algorithm is simple and intuitive, requiring no
additional information.

Such methods are more suitable for
prokaryotes.

Genomic
distance-based

approaches

MSA for protein
complex

It addresses the issue that, in eukaryotes, a single MSA
containing a rich set of paralogs may pose a challenge

for methods based on genomic distance, which are
unable to identify potential interactions.

The abundant homologous sequences
in metagenomic databases cannot be

fully utilized to guide the assembly of
multi-chain structures.

Phylogeny-based
approaches

Integrating protein interaction databases for MSA
refinement can help produce more stable results

Such MSA construction methods are
all hand-crafted approaches and

merely have effects on the specific
domains.

Protein-protein
interactions

databases-based
approaches

https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://hmmer.org/download.html
https://github.com/EddyRivasLab/infernal
https://github.com/eggzilla/RNAlien
https://github.com/jaswindersingh2/RNAcmap
https://github.com/pylelab/rMSA
https://github.com/rmrao/msa-transformer
https://github.com/facebookresearch/esm
https://github.com/nadavbra/protein_bert
https://github.com/westlake-repl/SaProt
https://github.com/zengsihang/AminoBERT-PyTorch
https://github.com/facebookresearch/esm
https://github.com/HeliXonProtein/OmegaFold
https://github.com/agemagician/ProtTrans
https://github.com/salesforce/progen
https://github.com/enijkamp/progen2
https://github.com/lightonai/RITA
https://huggingface.co/docs/transformers/main_classes/trainer
https://github.com/OATML-Markslab/Tranception
https://github.com/ONERAI/xTrimoPGLM
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Table 2. Cont.

Advantages Limitations Classification Objective

Such methods enable highly automated MSA
concatenation.

The feasibility and effectiveness of its
practical application remain to be

evaluated.
PLM-based approaches

MSA for protein
complexSuch methods integrate various homologous detection

strategies and monomer MSA concatenation
techniques to achieve high-quality, deep, and versatile

MSA construction.

The construction of MSA for
heteromeric complexes requires

further improvement.
Hybrid approaches

Such methods perform well on short sequences or
sequences with high similarity.

Such methods have limited sensitivity
to distantly related homologous

sequences.

Sequence-based
approaches

MSA for RNA

HMM-based methods offer enhanced capability for
capturing remote homologous relationships compared

to sequence-based methods.

These methods lack the utilization of
RNA secondary structure information.

HMM-based
approaches

CM-based approaches utilize conserved secondary
structure features as supplementary information,
which is particularly important for identifying

functionally similar RNA molecules with significant
sequence divergence.

These methods rely on predefined
consensus models, and their

performance may be suboptimal when
applied to unknown RNA sequences.

CM-based approaches

These methods integrate various MSA techniques to
achieve high-quality, deep, and versatile MSA

construction.

The algorithm is complex and requires
substantial computational resources. Hybrid approaches

Compared to single-sequence input, the results of such
methods yield better performance for downstream

tasks.

The demand for computational
resources is higher. With MSA as input

PLMs

Implicitly and more effectively capturing the
evolutionary and co-evolutionary information of

sequences, reducing time costs. The
autoencoding-based bidirectional learning is better at
learning the contextual relationships of amino acids.

PLM-based methods with
autoencoding

objectives perform comparably to
MSA-based methods in general
protein understanding tasks but

exhibit relatively lower accuracy in
structure prediction.

Autoencoding
objectives with

single-sequence input

Autoregressive objectives are more suitable for protein
generation tasks

These methods do not adequately
capture the complex global
interactions of amino acids.

Autoregressive
objectives with

single-sequence input

These methods combine the advantages of both
autoencoding and autoregressive objectives.

These methods lack design specifically
tailored to the features of protein

sequences.
Others

2. An Overview of Multiple Sequence Alignment
2.1. Multiple Sequence Alignment for Protein Monomer

Many proteins can function in their monomeric form. Therefore, constructing an
MSA of monomeric proteins is crucial for understanding their structure and function, and
provides a foundation for subsequent in-depth studies of protein complexes. Pairwise
alignment based on dynamic programming serves as the foundation for subsequent algo-
rithms, which can be further improved to enable homology sequence search. Additionally,
there are methods specifically designed for fast and sensitive homology sequence detection.
Multiple sequence alignment for protein monomers primarily includes sequence-based
methods, HMM-based methods, k-mer-based techniques, hybrid approaches, and deep
learning-based strategies.

2.1.1. Dynamic Programming-Based Pairwise Alignment

The Needleman–Wunsch algorithm (NWalign) from 1970 and the Smith–Waterman
(SWalign) algorithm from 1981 represent early classic applications of dynamic programming
to the comparison of biological sequences, serving as foundational concepts for subsequent
alignment algorithms.
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NWalign [35] is a heuristic algorithm for detecting homologous sequences through
global sequence alignment, which first introduced the iterative matrix calculation method
to optimize alignment results based on the dynamic programming algorithm. In partic-
ular, a penalty scoring scheme is initially defined, encompassing scores for matching or
mismatching positions between two sequences, along with penalties for gaps. This serves
as the foundation for constructing a scoring matrix. Subsequently, through the process
of backtracking the scoring matrix, the globally optimal path, representing the optimal
matching sequence, is determined. NWalign prioritizes the comprehensive examination of
sequence similarity and alignment across the entire length. However, this emphasis may
pose challenges in detecting distantly conserved homologous relationships that depend on
short subdomain fragments [36].

SWalign [37] is optimized on the basis of the NWalign, which enhances its applicability
to local homologous sequence alignment. The primary improvement of the SWalign lies
in truncating the values of the score matrix to zero, thus preventing the occurrence of
negative numbers within the matrix. During traceback, the algorithm initiates from the
highest-scoring matrix element and terminates upon encountering a cell with a value of
zero, resulting in the generation of highly similar local alignment sequences.

Incorporating PLM embeddings (the details are provided in Section 2.4) into dynamic
programming-based pairwise alignment has been shown to improve alignment perfor-
mance. For example, PEbA [38] generates substitution matrices from ProtT5 embeddings
using scaled cosine similarity. The alignment parameters applied were −11 for gap opening
and −1 for gap extension in local alignments. This approach significantly outperforms
pairwise alignments based on conventional scoring matrices, yielding varying degrees of
improvement in alignment quality for sequence pairs with differing levels of similarity.
EBA [39] computes the Euclidean distance of amino acid pair embeddings as a scoring
matrix and employs an efficient signal enhancement procedure, facilitating a more effective
comparison of representations. The quality of its alignments is comparable to that of the
structural alignment method Foldseek [40].

Alignments based on dynamic programming ensure the optimal outcome for pair-
wise sequence alignments. However, this approach also leads to a high time complexity of
O(m · n), where m and n denote the lengths of the two sequences being aligned.
Consequently, when the sequences are particularly long, the computational time increases
significantly, along with substantial memory consumption.

2.1.2. Multiple Sequence Alignment

When applying dynamic programming algorithms directly to the multiple sequence
alignment, the time complexity grows exponentially with the increase in the number of se-
quences, specifically O(2m · nm), where m represents the number of sequences and n denotes
the sequence length. The immense computational burden renders the straightforward use
of standard dynamic programming methods impractical in real-world applications. Even
with the reduction in time complexity to O(nm) [41] based on the sum of all pairs (SP) score
scheme [42], the problem has still been proven to be NP-complete [43].

Therefore, heuristic algorithms are commonly used to tackle large-scale and diverse
MSA problems, allowing for quick approximate solutions. The progressive alignment
algorithm is the most popular, simple, and effective heuristic method, classically proposed
by Feng and Doolittle [44], consisting of three steps: (1) using pairwise alignment methods
to compare all sequences and obtain similarity scores; (2) generating a guide tree from
the similarity (or distance) matrix; and (3) starting with the two most similar sequences
and progressively adding new sequences according to the guide tree until all sequences
are included. This approach has the advantages of shorter computation time and lower
memory usage. Classic progressive methods like ClustalW [45] utilize scoring functions
based on general amino acid substitution models, demonstrating rapid performance and
yielding reasonable results for relatively similar sequences (e.g., with sequence identity
above 30%). To correct or reduce errors introduced during the progressive alignment steps,
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MAFFT [46] and MUSCLE [41] rely on iterative optimization to enhance alignment quality.
This strategy is applied after the initial progressive assembly of multiple sequences, where
aligned sequences are repeatedly divided into sub-alignments and realigned. T-Coffee [47],
on the other hand, was the first to propose reducing errors by exploring consistency infor-
mation in progressive alignments; specifically, the scoring function for two sequences takes
into account not only their pairwise alignment results but also the alignment information
from other sequences, which is incorporated into the consistency measures. However,
progressive alignment algorithms perform poorly under conditions of low sequence consis-
tency. The vector-clustering Multiple Sequence Alignment (vcMSA) [48] method clusters
amino acid embeddings generated by PLMs and subsequently employs graph-theoretic
approaches to establish a consistent ordering of MSA columns. The high-dimensional
contextual embeddings encapsulate higher-order structural and functional information,
and the incorporation of this additional data enhances the accuracy of the alignments.

The co-evolutionary information embedded in MSA can be utilized for phylogenetic
tree reconstruction, making it an important downstream task of MSA. For instance, the
PHYML [49] program estimates large phylogenies using maximum likelihood (ML), which
is fundamentally based on a simple hill-climbing algorithm. Similarly, IQ-TREE [50]
performs phylogenetic inference through ML, employing a more efficient approach that
combines elements of hill-climbing algorithms, random perturbations of the current best
trees, and extensive sampling of initial starting trees. The Molecular Evolutionary Genetics
Analysis (MEGA) [51–54] software includes numerous sophisticated methods and tools
for phylogenomics and phylomedicine, supporting five distinct methods for constructing
evolutionary trees: ML, Neighbor-Joining, Minimum Evolution, unweighted pair-group
method with arithmetic means (UPGMA), and Maximum Parsimony. Umberto Lupo et al.
employed a PLM, MSA Transformer, trained on MSA, where the column attention heads
effectively capture Hamming distances, thereby encoding phylogenetic information [55].

The aforementioned methods represent traditional pairwise alignment and conven-
tional MSA approaches and applications. The subsequent heuristic MSA algorithms all
support database searches for homologous sequences, some of which focus on improving
alignment methods in the context of database search, while others are specifically designed
for homolog detection, emphasizing updates in search algorithms.

