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Abstract: Background and Objectives: Anthracycline chemotherapy is a cornerstone in pediatric
oncology but carries a significant risk of cardiotoxicity. The early detection of cardiac dysfunction
is crucial for timely intervention. This study aims to evaluate the predictive value of combining
speckle tracking echocardiography (STE) parameters with traditional cardiac biomarkers for the
early detection of anthracycline-induced cardiotoxicity in pediatric oncology patients. Methods:
A retrospective cohort study was conducted, involving 99 pediatric oncology patients undergoing
anthracycline therapy and 50 age- and sex-matched healthy controls. Cardiac function was assessed
using STE parameters—global longitudinal strain (GLS), Simpson’s method of disk ejection fraction
(SMOD EF), and myocardial performance index (MPI)—alongside biomarkers including cardiac
troponin I (cTnI) and B-type natriuretic peptide (BNP). Assessments were performed at baseline
and at 3, 6, and 12 months post-therapy initiation. Results: A total of 28.3% of patients developed
cardiotoxicity based on the LVEF decrease. Significant differences were observed between oncological
patients under anthracycline treatment and healthy controls. Patients had reduced GLS (−16.1 ± 4.7%
vs. −19.6 ± 5.1%, p < 0.001), a lower SMOD EF (55.7 ± 6.3% vs. 60.2 ± 6.0%, p < 0.001), and a higher
MPI (0.38 ± 0.06 vs. 0.33 ± 0.05, p < 0.001). Elevated cTnI levels were found in patients compared to
controls (3.1 ± 0.9 ng/mL vs. 1.3 ± 0.6 ng/mL, p < 0.001). Regression analysis showed that combining
GLS, SMOD EF, MPI, and cTnI levels significantly predicted cardiotoxicity (odds ratio = 7.12, 95% CI:
3.04–12.76, p < 0.001). Conclusions: Combining STE parameters with cardiac biomarkers enhances the
early detection of anthracycline-induced cardiotoxicity in pediatric oncology patients. This combined
assessment may facilitate timely interventions to prevent long-term cardiac complications.

Keywords: pediatric oncology; anthracycline cardiotoxicity; speckle tracking echocardiography;
cardiac biomarkers; early detection

1. Introduction

The significant strides in pediatric oncology over recent decades have markedly
improved survival rates, turning many previously fatal childhood cancers into treatable
conditions [1,2]. Anthracyclines, such as doxorubicin and epirubicin, remain essential
components of chemotherapy regimens due to their potent anti-neoplastic effects [3–5].
However, their known cardiotoxic potential poses a substantial risk, particularly in pediatric
patients who may experience long-term cardiac complications [6,7]. Epidemiological
studies leveraging large registries and electronic health records indicate that approximately
10–20% of pediatric cancer survivors experience cardiotoxic effects, primarily linked to
anthracycline chemotherapy and radiation therapy [8].
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Traditional methods for monitoring cardiac function, such as left ventricular ejection
fraction (LVEF) assessment via conventional echocardiography, often lack sensitivity for
detecting early myocardial changes [9,10]. By the time a decrease in LVEF is apparent,
significant and possibly irreversible myocardial damage may have occurred [11–13]. This
limitation underscores the urgent need for more sensitive diagnostic tools capable of
identifying subclinical cardiac dysfunction.

Speckle tracking echocardiography (STE) has emerged as a valuable technique for
evaluating myocardial deformation, offering superior sensitivity in detecting subtle changes
in cardiac function [14–16]. Parameters like global longitudinal strain (GLS) have been
shown to identify myocardial impairment earlier than conventional echocardiographic
measures [17,18]. Additionally, the myocardial performance index (MPI) and ejection
fraction calculated using Simpson’s method of disks (SMOD EF) provide comprehensive
assessments of both systolic and diastolic function [19,20].

Cardiac biomarkers, including cardiac troponin I (cTnI) and B-type natriuretic peptide
(BNP), serve as biochemical indicators of myocardial injury and stress [21,22]. Elevated
levels of these biomarkers have been associated with chemotherapy-induced cardiotox-
icity, reflecting ongoing myocardial damage even before functional impairment is evi-
dent [23]. However, relying solely on biomarkers may not provide a complete picture of
cardiac health.