2.1.3. Sequence-Based Approaches for Protein Monomer’s MSA

The sequence-based algorithms introduced in this section are all improvements upon
pairwise alignment methods, enabling database search functionality. To solve sequence
alignment of very long sequences, heuristic algorithms are considered. The most widely
used method is to limit state transitions and conduct the alignment within a smaller
search space. FASTA and Basic Local Alignment Search Tool (BLAST) are two heuristic
classic alignment algorithms based on divide-and-conquer. These methods are designed
to find seeds (homologous segments) to search protein and DNA databases for sequence
similarities. Seeds act as anchor points to divide the dynamic programming matrix into four
submatrices located at the four corners. The dynamic programming matrix will be reduced
if more anchor points distributed throughout the sequences are discovered, allowing for a
reduction in time and space complexity, as shown in Figure 1 [56].

In 1985, Pearson et al. first designed the FASTP [57] program for searching protein
sequence libraries to build alignments, the algorithm encompasses three fundamental
stages. Firstly, it employs a lookup table [58] to find all identities or groups of identities
between two protein sequences and the output is the 10 best diagonal regions found
by a simple formula based on the number of ktup (a parameter for determining how
many consecutive identities are required in a match) matches and the distance between
the matches without considering shorter runs of identities, conservative replacements,
insertions or deletions [57,59]. Secondly, by rescoring the 10 best regions using the PAM250
matrix, which allows for conservative replacements and enables runs of identities shorter
than ktup to contribute to the similarity score, the output of this step consists of the
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best initial regions evaluated by the PAM250 matrix. Finally, FASTP uses a modification
of the optimization method described by NWalign [35] and SWalign [37] to align the
sequences with the highest scores. Subsequently, the FASTA [18] program, introduced
in 1988, implemented two key advancements upon the foundation of FASTP. The first
enhancement allows the use of a scoring matrix based on the genetic code for DNA sequence
alignment, facilitating easy customization of alignment tasks by adjusting the similarity
scoring matrix and gap penalties. The second improvement involves checking whether
several initial regions are joined together and calculating the optimal alignment of initial
regions that can be joined to form a single alignment, with locations of initial regions,
respective scores, and a gap penalty. This enables the FASTA program to increase sensitivity
without a large loss of selectivity or decrease in speed. Even though the FASTA program
utilizes rigorous algorithms at each step with a realistic model of evolution, it is heuristic
due to its hierarchical nature. Moreover, apart from the PAM matrix, a variety of different
substitution matrices have been developed over the years. For instance, the widely used
Blocks Substitution Matrix (BLOSUM) family of matrices [60]; the variable time maximum
likelihood (VTML) substitution matrices, proposed by Muller et al., which are based on
divergent alignments for identifying distantly related protein sequences [61]; and a matrix
introduced by Yamada and Tomii, which utilizes principal component analysis and the
variabilities across existing substitution matrices [62]. Additionally, some methods derive
substitution matrices from structural information. For example, Prlic et al. developed
a substitution matrix based on a set of protein structures with high structural similarity
but low sequence identity [63]. Another approach, the ProtSub matrix [64], incorporates
structural information and filters out irrelevant residue pairs by retaining only those
that are spatially close, significantly improving protein sequence alignments by reducing
false positives.
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Figure 1. Homologous segments (or seeds) are used as ‘anchors’, and each anchor point divides the
dynamic programming matrix into four submatrices located at the four corners. The submatrices
positioned at the lower left and upper right are ignored.

Similar to the FASTA program, early versions of BLAST [65] confine dynamic pro-
gramming to a banded section of the full path graph, encompassing regions of identified
similarity, thus facilitating a trade-off between speed and sensitivity. BLAST initially parti-
tions the input sequence into discrete “seed words” of length w (typically 3 for proteins
and 11 for nucleotides). It then swiftly identifies pertinent candidate sequences and their
specific positions within these sequences through the utilization of a pre-established index-
ing table. This process is iteratively executed for all seed words, resulting in a hit map that
delineates the correspondence between the query sequence and the candidate sequences.
Subsequent bidirectional extensions are conducted until the aggregate score falls below
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a predetermined threshold. Ultimately, a classical dynamic programming approach is
employed within the extended regions to ascertain the definitive alignment outcome. In
1997, Lipman et al. reported Gapped BLAST and PSI-BLAST as a new generation of protein
database search programs [8]. The new version of BLAST has been optimized in three
aspects, significantly enhancing computational speed and achieving higher sensitivity.
Firstly, it increased the search speed with the two-hit method. In contrast to the old BLAST,
the two-hit method only requires two non-overlapping word pairs on the same diagonal
for extension. Therefore, with a smaller number of hits for extension, the average amount
of computation decreases, and the speed increases. The threshold parameter T (a higher
value of T leads to higher speed and an increased probability of missing weak similarities)
is lowered in the new version for more hits, which increases the sensitivity and speed.
Secondly, the new version of the program gained the ability to construct gapped align-
ments, using dynamic programming to extend a central pair of aligned residues in both
directions. Different from the original BLAST, the new version of Gapped BLAST considers
only alignments that drop in a score of no more than Xg below the best score yet. Therefore,
this approach adapts the region of the path graph explored to the data, making the search
more efficient and sensitive. Finally, the new version of PSI-BLAST is reported as a new
method for multiple alignment construction. PSI-BLAST takes a PSSM generated by a
BLAST search from significant alignments in round i as an input for round i+1. PSI-BLAST
utilizes motif or profile search methods for a more sensitive result of distant relationships
between sequences.

In conclusion, BLAST and FASTA are two tools for pairwise sequence alignment in
bioinformatics, used to search for similarities between DNA or protein sequences. BLAST
is widely employed for local alignment of nucleotide and amino acid sequences. FASTA
serves as a refined tool for similarity searching, utilizing sequence patterns or words,
particularly suited for comparing less similar sequences. The primary distinction between
BLAST and FASTA lies in their respective strategies for similarity searching.

To address computational bottlenecks in metagenomics and data-intensive evolu-
tionary projects, DIAMOND [66] has been proposed as a highly suitable tool for aligning
translated DNA sequences with protein sequence reference databases in high-throughput
environments. DIAMOND employs the traditional sequence alignment ’seed-and-extend‘
paradigm, incorporating additional techniques such as reduced alphabet usage, spaced
seeds, and double indexing to achieve efficient search and alignment within large-scale
databases. Compared to previous algorithms, DIAMOND integrates these advanced meth-
ods to enhance performance and sensitivity in extensive sequence comparisons. Specifi-
cally, seed matches will be extended to full alignments between the queries and references,
shorter seeds contribute to sensitivity, while longer seeds enhance speed. To increase speed
without losing sensitivity, DIAMOND has employed a new alphabet reduced to a size of
11 letters. Another approach to improving seed steps is employing spaced seeds, where
longer seeds are used while only specific positions are considered. The quantity and precise
arrangement of these positions are referred to as the weight and shape of the spaced seed,
respectively. By appropriately selecting the shape of spaced seeds [67], sensitivity can be
improved. One drawback of utilizing multiple spaced seeds is the significant memory
consumption. To address this issue, DIAMOND adopts a solution where it constructs
and processes indexes for one seed shape at a time, then releases the memory used by the
previous seed shape before transitioning to the next one. Unlike most seed-and-extend
programs, which typically build an index structure only on the reference sequences (such
as a hash table or Ferragina–Manzini Index), DIAMOND employs a double-indexing ap-
proach, involving indexing both the queries and the reference sequences. In DIAMOND, an
index comprises a sorted list of seed-location pairs based on a compressed representation
of the seed. By simultaneously traversing these two indices lists linearly, the algorithm
can identify all matching seeds between the query and reference sequences. This process
enables local alignment computations at the corresponding seed locations. What is more,
the double-indexed approach also leads to a linear approach memory access pattern.
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2.1.4. HMM-Based Approaches for Protein Monomer’s MSA

Tools like BLAST [65], which performs pairwise sequence alignment, assess sequence
similarity by calculating the optimal alignment score. However, when detecting distant
homology in protein families, MSA methods based on HMMs, such as SAM, HMMER,
HHblits, and HHsearch, have proven to be more effective [68,69], as illustrated in Figure 2.
These models differ from pairwise alignment in that they employ probabilistic states to
determine the frequencies of specific residues (amino acids or nucleotides) at particular
positions within MSAs, and model the transition probabilities between states represent-
ing matches, insertions, and deletions. Moreover, profile HMMs incorporate a scoring
mechanism to compare query sequences against the model, assigning scores that facilitate
homology recognition and potential for structure prediction [70].
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on a threshold of more than 75% similarity, shown in green and yellow. In Figure 2, there is a gap in a
conserved region, which is indicated by a delete state. Delete states in a profile HMM account for
deletions (nucleotides or amino acids) in conserved regions, while insert states account for insertions
in non-conserved regions. This distinction is crucial for accurately modeling sequence variability
and conservation.

SAM [19] is a comprehensive software suite specifically designed to analyze biological
sequences using profile HMMs, its core functions focus on constructing, optimizing, and
applying profile HMMs for sequence analysis and homology detection in proteins and
nucleic acids. SAM utilizes a linear HMM where each state corresponds to a column in
an MSA. This thoughtful design effectively considers potential insertions and deletions at
each position during sequence–profile HMM alignments, enabling SAM to adeptly capture
distant homologies. After constructing the profile HMM models, SAM employs the Viterbi
and Forward algorithms to compute the similarity between sequences and the profile
HMMs. The Viterbi algorithm is used for decoding in model inference and is based on
dynamic programming to find the shortest path for a sequence. Specifically, the algorithm
identifies the most probable path through the profile HMM for an observed sequence,
calculating the log-odds score at each step. This score represents the likelihood that the
observed sequence matches a null model, with higher scores indicating stronger alignments.
By maximizing this log-odds score, the algorithm enhances alignment accuracy, ensuring
the best possible match. Meanwhile, the Forward algorithm computes the probability of an
observation sequence in an HMM through a recursive process. Specifically, the algorithm
sums probabilities across all paths, offering a comprehensive likelihood of alignment and
significantly boosting the ability to detect distant homologies. This process is used to search
databases for sequences and to assess their similarity to the models. Notably, SAM includes
a script ‘target99’ [71], analogous to the principle of PSI-BLAST [8], which enables iterative
searching of sequence databases to automatically generate MSAs.

Similar to SAM, HMMER is a rapid heuristic algorithm that also employs profile
HMMs for sequence alignment and the detection of sequence homology, primarily in
protein and nucleic acid analyses. Essentially, its core principle involves constructing
profile HMMs to capture patterns in sequences, utilizing these models to search databases
for sequences with high similarity. Additionally, HMMER shares the same computational
strategies as SAM, the Viterbi and Forward algorithms. Moreover, the inclusion of ‘sparse
rescaling’ in HMMER3 [72] prevents numerical underflow. These techniques complement
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each other and collectively elevate HMMER’s sensitivity and effectiveness in identifying
sequence homology, particularly with distant homology.

Although both SAM and HMMER are robust tools based on profile HMMs, there are
distinct differences between them, as presented in Madera’s research [73]. In core function,
SAM has the capability to automatically generate MSAs, whereas HMMER includes model-
scoring programs that SAM does not. In terms of processing speed, HMMER is faster than
SAM when dealing with large databases, but SAM performs better with small databases. In
model evaluation, SAM excels with high-quality and diverse alignments, while HMMER
is more effective with lower-quality alignments. Additionally, there are differences in
user-friendliness and other aspects. Overall, users can choose between SAM and HMMER
based on their specific needs.

The log-odds score has been widely established for identifying homology recognition
in sequence-HMM and sequence-profile comparisons like HMMER and SAM [74]. Building
on this foundation, HHsearch extends the concept of the log-odds score to HMM-HMM
comparisons by introducing the log-sum-of-odds score, which quantifies the probability
of co-emission of aligned paths from two profile HMMs. This process involves dynamic
programming to compute the maximum log-sum-of-odds score via the Viterbi algorithm in
HMM-HMM aligned paths, thereby enabling the detection of sequence homologies across a
broad range of evolutionary distances, as shown in Figure 3. Moreover, HHsearch improves
alignment quality by integrating predicted secondary structure information, thereby setting
new standards for the sensitivity and accuracy of alignment tools.
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and Delete (D). Arrows indicate possible transitions between states, capturing the variability and
conservation patterns across sequences. This model facilitates the accurate representation of sequence
alignments and the identification of evolutionary conserved elements.

HHblits [75] is an iterative sequence search tool using profile HMM-profile HMM
comparisons, a core technique pioneered by HHsearch [76], to perform fast and sensitive
searches of sequence databases like NCBI’s nonredundant (nr) database or Universal Pro-
tein Resource (UniProt). While maintaining the same high sensitivity as HHsearch, HHblits
performs faster searches than traditional tools like PSI-BLAST [8]. This enhanced perfor-
mance is not only due to its iterative HMM–HMM search methodology, which builds upon
the foundation laid by HHsearch but also the integration of context-specific pseudo-counts
and a fast prefiltering mechanism using discrete states [75]. The context-specific pseudo-
counts enhance the accuracy of model predictions under various sequence conditions,
while the discrete state prefilter significantly accelerates the search process by simplifying
the initial screening of potential matches, as shown in Figure 4. These innovations enable
HHblits to efficiently and rapidly search through extensive databases. Overall, the emer-
gence of HHblits represents a significant advancement in tools for constructing protein
MSA. With its innovative features, this tool can swiftly and accurately identify homologies
within extensive protein databases. Consequently, it is widely employed in areas such as
structure prediction and functional annotation of proteins, facilitating deeper insights into
protein functions and evolutionary relationships.
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Figure 4. Profile HMM aligns to profile HMM. It contains the comparison between two profile
HMMs, which is the core idea of HHblits, HHsearch, and other programs. In contrast to the
transitions between states (M, I, D) within a single profile HMM, HMM–HMM introduces pair states
that describe the combined states and their relationships within the two models during the alignment
process. Notably, the “DG” state represents a Delete–Gap pairing at a specific alignment position.
One profile HMM is in a Delete (D) state, meaning it skips this position without emitting any symbol,
while the other profile HMM is in a Gap (G) state, indicating a gap at this position. This provides
more complex and detailed sequence alignment information. The Joint Emission sequence represents
the paired sequences emitted simultaneously by the two HMM models during alignment.

2.1.5. k-Mer-Based Approaches

USEARCH [77] is a unique sequence analysis algorithm based on pairwise alignment
for sequence database searching. Its uniqueness lies in employing a heuristic approach
to rapidly identify one or a few promising hits, rather than exhaustively searching for all
homologous sequences, as shown in Figure 5. This approach helps reduce the resources
required. Similar sequences often share similar short words, known as k-mer, with a
fixed length of k. USEARCH generates a metric called U, representing the number of
unique words shared between the query and the database sequences. Clearly, this vector is
positively correlated with the similarity between sequences [78]. Hence, in this algorithm,
target sequences are sorted in descending order based on their unique word count U. If
a target sequence exists with similarity to the query satisfying the threshold, it is more
likely to be found at the beginning of this sorted list. Therefore, the target sequences are
compared to the query in descending order of U. If a target sequence meets or exceeds
the predetermined similarity threshold, it is accepted; otherwise, it is considered a failed
match. (i) If an acceptance happens, it is likely to be found among the initial few targets
tested. (ii) The first acceptance is likely to have the highest possible similarity or be close to
it. (iii) As the number of failed attempts increases, the probability of finding high-similarity
matches in the database decreases rapidly. The search ends with a predetermined number
of acceptances or rejections. Explicit sequence comparisons begin with finding gapless
high-scoring segment pairs (HSPs). For USEARCH, HSPs are identified as spaced pairs of
matching words of length k. If the similarity of the HSPs is <t then the target is rejected.
Otherwise, after using banded dynamic programming [79] to align the remaining regions,
similarity can be computed from the final alignment. As for E-values, the Karlin-Altschul
statistics [79] are employed.
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To achieve sensitive searches of sequences within massive data sets, Martin Steinegger
and Johannes Söding have developed MMseqs2 [20], a parallelized and open-source soft-
ware suite tailored for the precise searching based on pairwise alignment and clustering of
extensive protein and nucleotide sequence repositories. In MMseqs2 searching, three stages
are involved in finding similar sequences in the target database, progressively increasing
in sensitivity: a short word (‘k-mer’) match stage, vectorized ungapped alignment, and
gapped alignment, as shown in Figure 6. The key improvement in the prefiltering stage
lies in combining the double-match criterion with maximizing the length of k-mers. On the
one hand, MMseqs2 identifies matches between similar k-mers rather than solely detecting
exact k-mer matches, unlike most fast tools such as DIAMOND [66] and USEARCH [77].
On the other hand, the final decision is based on 2 × 7 = 14 residues, as opposed to just
2 × 3 in BLAST or the 11-letter size of DIAMOND’s alphabet. This enables MMseqs2 to
maintain efficiency while considering more sequence information. MMseqs2 achieves accel-
erated searching through parallelization on three levels: critical time-sensitive components
are manually vectorized, queries can be distributed across multiple cores, and the target
database can be partitioned into chunks distributed to multiple servers. What is more,
MMseqs2 effectively suppresses false-positive matches between locally biased segments to
compensate for some unavoidable loss of sensitivity due to its heuristic prefilters.
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2.1.6. Multi-Stage Hybrid Approaches to Search Metagenome

The sequence-based, HMM-based, and k-mer-based MSA methods discussed earlier
were not specifically designed for three-dimensional structure prediction. While applicable
to structure predictions to some extent, these methods face the challenge of excessive search
time when handling large datasets. The methods introduced in this section, however, are
specifically developed to enhance the prediction of long-range homologous contacts and
folding recognition. They are designed for database search rather than improvements based
on pairwise alignment algorithms. The MSAs constructed by these approaches significantly
improve the accuracy of protein tertiary structure prediction.

Traditionally, the construction of high-quality MSAs has largely relied on genomic
databases from individual species such as humans, mice, or yeast. David et al. [80] pio-
neered the integration of diverse metagenomic sequence data into sequence alignments
by using the ‘HMMsearch’ tool from the HMMER package with each Pfam HMM as the
query against the Integrated Microbial Genomes (IMG) database. This approach signif-
icantly enhanced the accuracy of subsequent structural predictions. This indicates that
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incorporating metagenome sequence data into the construction of MSAs can significantly
enhance the diversity of protein sequences, enrich the heritable variation, and provide a
solid foundation for coevolutionary analysis.

In 2019, a new MSA construction method was introduced as DeepMSA [81]. In
contrast to conventional methods that utilize a singular approach for MSA construction,
DeepMSA integrates multiple specialized tools to facilitate rapid and highly sensitive
exploration of metagenomic databases. The algorithm is structured into three distinct
phases (Figure 7a). In Stage 1, HHblits is used to search the UniClust30 database. If Stage 1
generates insufficient sequences, with the normalized number of effective sequences (Nf)
being less than 128, Stage 2 is initiated. In Stage 2, JackHMMER [82] searches the UniRef90
database. Afterward, ‘esl-sfetch’ from the HMMER package is used to extract full-length
sequences from the previous hits to build a custom HHblits format database. HHblits is
then applied to search this custom database, starting from the MSA generated in Stage 1.
If the MSA from Stage 2 has more Nf than Stage 1, it replaces Stage 1’s MSA. If previous
stages yield low sequence numbers, that is, if Nf is less than 128, Stage 3 is executed. The
MSA from the preceding stage is converted into an HMM using ’HMMbuild’ from the
HMMER package. This HMM is searched against the Metaclust metagenome sequence
database using HMMsearch. Hits from HMMsearch are used to construct a new custom
HHblits database, which is then searched by HHblits to generate the final MSA.
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Figure 7. The pipeline of DeepMSA and DeepMSA2-Monomer. (a) The DeepMSA algorithm is
divided into three stages. In the first stage, HHblits is used to search the UniClust30 database. If
the sequence count is insufficient and the normalized effective sequence count (Nf) is below 128,
the second stage is initiated. In the second stage, JackHMMER searches the UniRef90 database, and
full-length sequences are extracted using ‘esl-sfetch’ to construct a custom database, after which
HHblits updates the multiple sequence alignment (MSA). If the Nf in the second stage is higher,
it replaces the MSA from the first stage. If Nf remains below 128, the third stage is performed,
where the MSA is converted into a hidden Markov model (HMM) and searched in the Metaclust
database using HMMsearch, followed by final MSA generation using HHblits. (b) DeepMSA2-
Monomer incorporates large genomic and metagenomic sequence databases and, building upon
DeepMSA, integrates dMSA, qMSA, and mMSA to generate multiple MSAs. It then employs a deep
learning-driven MSA scoring strategy, simplified from AlphaFold2, for optimal MSA selection.