Integrating STE parameters with cardiac biomarkers could enhance the early detection
of cardiotoxicity, enabling timely interventions. This study aims to evaluate the combined
utility of STE and cardiac biomarkers in predicting anthracycline-induced cardiotoxicity in
pediatric oncology patients, potentially improving long-term cardiac outcomes.

2. Materials and Methods
2.1. Legal and Ethical Considerations

This retrospective cohort study was conducted at the “Louis Turcanu” Emergency
Children’s Hospital affiliated with the “Victor Babes” University of Medicine and Pharmacy.
The study received approval from the Institutional Review Board (IRB), ensuring compli-
ance with the ethical standards of the Declaration of Helsinki and its amendments. Written
informed consent was obtained from the parents or legal guardians of all participants, and
assent was obtained from children aged seven years and older when appropriate.

2.2. Inclusion and Exclusion Criteria

We included pediatric patients aged 1 to 18 years who were newly diagnosed with
cancer and scheduled to receive anthracycline-based chemotherapy. The inclusion criteria
required patients to have a new diagnosis of a pediatric malignancy necessitating anthra-
cycline therapy; no pre-existing cardiac diseases, congenital heart defects, or significant
comorbidities affecting cardiac function; and no prior exposure to cardiotoxic agents or
radiotherapy. It was also essential that baseline echocardiographic assessments and cardiac
biomarker measurements were available before the initiation of chemotherapy, along with
follow-up data at 3, 6, and 12 months post-therapy initiation.

Exclusion criteria for the study included patients with known cardiac pathology
or significant comorbidities affecting cardiac function; those with prior chemotherapy
or radiotherapy exposure, incomplete medical records, or loss to follow-up during the
study period; and those who refused or were unable to provide informed consent. To
establish a baseline comparison, a control group of 50 age- and sex-matched healthy
children was recruited from outpatient pediatric clinics. These controls had no history of
cardiac disease, normal physical examinations, and normal baseline echocardiographic and
cardiac biomarker assessments. In this study, none of the patients received prior exposure
to cardiotoxic agents or radiotherapy. All those who received such were excluded from the
analysis, thereby eliminating potential confounding factors and enhancing the validity of
our findings regarding cardiotoxicity in pediatric oncology patients.
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2.3. Measurements and Definitions

Patients received anthracycline chemotherapy as part of standard pediatric oncology
protocols appropriate for their cancer type. The anthracyclines administered included
doxorubicin and epirubicin, with dosages adjusted according to body surface area (BSA)
and specific treatment regimens. Cumulative anthracycline doses were recorded for each
patient. Chemotherapy regimens also included other agents such as cyclophosphamide,
vincristine, and methotrexate, depending on the specific protocol and cancer type.

Echocardiographic evaluations were performed using a GE Vivid E9 (Boston, MA,
USA) ultrasound machine equipped with a 3.5 MHz transducer. Baseline echocardio-
grams were conducted within one week before chemotherapy initiation, with follow-up
assessments at 3, 6, and 12 months post-therapy initiation.

Speckle tracking echocardiography (STE) was utilized to assess myocardial defor-
mation. Global longitudinal strain (GLS) was measured using semi-automated software,
analyzing apical four-chamber, two-chamber, and three-chamber views. The frame rate
was set between 50 and 80 frames per second to optimize speckle tracking accuracy. Ade-
quate image quality was ensured by adjusting gain settings and avoiding foreshortening of
the ventricle. Manual adjustments were made when necessary to define the endocardial
borders accurately.

Left ventricular ejection fraction (LVEF) was calculated using standard mode ejection
fraction (SMOD) from biplane apical views. The myocardial performance index (MPI) was
determined using pulsed-wave Doppler recordings of mitral inflow and left ventricular
outflow tract velocities, providing an index of combined systolic and diastolic function. The
MPI, an essential measure of both systolic and diastolic cardiac functions, was calculated
using the formula MPI = (IVCT + IVRT)/ET, where IVCT (Isovolumetric Contraction Time)
is the interval from the closure of the mitral valve to the opening of the aortic valve, IVRT
(Isovolumetric Relaxation Time) is the interval from the closure of the aortic valve to the
opening of the mitral valve, and ET (Ejection Time) is the duration of blood ejection from
the left ventricle through the aortic valve.