For further improvement, Zheng et al. reported the DeepMSA2 [21] pipeline in 2023,
which demonstrated excellent performance in Critical Assessment of protein Structure
Prediction 15 (CASP15) experiments. Compared to the former DeepMSA, DeepMSA2 is
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based on a huge genomics and metagenomics sequence databases containing a total of
40 billion sequences. DeepMSA2-Monomer is specially designed for protein monomer
MSA construction. In detail, DeepMSA2-Monomer utilizes six metagenomics sequence
databases, including three third-party databases (Metaclust, BFD, and Mgnify) and three in-
house databases (TaraDB, MetaSourceDB, and JGIclust). Moreover, DeepMSA2-Monomer
couples several new MSA generation pipelines, including dMSA, qMSA, and mMSA, to
create multiple MSAs (Figure 7b). Then, a deep learning-driven MSA scoring strategy
simplified from AlphaFold2, is employed for ranking MSA. In this simplified version, the
template detection module is deactivated, and the embedding parameter is set to one,
allowing for rapid model generation. At most, 10 MSAs will be given and will be taken
as input of a modified AlphaFold2 program for five structure modeling. The highest
Predicted Local Distance Difference Test (pLDDT) score among the five structures will
be the rank score of the MSA. The pLDDT measures the confidence in the local structure,
reflecting the consistency between each amino acid residue in the predicted structure and
the experimental structure. The final MSA is the one with the highest rank score among
all created MSAs. In contrast to previous MSA construction programs, such as HHblits,
PSI-BLAST, and JackHMMER, the DeepMSA2 package improves the accuracy of contact
and secondary structure predictions. Meanwhile, the integration of huge metagenomic
datasets combined with the application of a new deep-learning-driven MSA scoring strategy
increases the accuracy of MSA construction and also hints at the solution of protein tertiary
structure predictions.

The MSA construction component of the Yang–Server [83] structure prediction method,
proposed by Yang et al., also employs a multi-stage hybrid approach. It leverages comple-
mentary sequence databases and three advanced search algorithms to generate high-quality
MSAs. Firstly, HHblits is used to search against three HMM profile databases, including
UniClust30, UniRef30, and BFD. The top MSA is determined by the average probability of
the top 15L residue pairs in the predicted distance map [84]. Secondly, they use MMseqs2
to search against UniRef30 and colabfold_envdb [20]. The first two methods are sufficient
for easy targets. The third method is designed for challenging targets. They use jackham-
mer [85] to search against the FASTA database for sequence relatives. Full-length hits are
selected for forming a database of candidate homologues, which is later converted into an
HMM profile database by UniClust [86]. Then, HHblits is utilized to search against this
HMM profile database to generate MSAs.

2.1.7. Deep Learning-Based Approaches

The significant advancements in the field of Natural Language Processing (NLP)
have provided potential solutions to many challenges encountered in protein research.
By applying NLP techniques to protein sequences—treating them similarly to linguistic
data—researchers have developed large-scale PLMs (the details of PLMs can be found
in Section 2.4). These PLMs have achieved remarkable success in extracting biological
information from protein sequences and have thus emerged as potential tools for con-
structing MSAs, either by directly generating MSAs using deep learning-based methods
or by employing PLM-based embeddings as alternatives to sequence profiles in MSA
searches (Figure 8).

The MSA-augmenter [87] represents a Transformer-based [88] seq2seq model tailored
for homogeneous protein sequence generation. It excels in producing high-quality se-
quences essential for protein folding tasks, particularly when dealing with low-quality
MSAs where homologous sequences of target proteins are scarce. To concurrently consider
the global structural information within the input MSA, the MSA-augmenter leverages a
tied-row and column attention mechanism, inspired by the MSA Transformer [31]. More-
over, supplementary cross-column and cross-row modules are integrated into the decoder,
enabling the simultaneous generation of multiple sequences. This functionality facilitates
the production of diversified and new co-evolutionary MSA results, thereby fortifying MSA
and enhancing downstream protein structure prediction. Nevertheless, it is evident that
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this approach is currently constrained by the transformer’s limitations regarding sequence
length, as well as the scale of the pre-trained model and database. Should advancements
be made in these areas in the future, there exists considerable potential for enhancing the
reliability of the results.
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pLM-BLAST [22] integrates the representations from PLMs with the BLAST or PSI-
BLAST [8] algorithm to detect homology between protein sequences, particularly for distant
homology relationships. This method focuses more on optimizing pairwise alignment
methods based on BLAST, rather than on improving the search algorithm itself. pLM-
BLAST does not require training in a specialized deep learning model and can be combined
with representations from any PLM. It generates a substitution matrix using the embeddings
of two sequences to represent the cosine similarity between each pair of residues in the
sequences. Unlike SWalign [37], pLM–BLAST does not apply gap penalties or truncate
values to zero when creating the score matrix. This results in more severe penalties for
dissimilar regions, thereby reducing the total number of potential alignments. Aside from
local alignments, pLM–BLAST has the capability to conduct global alignments utilizing
NWalign. The alignment accuracy can be on par with HHsearch [76], while significantly
enhancing processing speed. However, in local mode, it tends to produce alignments
that are shorter yet of higher precision compared to those generated by HHsearch, the
evolutionary significance of which is yet to be explored.

PLMsearch [89] is a homologous protein search approach that leverages protein repre-
sentations generated by PLMs as input. The search process of this method offers unique
advantages, while the alignment process is based on an improved pairwise alignment
approach. Differing from pLM–BLAST [22], this algorithm integrates a structural similarity
prediction module for pre-filtering, thus avoiding numerous irrelevant low-similarity align-
ments. Moreover, it notably enhances sensitivity in identifying homologous query-target
pairs characterized by low sequence consistency but high structural similarity. Initially,
proteins in the target dataset sharing the same Pfam clan domain as the query protein are
searched and paired with the query. Subsequently, utilizing a trained SS-predictor model,
structural similarity is predicted using the PLM representation of each protein pair as input.
Pairs with higher structural similarity are selected based on this criterion, and for those
with significant similarity, PLMalign is employed for either global or local alignment of
query-target pairs. In this regard, PLMalign utilizes dot product to replace the cosine sub-
stitution matrix and employs a linear gap penalty instead of an affine gap penalty, resulting



Biomolecules 2024, 14, 1531 17 of 37

in a faster alignment speed compared to pLM-BLAST. PLMsearch rivals MMseqs2 [20] in
speed and matches state-of-the-art structural search methods in sensitivity, presenting a
promising avenue for a more convenient large-scale homologous protein search approach.

MSA–augmenter, pLM–BLAST, and PLMsearch integrate PLMs into classical MSA
algorithms, achieving innovative improvements in alignment and search strategies. With
further advancements in PLM technology, they undoubtedly offer new perspectives for
protein research that involves complex biological information, showcasing their unique
advantages and significance.

2.2. Multiple Sequence Alignment for Protein Complex

Many proteins function in biological systems through interactions between different
monomers or subunits, often forming complexes [90]. The prediction of the structure and
function of individual monomers has reached a relatively high level of accuracy, there is
now a growing focus on addressing the more intricate challenge of predicting the structure,
interactions, and functional dynamics of protein complexes, where constructing MSAs for
complexes remains a critical step. The prevailing strategy entails pairing individual MSAs
that satisfy specific criteria to construct MSAs for protein complexes. This encompasses
methodologies based on gene distance, phylogenetic inference, protein–protein interaction
databases, PLMs, as well as integrative hybrid approaches.

2.2.1. Genomic Distance-Based Approaches

Methods like EVcomplex [23] and Gremlin–Complex [91] first construct monomer
MSAs using external programs like JackHMMER and HHblits, followed by concatenating
the generated MSAs. The MSA concatenation is primarily based on genomic distance
distributions (Figure 9a), with the built MSAs filtered using a specified threshold under the
assumption that proteins closer on the genome, such as those within the same operon, are
more likely to interact. Finally, residue-level protein contact prediction is achieved through
the pseudo-likelihood method based on the MSA of the protein complex.
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2.2.2. Phylogeny-Based Approaches

In 2018, Hong Zeng et al. proposed ComplexContact [24], an innovative program that
built higher-quality MSAs by combining two different MSA concatenation methods and
employing a deep learning model to predict inter-protein and residue-residue contacts
without using any structural templates. The MSA construction process involves two stages:
first, HHblits is used to construct monomer MSAs for two protein subunits respectively;
then, these two MSAs are concatenated using two different methods. One method is based
on genomic distance, which is similar to the MSA construction theory of EVcomplex and
Gremlin–Complex, which suggests that co-regulated genes are often co-located on the
genome into operons. The other one is the phylogeny method that categorizes proteins
within each MSA by species or subspecies and ranks them according to their sequence sim-
ilarity to the respective query proteins (Figure 9b). Proteins with identical ranks across the
MSAs are then aligned together. For eukaryotes, the phylogeny-based method outperforms
the genomic distance method. For prokaryotes, the opposite is true. Therefore, combining
these two MSA concatenation methods yields superior results. However, both methods
may perform poorly for some protein pairs due to the inability to identify many sequence
homologs for their MSAs. The ComplexContact method won the CASP12 competition, ac-
curately predicting inter-protein and residue-residue contacts without requiring extensive
sequence homologs, by effectively utilizing co-evolutionary information, sequence features,
and contact occurrence patterns. Later, AlphaFold2-Multimer [92] also adopted similar
ideas in their multimer MSA construction step.

2.2.3. Protein–Protein Interactions Databases-Based Approaches

In response to the growing demand for knowledge about protein–protein interactions,
numerous databases have emerged, with STRING [93] standing out as a prominent example,
housing both known and predicted protein interactions. These databases offer a valuable
resource for improving the quality of MSA for protein complexes, exemplified by the
innovative cpxDeepMSA [25] method. In 2022, Liu et al. introduced cpxDeepMSA, which
builds upon the foundation of DeepMSA, employing three distinct strategies for homology
detection cpxDeepMSA constructs MSA for protein complexes via three stages. The first
stage employs HHblits to search the UniClust30 [86] database for each protein monomer
and build MSAs for each monomer. Subsequently, these MSAs undergo comparison
within the genome database (ENA) [94]. Ultimately, based on gene distance, the final
complex MSA is identified. In stage 2, sequences of each monomer MSA obtained in
stage 1 are compared with the taxonomy database from NCBI [95]. The sequences in each
monomer MSA are divided by species and ranked by the sequence similarity. The complex
MSA is the combination of several monomer MSAs from the same species family. The
final stage harnesses the protein–protein interaction information of the STRING linker
(Figure 9c). Using HHblits, each monomeric protein is searched against the STRING
database, producing the corresponding MSAs. These MSAs are then integrated to form
complex MSAs if they are identified as potential interactions based on STRING linker
information. The complex MSAs obtained from the three stages undergo scoring and
sorting using the Nf of the protein complex MSA. The final complex MSA serves as input
for the removal of redundant sequences. In conclusion, cpxDeepMSA represents a robust
approach to MSA refinement by leveraging diverse homology detection strategies and
tapping into protein interaction databases. Through systematic integration of information
from multiple sources, this method holds promise for advancing our understanding of
protein complexes and their interactions.

2.2.4. Protein Language Models-Based Approaches

In spite of the above MSA construction methods that are all hand-crafted approaches
and merely have effects on the specific domains, new multimer MSA construction methods
leveraging PLM [31,32,34] (the details of PLMs can be found in Section 2.4) were first
introduced by Bo et al. in 2023, called ESMpair [26]. Different from previous methods,
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ESMpair does not rely on genetic distance or species information. Instead, it utilizes
co-evolution scores learned by PLMs to link MSAs, achieving automation and providing
benefits to downstream applications such as contact prediction, remote homology detection,
and mutation effect prediction. ESMpair leverages column-wise attention scores from MSA
Transformer [31] to identify and pair monomer MSAs. With an input of a pair of query
sequences, ESMpair first searches the UniProt [96] database with JackHMMER [82] to
generate the MSA for each query sequence. Then, the sequences of the same taxonomy
are grouped into the same cluster. MSA Transformer is utilized to calculate the column
attention score between each sequence homolog of MSA with the query sequence. Two
sequence homologs of the same taxonomy group with similar attention scores from the two
query sequences are matched to the generated multimer MSA.

Later, Umberto et al. introduced DiffPALM [97], which utilizes an MSA Transformer
for differentiable multimer MSA construction by predicting paralog matchings. Although
DiffPALM, like ESMpair, utilizes the MSA Transformer PLM, its method for pairing inter-
acting protein sequences differs from ESMpair’s approach of matching sequences based
on similar attention scores. Given that the MSA Transformer inherently captures inter-
chain co-evolutionary signals, the MLM loss decreases as the scores for correctly matched
sequences increase. Thus, DiffPALM uses masked language modeling (MLM) loss as a
co-evolutionary score and seeks pairings that minimize this loss.

2.2.5. Hybrid Approaches for Protein Complex’s MSA

Hybrid approaches, as a strategy that integrates multiple techniques and meth-
ods, are fundamentally designed to provide accurate alignments for protein complex
structure prediction.

DeepMSA2-Multimer (Figure 10) is a method for constructing MSAs for protein
complexes using homology relationships among component chains [21]. Rather than
introducing a novel sequence-linking approach, it provides a pipeline for selecting the most
optimal MSA from several alternatives to facilitate subsequent pairwise linking. Here is a
streamlined overview of the process. The first step is to generate the monomer MSA of each
chain included in the complex using DeepMSA2-Monomer, as we described in Section 2.1,
retaining up to 10 MSAs with the highest pLDDT scores per chain to capture diverse
alignments. Step two is MSA Pairing. For homomeric complexes (identical component
chains), we repeat monomer MSAs n times (n = number of chains). For heteromeric
complexes (different component chains), we select the top M MSAs for each monomer
chain and construct up to MN paired MSAs, ensuring MN ≤ 100. In the third step, paired
monomer MSAs are concatenated to form multimer MSAs. Sequences of each monomer
MSA are grouped based on UniProt annotated species. Within each group, sequences are
sorted by sequence identity with the query sequence. Top sequences from the same species
are then connected side by side. Then, we fill in gaps where sequences are missing and add
unpaired sequences below. This step is specific to heteromers. In step four, the optimal
multimer MSA is selected based on depth (Nf) and folding scores (pLDDT) from monomer
MSAs. This step primarily applies to heteromeric complexes; for homomeric complexes,
all 10 concatenated MSAs are retained. In summary, DeepMSA2-Multimer systematically
creates, pairs, connects, and selects MSAs to provide accurate alignments for protein
complex structure prediction, enhancing insights into protein interactions. Moreover, with
the help of DeepMSA2-Multimer, DMFold-Mulimer outperformed AlphaFold2-Multimer
in protein complex structure prediction in CASP15.

Meanwhile, Liu et al. introduced MULTICOM [98], featuring an enhanced multi-
mer MSA construction module designed to optimize the input for AlphaFold2-Multimer,
to achieve more accurate protein complex structure predictions. MULTICOM first ex-
tracts monomer sequences from multimer targets. Then, it uses sequences alignment
tools including HHblits, JackHMMER, MMseqs2, and their in-house implementation of
DeepMSA to search against UniClust30 [86], UniRef30, UniRef90 [99], UniProt [100], the
IMG database [101], and the metagenome sequence database to build MSAs for each
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monomer sequence. Secondly, monomer MSAs are concatenated. For hetero-multimers,
the alignments in the MSAs of the subunits are concatenated using the potential protein–
protein interaction information extracted from multiple sources to construct MSA-paired
(the paired MSA that may encode the coevolutionary information between the subunits),
including species annotations, UniProt accession numbers, protein–protein interactions in
the STRING database, and complex structures in the Protein Data Bank (PDB). This process
generates thirteen types of MSA-paired. MSA-unpaired is padded beneath MSA-paired
to minimize the loss of evolutionary information during monomer structure prediction.
For homo-multimers, MULTICOM uses AlphaFold2-Multimer’s default method to create
MSA-paired from various databases. Custom methods pair only subunits with the same
species annotation or PDB code, others are paired with gaps. Only MSA-paired is used in
structure generation, while MSA-unpaired is ignored. Meanwhile, structural templates
are retrieved by searching the template database. Combining input of diverse MSAs and
structural templates and AlphaFold2-Multimer confidence score with the complementary
pairwise prediction similarity score to rank predictions. Enhancing the diversity of MSAs
and structural templates elevated the accuracy of the top models predicted by AlphaFold2,
which contributed to MULTICOM’s outstanding performance in CASP15 [102].
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Figure 10. Pipeline of DeepMSA2-Multimer. First, DeepMSA2-Monomer generates monomer MSAs
for each chain. Second, MSA pairing is performed for homomeric complexes. Third, paired MSAs are
combined. Fourth, the optimal multimer MSA is selected based on Nf and pLDDT.

2.3. Multiple Sequence Alignment for RNA

A profound understanding of RNA structure and function is crucial for addressing
a range of biological questions, with the extraction of evolutionary and co-evolutionary
information embedded within RNA through MSA serving as a critical entry point. The
previously mentioned protein MSA construction tools do not account for base-pairing
relationships within RNA secondary structures (rSS). Consequently, in recent years, nu-
merous specialized tools for constructing RNA MSAs have been developed [28,29,103,104]
to produce more accurate and biologically relevant alignments. These tools encom-
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pass sequence-based approaches, HMM-based approaches, CM-based approaches, and
hybrid approaches.

2.3.1. Sequence-Based Approaches for RNA’s MSA

FASTN [57] is a subroutine within the FASTA suite that utilizes the same core algorith-
mic principles as FASTA, while BLASTn [27] is a tool within the BLAST suite, based on the
same core algorithmic principles of BLAST. Both FASTN and BLASTn are specialized for
rapid alignment of nucleic acids (DNA or RNA), employing heuristic algorithms for effi-
cient searching. They take one or more nucleic acid query sequences as input and produce
alignment results against nucleic acid sequences in the database. Both tools demonstrate
robust performances, particularly with large datasets.

2.3.2. HMM-Based Approaches for RNA’s MSA

nhmmer [28] is a DNA/RNA sequence comparison tool based on the framework
of HMMER. Similar to the core concept of HMMER that was previously introduced, it
enables sequence alignment by allowing position-specific residue and gap scoring based
on the query profile, and utilizes the more robust Forward/Backward HMM algorithm to
calculate homology signals. The key distinction of nhmmer lies in its focus on searching
nucleotide sequence databases (NT), with particular attention to chromosome-length target
sequences and the extreme composition biases frequently encountered in genomic DNA.
Specifically, nhmmer outputs a ranked list of hits with the most significant matches to
the query, where each hit represents a local alignment of the profile to a subsequence of a
target database sequence, rather than to a full sequence in the target database. Furthermore,
nhmmer employs a series of acceleration filters, refined from HMMER, to enhance per-
formance. The initial “single segment ungapped Viterbi” approach trades some precision
for rapid scanning of the target sequence, with high-scoring regions subjected to a sub-
sequent full-gapped Viterbi alignment. Candidate alignments filtered through the initial
two stages are subsequently subjected to the full rigor of Forward/Backward alignment,
a process that incorporates correction for compositional biases. The aforementioned im-
provements endow the algorithm with the dual advantages of high sensitivity and reduced
computational time.

2.3.3. Covariance Model-Based Approaches

When searching for homologous RNAs in sequence databases, incorporating con-
sensus secondary structure annotations can optimize the results. Stochastic context-free
grammars (SCFGs) provide a natural statistical framework for integrating sequence and
secondary structure conservation information into a unified scoring system. The Infernal
program [29], proposed by Eddy et al. in 2009, utilizes covariance model (CM), a specific
form of SCFGs, to construct consensus RNA profiles for either single RNA sequences or
MSAs with consensus secondary structure annotation, facilitating RNA database searches
and MSAs. CMs are closely related to profile HMMs, commonly used in protein sequence
analysis, but are more complex. Both CMs and profile HMMs capture conservation infor-
mation at each alignment column; however, while positions are treated independently in
profile HMMs, base-paired positions in CMs are interdependent. Specifically, CMs consist
of many states of these seven basic types, each with its own unique emission and transition
probability distributions, as well as a set of permissible transitions. Ultimately, CMs assign
position-specific scores for the four possible residues at single-stranded positions, the
16 possible base pairs at paired positions, and insertions and deletions.

The primary steps for obtaining an MSA with Infernal are as follows (Figure 11): first,
‘cmbuild’ is used to build a CM from a structural alignment. Next, we calibrate the CM
for homology search with ‘cmcalibrate’. Then, Infernal employs ‘cmsearch’ to search for
putative homologs in the database. Finally, these identified homologs are aligned to a CM
using ‘cmalign’. It is noteworthy that in the ‘cmcalibrate’ step, the application of a two-
stage filtering technique greatly reduces the computational time during the search phase
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without significantly compromising sensitivity. The first filtering technique employed is
the HMM filtering, with thresholds configured by ‘cmcalibrate’. Subsequently, the query-
dependent banded (QDB) CYK maximum likelihood search algorithm is utilized as the
second filter, with relatively tight bands set. The new version of Infernal [105], released in
2013, introduced several improvements. Notably, the search speed was further enhanced
due to the integration of HMMER3’s accelerated filtering algorithms and constrained CM
alignment algorithms. The introduction of the ‘cmscan’ program allows users to identify
which structural RNAs are present in a collection of sequences. Additional enhancements
include more precise handling of truncated RNAs.
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Figure 11. The Workflow of Infernal. It holds a critical position in RNA MSA due to its ability
to incorporate rSS information into the alignment process, enabling precise homology search and
structure prediction. The workflow begins with the input of a query RNA sequence and structure
alignment, followed by the construction and calibration of a CM, the search for homologous RNA
sequences in the database, and the implementation of precise alignments, ultimately producing an
MSA output. The introduction of the CM as a core concept in RNA MSA significantly enhances
Infernal ‘s impact in the field.