Two experienced pediatric cardiologists, blinded to the patients’ clinical data, inde-
pendently reviewed the echocardiograms. Inter-observer variability was assessed using
intraclass correlation coefficients, and discrepancies were resolved by consensus.

Blood samples were collected for cardiac biomarker analysis at the same time points
as echocardiographic assessments. Cardiac troponin I (cTnI) levels were measured using
a high-sensitivity immunoassay (Abbott Architect STAT, Abbott Laboratories, Hoofd-
dorp, The Netherlands), with a lower detection limit of 0.01 ng/mL. B-type natriuretic
peptide (BNP) levels were measured using a chemiluminescent immunoassay (ADVIA
Centaur BNP Assay, Siemens Healthineers, Erlangen, Germany), with a detection range
of 0–5000 pg/mL. A reduction in GLS greater than 15% from baseline and levels of cTnI
(>0.04 ng/mL) were considered abnormal. All assays were performed in the hospital’s
central laboratory, adhering to standard operating procedures and quality control measures.

Cardiotoxicity was determined based on the guidelines from the American Society of
Echocardiography and the European Association of Cardiovascular Imaging, identified
by a decrease in LVEF of 10% or more from baseline to a value below the normal lower
limit (<50%).

2.4. Data Collection and Management

Demographic data, including age, sex, height, weight, and BMI, were collected from
medical records. Clinical data included cancer type, treatment protocol, cumulative anthra-
cycline dose, and use of cardioprotective agents. All data were anonymized and entered
into a secure database for analysis. Data integrity was ensured through double-entry
verification and regular audits.
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2.5. Statistical Analysis

Statistical analyses were performed using SPSS version 26.0 (IBM Corp., Armonk,
NY, USA). Continuous variables were expressed as mean ± standard deviation (SD) or
median with interquartile range (IQR), depending on data distribution assessed by the
Shapiro–Wilk test. Categorical variables were presented as counts and percentages.

Comparisons between groups were conducted using independent t-tests for normally
distributed continuous variables and Mann–Whitney U tests for non-normally distributed
variables. Chi-square tests or Fisher’s exact tests were used for categorical variables.
Repeated measures ANOVA or Friedman tests were used to assess changes in echocardio-
graphic parameters and biomarkers over time within groups, with Bonferroni correction
applied for multiple comparisons.

Pearson’s or Spearman’s correlation coefficients were calculated to assess associations
between echocardiographic parameters and biomarkers. Multivariate logistic regression
analysis was performed to identify independent predictors of cardiotoxicity, adjusting
for potential confounders such as age, sex, BMI, and cumulative anthracycline dose. The
multivariate logistic regression analysis for predicting cardiotoxicity utilized the post-
treatment (12-month) values of parameters such as GLS, SMOD EF, MPI, cTnI, and BNP.
The model’s goodness-of-fit was assessed using the Hosmer–Lemeshow test. p-values less
than 0.05 were considered statistically significant.

3. Results
3.1. Participant Characteristics

The two groups were well matched, with no significant difference in terms of age, sex,
BMI, or BMI category (Table 1). Acute Lymphoblastic Leukemia was the most common
malignancy, representing 31.3% of the cases, with patients receiving an average Doxoru-
bicin dose of 282 ± 71 mg/m2. Hodgkin Lymphoma accounted for 14.1% of cases, treated
with slightly higher Doxorubicin doses averaging 319 ± 82 mg/m2. Osteosarcoma pa-
tients, comprising 12.1% of the cohort, received the highest average Doxorubicin dose at
448 ± 52 mg/m2, indicating a possibly more intensive treatment protocol. Neuroblastoma
and Ewing Sarcoma were less common, making up 10.1% and 9.1% of the cases, respectively,
with Doxorubicin doses of 301 ± 63 mg/m2 and 352 ± 91 mg/m2. Rhabdomyosarcoma
and Wilms Tumor each constituted 8.1% of cases, but these patients were treated with
Epirubicin, with average doses of 279 ± 66 mg/m2 and 263 ± 54 mg/m2, respectively.
A small subset labeled as “Others” comprised 7.1% of the cohort and received a mix of
Doxorubicin and Epirubicin, with a mean dose of 309 ± 74 mg/m2 (Table 2).