2.3.4. Hybrid Approaches for RNA’s MSA

Furthermore, RNAcmap, RNAlien, and rMSA have been proposed to implement fully
automated pipelines, building on the classic algorithms BLASTn, nhmmer, and Infernal.

RNAlien [30] employs an iterative search strategy, MSA, and CM construction, aiming
to automatically search and generate all homologous sequences starting from a single
sequence, including more difficult-to-detect remote homologs. The overall process of
RNAlien is relatively straightforward. Initially, a BLASTn search is performed, followed
by secondary structure consensus filtering. This step helps identify sequence-similar
candidates within the close taxonomic neighborhood of the input sequence. Subsequently,
initial structural alignment and CM are constructed using tools such as ‘cmbuild’ and
‘cmcalibrate’. Finally, BLASTn continues to expand the search to more distantly related
species, with the CM used to decide whether to include new candidate sequences in the
initial set. After all species have been explored, the generated CM, structural alignment,
and all collected homologous sequences are returned. In summary, this method uses
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iterative searching and structural conservation filtering to emphasize the collection of
distant homologous members, thereby enhancing the sensitivity and diversity of the model.

RNAcmap [106] is a fully automatic pipeline that enables evolutionary coupling anal-
ysis for any RNA sequence. Within its pipeline, the homology search step generates MSA.
RNAcmap initially conducts a homology search in the NT using BLASTn [27] to obtain
the initial MSA. Simultaneously, RNAcmap employs either the folding-based algorithm
RNAfold [107] or the deep learning method SPOT-RNA [108] for secondary structure
prediction. Afterward, the initial MSA and the predicted consensus secondary structure
are input into Infernal ‘s [105] ‘cmbuild’ tool to construct a CM. Following calibration with
‘cmcalibrate’, a second round of searching is performed in the NT where the E-value for
‘cmsearch’ is set to 10 [109] to encompass more homologs with lower sequence identity.
Finally, the aligned homologous sequences are obtained for subsequent evolutionary cou-
pling analysis. The efficacy of RNAcmap is on par with that of manually curated Rfam
alignments. Significantly, its performance demonstrates robustness across sequences that
fall outside Rfam families, as well as pseudoknot RNAs and non-redundant RNA sets.

rMSA [110] is a hierarchical pipeline designed for the search and alignment of RNA
homologs for a target RNA, significantly improving the prediction of rSS and contacts. This
algorithm employs a novel five-stage hierarchical sequence search strategy which avoids
the excessive inclusion of irrelevant sequences. In Stage 1, BLASTn aligns the target RNA
against RNAcentral and NT databases, producing initial hits. nhmmer40 realigns these
hits to form the initial alignment. This alignment is then converted to a CM using Infernal.
The cmsearch program of Infernal employs this CM to perform a profile-sequence search
through BLAST hits, resulting in the Stage 1 MSA. In stages 2 and 3, the CM generated in
the first stage is utilized to search the RNAcentral and NT, respectively. The raw ‘cmsearch’
hits from these stages are merged with hits from the preceding stage and realigned to
produce the Stage 2 and 3 MSAs by ‘cmsearch’. During stages 4 and 5, the target sequence
is individually searched against the RNAcentral and NT using BLASTn. The resulting
BLAST MSAs are converted into CM 2 and CM 3, respectively, compensating for any
potential omissions in the nhmmer realignment stages of the first three stages. Consistently,
the same predicted secondary structure from RNAfold is employed in building CMs during
stages 1, 4, and 5. CM 2 and CM 3 are then utilized by ‘cmsearch’ to search through
sequences gathered from the preceding three stages, yielding the Stage 4 and 5 MSAs,
respectively. At each stage, a length-normalized number of Nf is calculated, and the
process proceeds to the next stage only when Nf < 128 [81], thereby avoiding unnecessary
construction of large MSAs. For the final MSA selection, rMSA constructs an MSA score
based on PLMC [111] covariance. The MSA score measures the consistency between
single-sequence-based and MSA-based rSS predictions. MSAs with greater diversity and
more homologous sequences are expected to yield stronger covariance signals and more
sensitive predictions for base pairing and contacts. Through these processes, the MSA
construction method of rMSA based on sequence-sequence and profile-sequence ensures
sufficient depth and coverage, consistently and significantly improving predictions of
rSS and contacts compared to existing RNA MSA generation programs, while avoiding
redundant or irrelevant large-scale MSAs.

2.4. Alternative for MSA in Application Tasks, Protein Language Model

Breakthroughs in protein design and structure prediction fields have been achieved
by leveraging the rich biological information from MSAs. However, the construction of
MSAs is constrained by various factors: the process is time-intensive [17]; retrieval schemes
rely on inefficient manual design; and not all proteins can access a plentiful and diverse
collection of high-quality homologous sequences [34]. These limitations have somewhat
hindered the development of protein-related fields heavily dependent on MSAs. At present,
a highly efficient MSA alternative methodology in application tasks involves training
large-scale PLMs based on various training objectives, such as autoencoding (Figure 12a),
autoregressive (Figure 12b), and other types of approaches (Figure 12c), to extract a wide
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range of features. These features capture evolutionary and co-evolutionary information,
making PLMs a viable alternative to MSAs in tasks such as function prediction, contact
prediction, tertiary structure prediction, and protein design. Its effectiveness has been
demonstrated to be comparable to state-of-the-art MSA-based methods.
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(a) PLMs based on autoencoder frameworks tend to learn protein representations for downstream task
analysis, particularly in tertiary structure prediction. (b) PLMs utilizing autoregressive frameworks
are inclined to generate proteins in novel sequence spaces. (c) General models like T5 and GLM are
capable of performing both tasks.

2.4.1. PLMs with MSA as Input

The MSA Transformer (ESM-MSA-1b) amalgamates a methodology centered on ex-
tracting insights from the covariance among mutations across columns within MSAs, e.g.,
Potts model. Through unsupervised learning, MSA Transformer trains a deep Trans-
former [31] model capable of handling multi-sequence alignment forms of input. Specif-
ically, by employing accelerated and optimized HHblits in HH-suite3 [112] to query the
UniClust30 [86] database, MSAs were constructed for each sequence contained within the
UniRef50 [99] database. The training dataset encompasses 26 million MSAs, averaging
1192 sequences per alignment. The pre-trained model is endowed with 100 million parame-
ters, consisting of 12 layers, a 768-dimensional embedding size, and 12 attention heads. To
effectively handle multi-sequence inputs and fully leverage the matrix structural features
inherent in MSA while mitigating excessive memory requirements, the model adopts the
axial attention approach [113]. The row attention modules and column attention modules
are arranged alternately, and a variant called Tied Row Attention is proposed, wherein a
single attention map is shared among rows. This operation not only reduces computational
costs but also imposes constraints on each sequence within an MSA to possess similar
structures. The pretraining strategy involves randomly and uniformly masking tokens on
the MSA or masking entire columns of the MSA, followed by predicting the identities of
the masked tokens.

MSA2Prot [114] also takes MSA as input. However, unlike the MSA Transformer,
this method incorporates an additional decoder that explicitly autoregressively models
sequence probabilities, thereby enabling sequence generation. The encoder–decoder model
was trained on the full set of 10,593 Pfam family alignments. The encoder is structured as a
stack of transformer layers with axial attention applied to both the rows and columns of
the MSA, while the decoder layers consist of causal self-attention, cross-attention to the
MSA representations, and fully connected layers with layer normalization and residual
connections for each block. The pre-trained model uses 6 encoder and decoder layers, each
with a hidden dimension of 768, where the MSA encoder employs 12 attention heads and
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the decoder utilizes 8 attention heads. The model parameters are optimized by minimizing
the negative log-likelihood of the target sequence conditioned on its family MSAs.

2.4.2. Autoencoding PLMs with Single-Sequence Input

The ESM series represents a typical example of PLMs based on autoencoder archi-
tectures. ESM-1b [32] trains a deep Transformer [88] architecture network model via
unsupervised learning to acquire amino acid-level representations imbued with contextual
information. Specifically, the approach utilizes the encoder of the Transformer, character-
ized by a sequence of blocks where self-attention layers and feed-forward connection layers
alternate to process the input. The model is trained on a dataset consisting of 250 million
protein sequences and 86 billion amino acids sourced from the UniRef50 database, employ-
ing MLM objectives. This results in a pre-trained Transformer model with approximately
650 million parameters across 33 layers. Later, the MSA Transformer (ESM-MSA-1b) [31]
method was proposed, which, in contrast to the single-sequence input approach, utilizes
MSA as input. A detailed discussion of this method can be found in Section 2.4.1. Subse-
quently, ESM-2 [115] continues the BERT-style Transformer architecture and MLM strategy
of ESM-1b. It was trained on approximately 65 million non-redundant sequences from
UR50/D, employing a range of models with different parameter sizes. The largest model
in this series contains 15 billion parameters, with 48 layers, an embedding dimension of
5120, and 40 attention heads. Additionally, Rotary Position Embedding (RoPE) was used in
place of the learned sinusoidal encoding employed in ESM-1b.

The ProtTrans [34] series leverages language models and transfer learning in protein
research, pretraining six distinct models, three of which are based on autoencoding archi-
tectures (ProtBert [116], ProtAlbert [117], ProtElectra [118]). Specifically, ProtBert trained
a Bert [116] model with 420 million parameters on BFD100 and UniRef100 datasets and
enhanced the original Bert by increasing the number of layers. Bert is the first bidirectional
language model used to reconstruct masks and is considered to be the standard for NLP
transfer learning. ProtAlbert trained an Albert [117] model with 224 million parameters on
UniRef100. Through factorization embedding parameterization and cross-layer parameter
sharing, the number of parameters is reduced compared to those of the original Bert, while
the number of attention heads is increased. ProtElectra trained an Electra [118] model
with 420 million parameters on UniRef100, utilizing a generator to produce reasonable
alternative tokens and a discriminator to identify replaced tokens, employing adversarial
training principles to enhance efficiency and performance.

The representations obtained from PLMs can be applied to a variety of downstream
protein understanding tasks, including remote homolog detection, secondary structure
prediction, residue–residue contact prediction, mutation effect prediction, subcellular
localization at the protein level, and the prediction of membrane proteins versus solu-
ble proteins, among others. Their performance can rival that of advanced MSA-based
methods. Notably, ESMFold, based on ESM-2, has achieved high-resolution atomic-level
protein structure prediction for the first time using a PLM instead of MSA. These find-
ings highlight the potential of PLMs as viable alternatives to traditional MSA methods in
application tasks.

Therefore, enhancing the quality of embeddings produced by PLMs is a critical focus
for future research. For instance, the previously discussed MSA Transformer improves
model performance by integrating prior information from MSA during training. Addition-
ally, ProteinBERT leverages functional annotations as supplementary information, while
Saprot incorporates structural data. ProteinBERT [119] is a denoising autoencoder inspired
by the Bert architecture, which performs dual reconstruction during pretraining on masked
amino acids and GO functional annotations of proteins. The two parallel pathways in-
dependently process sequences and functional annotations, obtaining local and global
representations respectively. The dual training tasks enable high-quality unsupervised
learning even with a smaller parameter count, showcasing performance comparable to
larger-scale PLMs in tasks such as secondary structure, remote homology, fluorescence,
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and stability prediction. Saprot [120] represents the inaugural universal PLM developed
based on an extensive collection of AlphaFold2-predicted structures, capable of extracting
both sequence co-evolutionary information and structural information for a diverse array
of downstream tasks. This model leverages Foldseek [40], which is based on VQ-VAE [121],
to convert protein structures into structural tokens for each amino acid position, thereby
representing different 3D interaction (3Di) states. The 3Di alphabet describes tertiary con-
tacts in 3D space by approximating the local backbone conformations of each residue i and
its nearest neighbor j using 20 discrete states. By combining these structural tokens with
amino acid-type tokens, a comprehensive SA vocabulary comprising 441 unique tokens is
generated. The architecture and parameter size of the Saprot model align with the 650M
version of ESM2, which will be described in detail later, with a straightforward substitution
of sequence tokens with SA-tokens. Pre-training is conducted on a dataset encompassing
approximately 40 million protein structures, utilizing a BERT-style MLM objective. A
distinctive feature of Saprot is its approach of randomly masking either the structural token
or the sequence token for a given amino acid, but never both simultaneously, which helps
mitigate erroneous optimization directions that could result from inaccurate SA-token out-
puts by Foldseek. Saprot exhibits superior zero-shot mutation effect prediction capabilities
compared to ESM-2, structure-based models such as MIF-ST [122] and ESM-IF, as well as
MSA-based models like Tranception L, MSA Transformer, and EVE [123]. Additionally,
Saprot demonstrates exceptional performance across eight supervised prediction tasks,
including Thermostability, HumanPPI, and Metal Ion Binding, underscoring its robust and
versatile representational capacity. However, the current body of work on Saprot does not
investigate its potential for structure prediction based on single sequences.

As the scale of training data and model parameters for PLMs continues to expand,
the representational capacity of the generated sequence embeddings is progressively en-
hanced. In previous studies, the structural information captured by PLM representations
from single-sequence inputs has remained confined to relatively low-resolution levels,
particularly regarding secondary or tertiary structures. However, more recent PLMs, like
AminoBERT [124] and OmegaPLM [125], encapsulate sufficient structural information in
their representations, enabling the performance of subsequent structure prediction tasks
based on these models to rival that of MSA-based methods. AminoBERT was trained on an
extensive corpus of approximately 250 million natural protein sequences from the UniParc
database [126], utilizing a Transformer architecture characterized by 12 attention heads and
an output sequence representation dimension of 3072. To enhance the model’s capacity to
capture global sequence information, two novel training objectives were introduced: firstly,
with a probability of 0.7, the model masks 2–8 consecutive residues and subsequently
predicts their true identities; secondly, with a probability of 0.3, the model alters the order
of adjacent sequence fragments through the chunk permutation technique and discerns
whether the sequence has been modified. OmegaPLM, trained on the Uniref50 dataset
with 670 million parameters, differs from traditional PLMs by employing 66 GAU layers
instead of self-attention layers and MLPs, allowing for lower memory requirements and
faster convergence. It incorporates Pre-LayerNorm and uses RoPE similar to ESM-2. Unlike
other PLMs, OmegaPLM ‘s training objectives align with ESM-1b’s BERT masking, and
it additionally integrates an optimized spanBERT-like [127] loss and Sequential masking.
To enhance the model’s focus on long-range amino acid relationships, Focal Loss [128]
is utilized.

2.4.3. Autoregressive PLM with Single-Sequence Input

Another class of PLMs, based on autoregressive frameworks, similarly captures the
consistent underlying dependencies between protein sequences, primarily excelling in
tasks related to sequence generation.

Among the six models in the ProtTrans series, ProtTXL and ProtXLNet are based on
autoregressive architectures. Specifically, ProtTXL trained Transformer-XL [129] models
with 409 million and 562 million parameters on the UniRef100 and BFD-100 datasets, re-
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spectively. The BFD integrates proteins translated from multiple metagenomic sequencing
projects and UniProt, constituting the largest protein sequence collection at the time. The
advantage of Transformer-XL lies in its variant of the transformer architecture introducing
a segment-level recurrence mechanism, allowing it to handle protein fragments of arbi-
trary lengths, partially alleviating the constraints on long sequences. ProtXLNet trained
XLNet [130] models with 409 million parameters on the UniRef100 database, employing
a similar memory mechanism to handle sequences of arbitrary lengths, further optimiz-
ing Transformer-XL by addressing its unidirectional context limitation and enabling the
collection of bidirectional contextual information.

The ProGen [131], with a parameter scale of 1.2 billion, was trained on a dataset
comprising 280 million non-redundant protein sequences along with their corresponding
control tags sourced from UniParc [126], UniprotKB [132], Pfam [133], and NCBI taxonomic
information [95]. The model is a 36-layer transformer network, with each layer comprising
8 self-attention heads. The control tags were divided into two categories: keyword tags and
taxonomic tags, which covered terms related to cellular components, biological processes,
molecular functions, and taxonomy spanning across eight standard taxonomic ranks from
NCBI. A key advantage of ProGen lies in its ability to leverage specified control tags
to guide sequence generation, enabling precise control over protein family, biological
process, and molecular function properties, significantly enhancing the diversity of protein
sequences across different families.

Compared to ProGen, ProGen2 [134] was trained on a broader dataset of 1 billion
protein sequences from genomic, metagenomic, and immune repertoire databases, uti-
lizing models with parameter sizes ranging from 151 million to 6.4 billion. The model
architecture follows a standard left-to-right autoregressive transformer decoder with causal
masking, employing RoPE and executing self-attention and feed-forward circuits in paral-
lel to optimize communication overhead. ProGen2 achieves state-of-the-art performance
in generating sequences and accurately predicting protein fitness without the need for
additional fine-tuning, effectively capturing the evolutionary sequence distributions.

The model architecture of ProtGPT2 [33] adopts HuggingFace’s autoregressive GPT2-
large Transformer [135], with a parameter scale of 738 million. The model consists of
36 layers with a dimensionality of 1280, utilizing the original dot-scaled self-attention
mechanism. The token sequences obtained by applying the Byte Pair Encoding (BPE)
strategy to the 44.88 million sequences in the UniRef50 dataset were used as input training
data. It can generate new protein sequences consistent with the stability, kinetic properties,
and disorder propensity of natural proteins within unknown sequence spaces, and fine-
tuning can enrich the diversity of sequences within specified protein families.

RITA [136] trains an autoregressive GPT-3 model with a parameter scale of 1.2 billion,
utilizing Prompt Tuning to generate controllable protein sequences.

Tranception [137], another autoregressive-based model, shows significant promise
in the field of protein design. Distinguished from preceding models, it integrates tech-
niques from Primer and Inception, giving rise to a novel Tranception attention mechanism.
This mechanism focuses on extracting information from contiguous subsequences of size
k-mer, and during inference, it combines with a homologous sequence retrieval mod-
ule. These advancements enable Tranception to achieve state-of-the-art results in protein
fitness prediction tasks and to handle indels, a capability lacking in ESM-1v [138] and
MSA-Transformer.

2.4.4. Other Types of PLMs

The two mainstream pre-trained PLMs frameworks discussed earlier each possess
distinct advantages and limitations. Autoencoding models leverage denoising objectives to
learn bidirectional context encoders, rendering them well-suited for comprehension tasks
but not directly applicable to sequence generation. Autoregressive models, which learn
language modeling in a left-to-right fashion, are advantageous for generating extended
sequences and few-shot learning, though they fall short in capturing bidirectional contex-
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tual dependencies. Building on these foundations, ProtT5 [34] and xTrimoPGLM [139]
have been introduced. These models employ architectures distinct from those previ-
ously mentioned, facilitating a more profound extraction and assimilation of protein
sequence features.

In the ProtTrans [34] series, ProtT5-XL and ProtT5-XXL are T5 [140] models pre-trained
on the UniRef50 and BFD100 databases, with parameter sizes of 3 billion and 11 billion,
respectively. The T5 models are designed to transform various protein-related tasks into
a text-to-text format, thereby offering a universal model framework. A key feature of
these models is their simultaneous use of both the encoder and decoder components of the
Transformer architecture, the encoder employs bidirectional attention, while the decoder
utilizes unidirectional attention, with cross-attention mechanisms connecting the two,
which mitigates the limitations associated with using only one of these components.

XTrimoPGLM [139] is a unified PLM based on the General Language Model (GLM),
aiming to integrate objectives from different frameworks. The GLM represents a more
efficient general language model compared to T5, introducing two key innovations and
improvements. Firstly, it employs an autoregressive blank-filling training objective, which
differs from the MLM task. In GLM, sequence segments are replaced with a ‘MASK’ symbol,
and each masked segment is predicted autoregressively until the prediction token is an
end-of-sequence marker. This approach not only requires the model to predict the correct
token but also to enhance its ability to correctly predict the length of the masked segments.
Secondly, GLM utilizes a 2D positional encoding scheme, where each token is encoded
with two positional IDs: the first dimension represents the position of the corrupted text
within the original sequence, and the second dimension records the position within the
masked segment area. The parameter scale of xTrimoPGLM reaches a record-breaking
100 billion for the first time, resulting in a significant improvement in handling multiple
protein understanding tasks. Moreover, it can generate new sequences with functional
structures distinct from natural proteins in larger sequence spaces, further advancing the
field of protein research.

3. Discussion

Sequence alignment, a cornerstone task in the analysis of biological sequences, has
consistently maintained a pivotal role within bioinformatics. By searching for homologous
sequences in large-scale databases and constructing MSAs, the intricate relationships
between diverse sequences can be extensively explored. This approach holds significant
value for structure prediction, functional analysis, and evolutionary studies, offering
profound insights into the molecular mechanisms of biological systems. Moreover, it drives
progress in drug discovery, the investigation of disease mechanisms, and research on
environmental adaptability.

Approaches to constructing MSAs for protein monomers encompass sequence-based,
HMM-based, k-mer-based, hybrid, and deep learning-based methods. The strengths and
limitations of the various methods are comprehensively outlined in Table 2. When tar-
get sequence similarity exceeds 30%, homology can be comprehensively detected using
sequence-to-sequence and sequence-to-profile approaches. Conversely, when sequence
similarity drops below 30%, methods predicated on profile HMM and HMM-to-HMM
alignments effectively address the limitations of the former techniques, thereby serving
as superior tools. With the rapid advancements in sequencing technologies, biological se-
quence data has grown exponentially, leading to the development of k-mer-based methods
to meet the increasing demands for accuracy, automation, and sensitivity in sequence align-
ment. Additionally, hybrid strategies, which combine various advanced search methods
and alignment techniques, have been introduced to enable automated and rapid searches
across large-scale datasets and metagenomes. However, when evolutionary relationships
are highly divergent, the lack of sequence conservation exacerbates the challenge of iden-
tifying remote homologies. Given that structural divergence occurs more slowly than
sequence divergence, some methods incorporate structural similarity for detection. It is
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important to note, however, that while homologous proteins are likely to exhibit high struc-
tural similarity, proteins with high structural similarity are not necessarily homologous. In
addition to structural information, PLMs, due to their rich embedded biological informa-
tion, have been utilized as indirect supplementary data for homologous protein searches.
This allows them to achieve speeds comparable to state-of-the-art sequence-based methods
and sensitivity on par with cutting-edge structure-based approaches. Overall, the methods
for constructing monomeric protein MSA are well-established. However, most algorithms
currently do not account for the alignment of multidomain proteins, which remains a
challenging issue due to the difficulty in defining domain boundaries. HMMER, through
the stochastic traceback clustering algorithm, effectively identifies and parses multidomain
protein sequences, recognizing each domain and aligning it with the corresponding model
without confusing or overlapping the domains. The DCTdomain [141] method, proposed
by Benjamin Giovanni Iovino et al., leverages protein sequence embeddings and contact
map predictions from ESM-2 to identify domains. It then applies discrete cosine transfor-
mation (DCT) to generate domain-based embeddings (DCT fingerprints), which facilitate
the fast and accurate detection of protein similarity. On the other hand, the rapidly growing
scale of metagenomic databases has made sequence searching increasingly challenging.
Therefore, reducing the time required for this process may be a key future development for
protein monomer MSA construction methods. One example is the MetaSource model [142],
which enhances MSA construction by connecting microbial community data with homolo-
gous protein family sequences, thereby speeding up the homologous sequence search and
improving the overall alignment process.

As the technology of MSA monomer construction has been developed, the quality of
MSA has a greater influence on bioinformatics research. Firstly, protein monomer MSA aids
in identifying conserved and variable regions. Conserved regions are segments present
across different protein sequences, typically indicative of crucial structural or functional
aspects. By aligning multiple protein sequences, scientists can pinpoint these conserved
regions and further investigate their roles in protein structure and function. Conversely,
variable regions represent differences between sequences, potentially linked to specific
functions or evolutionary adaptations. Furthermore, with MSAs, scientists can try to
choose the most likely set of mutations that may be potential ligand binding sites for
drug targets [9,143]. Secondly, protein monomer MSA is frequently utilized in predicting
protein structure. MSA is the primary component to derive local secondary structure
features [144,145], residue–residue contacts [146–149], and homologous structural tem-
plates [76,150,151], which are essential for the full-length three-dimensional (3D) structure
prediction. With the evolutionary information extracted from MSAs, the accuracy of protein
monomer structure prediction has been greatly improved, as shown by AlphaFold2 [4]. In
summary, protein monomer MSAs play a crucial role in elucidating protein structure, func-
tion, and evolutionary relationships, holding significant relevance across various domains
in biology, drug discovery, and life sciences.

The construction of MSAs for protein complexes focuses on selecting and concatenat-
ing monomer MSAs for the component chains. This includes strategies based on genome
distance, phylogeny, protein interaction databases, PLMs, and hybrid approaches. The
advantages and limitations of the various methods are summarized in Table 2. Genome
distance-based methods are better suited for prokaryotes, while phylogeny-based meth-
ods are more appropriate for eukaryotes. Incorporating protein interaction databases for
MSA refinement helps generate more robust results. PLM-based approaches enable highly
automated monomer MSA concatenation. Hybrid methods combine various homology
detection strategies and monomer MSA concatenation techniques to achieve high-quality,
deep, and generalized MSA construction. The methods for constructing MSA for protein
complexes are still in the early stages of development. A key challenge is the underutiliza-
tion of large amounts of unannotated species data in metagenomic databases. Additionally,
existing protein interaction databases, such as STRING, have limited data, and there is
currently no strong evidence that PLM-based connection methods can provide superior re-
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sults. In the future, advancements in technologies that enable the acquisition of large-scale,
high-quality, and cost-effective protein–protein interaction (PPI) data could significantly
benefit the construction of protein complex MSAs.

Similar to monomer MSAs, since multimer MSAs are rich in evolutionary information,
they usually shed light on the evolutionary history and divergence of protein complexes
which is useful for protein complex contact and distance prediction and protein complex
structure prediction [152–155]. Moreover, multimer MSAs can guide the design of mu-
tagenesis experiments aimed at studying the functional significance of specific residues
or domains within protein complexes. By identifying conserved or variable regions, re-
searchers can pinpoint sites for mutagenesis and assess their impact on complex formation
and function. From the aspect of protein function annotations, the use of multimer MSAs
significantly enhances the accuracy of Gene Ontology (GO) predictions and ligand binding
site predictions of protein complexes. In addition to these applications, protein–protein
interaction prediction is a significant usage of multimer MSAs. Understanding protein–
protein interactions of protein complexes of interest can not only contribute to protein
complex structure prediction but also help reveal functional molecular mechanisms and
drug target identification.

Incorporating base-pairing relationships to construct high-quality RNA MSAs is es-
sential, paralleling the significance of protein MSAs. Methods for constructing RNA MSAs
include sequence-based, HMM-based, CM-based, and hybrid approaches. Table 2 sum-
marizes the strengths and limitations of the various methods. HMM-based methods offer
enhanced capability for capturing remote homologous relationships compared to sequence-
based methods. CM-based approaches utilize conserved secondary structure features as
supplementary information, which is particularly important for identifying functionally
similar RNA molecules with significant sequence divergence. The limitations of RNA
MSA methods mainly stem from the underutilization of metagenomic sequence databases.
Incorporating metagenomic sequences in the future could significantly improve the quality
of MSAs.

MSA serves as a pivotal foundation for various RNA structural modeling tasks, includ-
ing the prediction of rSS, contact maps, and tertiary structures. For example, the Sankoff
model [156] and its simplified derivatives such as PMcomp [103], Dynalign [157], con-
san [104], and LocARNA [158], perform RNA sequence alignment and secondary structure
prediction simultaneously. Additionally, methods such as RoseTTAFoldNA [159], DeepFol-
dRNA [160], and trRosettaRNA [161] rely on the conservation information derived from
MSA, integrating deep learning models to extract features and predict the 3D structures
of RNA, thereby advancing our understanding of biological phenomena and fostering
the development of innovative technologies. Notably, the current methods are limited
by their inability to integrate metagenomic sequences, high computational complexity,
significant time costs, and heavy reliance on data quality, often necessitating a balance
between accuracy and computational resources when handling large-scale RNA sequence
data to achieve optimal alignment results. In recent years, RNA language models have
emerged to efficiently and accurately analyze RNA sequences, replacing traditional costly
experimental techniques. These models perform well across various downstream tasks
but encounter challenges in handling 3D structural motifs of RNAs, thereby limiting their
ability to elucidate RNA functionality.

MSAs explicitly capture evolutionary and co-evolutionary information of sequences,
while PLMs can serve not only as supplementary information for constructing MSAs but
also as direct substitutes, enabling implicit and deeper exploration while significantly
reducing time costs. Currently, PLMs are primarily categorized into methods based on
encoder frameworks, which excel at capturing bidirectional dependencies within context;
methods based on autoregressive frameworks, which are proficient in sequence generation
through conditional probability modeling; and various other approaches that attempt to
integrate both tasks. PLMs can utilize both single-sequence input and MSA for training.
The advantage of using MSA as input lies in its ability to allow the model to capture
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richer sequence relationships and evolutionary patterns, thereby enhancing its capacity
to model protein structures and functions across diverse families. Table 2 delineates the
advantages and drawbacks of the various frameworks. In protein engineering, language
models play a crucial role not only in extracting representations of coevolutionary features
for protein understanding tasks, such as structure prediction and functional prediction
but also in replacing traditional energy minimization functions [162] or coevolutionary
statistical models based on MSA [91,163–165] for protein design and generation tasks.

The introduction of the MSA-based end-to-end deep learning approach AlphaFold2
has elevated the performance of 3D structure prediction to a new level. However, the
computational cost of constructing MSA is prohibitively high and insufficient to meet
the demands of current research. To address this limitation, substantial efforts have been
directed toward leveraging representations from PLMs as alternatives to MSAs in ap-
plication tasks for single-sequence-based 3D structure prediction. Notable approaches
include RGN2 [166] based on AminoBERT [124], ESMFold [115] based on ESM-2, and
OmegaFold [125] based on OmegaPLM. Although these methods exhibit slightly lower
structural prediction accuracy compared to the MSA-based AlphaFold2 [4], they sur-
pass AlphaFold2 in predicting the structures of orphan proteins and de novo-designed
proteins, which lack extensive homologous sequences. Moreover, they have achieved
remarkable progress in computational efficiency, highlighting their immense potential for
practical applications.

However, improvements are needed specifically in tertiary structure prediction tasks.
Current trends in PLM development focus on scaling parameters and optimizing training
datasets. Nevertheless, indiscriminate model size increases may escalate resource demands
and operational costs without addressing all challenges effectively. Future explorations
of LMs in the field of proteins not only involve scaling up models but also distinguish
PLMs from LMs in NLP. This approach focuses on enhancing models tailored to the
characteristics of protein sequences. Additionally, multi-task or multi-modal learning
represents promising avenues for further investigation.
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