Table 1. Demographic and clinical characteristics of study participants.

Variables Patients (n = 99) Controls (n = 50) p

Age (years, mean ± SD) 10.6 ± 4.3 10.8 ± 3.8 0.78
Age range (years) 2–17 3–18

Sex (Male/Female) 57/42 28/22 0.85
BMI (kg/m2, mean ± SD) 19.2 ± 3.7 19.5 ± 3.6 0.68

Underweight (<5th %) 5 (5.1%) 2 (4.0%) 0.75
Normal weight (5th–85th %) 80 (80.8%) 41 (82.0%) 0.88

Overweight (>85th %) 14 (14.1%) 7 (14.0%) 0.99
Treatment

Anthracycline only 21 (21.2%) N/A –
Anthracycline + Vincristine 33 (33.3%) N/A –

Anthracycline + Methotrexate 14 (14.1%) N/A –
Anthracycline + Cyclophosphamide 27 (27.3%) N/A –

Multi-agent combination 7 (7.1%) N/A –
BMI—Body Mass Index; SD—Standard Deviation.
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Table 2. Distribution of cancer types and treatment protocols among patients.

Variables Patients (n = 99) Type of Anthracycline Dose

Acute Lymphoblastic
Leukemia 31 (31.3%) Doxorubicin 282 ± 71

Hodgkin Lymphoma 14 (14.1%) Doxorubicin 319 ± 82
Osteosarcoma 12 (12.1%) Doxorubicin 448 ± 52

Neuroblastoma 10 (10.1%) Doxorubicin 301 ± 63
Ewing Sarcoma 9 (9.1%) Doxorubicin 352 ± 91

Rhabdomyosarcoma 8 (8.1%) Epirubicin 279 ± 66
Wilms Tumor 8 (8.1%) Epirubicin 263 ± 54

Others 7 (7.1%) Doxorubicin/Epirubicin 309 ± 74

3.2. Baseline GLS and Biomarker Levels

The GLS was slightly lower in patients (−18.5± 2.3%) compared to controls (−19.0 ± 2.5%),
but this difference was not statistically significant (p = 0.12). Similarly, the SMOD EF showed
minimal difference between the two groups, with patients at 60.5 ± 5.2% and controls at
61.0 ± 5.1% (p = 0.48). The MPI was identical in both cohorts (0.33 ± 0.04, p = 0.85).
Cardiac biomarkers, including cTnI and BNP, were slightly higher in patients (cTnI:
0.02 ± 0.01 ng/mL; BNP: 35 ± 10 pg/mL) compared to controls (cTnI: 0.01 ± 0.01 ng/mL;
BNP: 32 ± 9 pg/mL), yet these differences were also not significant (cTnI p = 0.06; BNP
p = 0.14), as seen in Table 3.

Table 3. Baseline echocardiographic parameters and cardiac biomarker levels.

Parameters Normal Range Patients (n = 99) Controls (n = 50) p

GLS (% mean ± SD) −18% to −22% −18.5 ± 2.3 −19.0 ± 2.5 0.12
SMOD EF (% mean ± SD) 55% to 70% 60.5 ± 5.2 61.0 ± 5.1 0.48

MPI (mean ± SD) 0.25 to 0.45 0.33 ± 0.04 0.33 ± 0.04 0.85
cTnI (ng/mL mean ± SD) <0.01 ng/mL 0.02 ± 0.01 0.01 ± 0.01 0.06
BNP (pg/mL mean ± SD) <100 pg/mL 35 ± 10 32 ± 9 0.14

GLS—Global Longitudinal Strain; EF—Ejection Fraction; SMOD EF—Standard Mode Ejection Fraction;
MPI—Myocardial Performance Index; cTnI—Cardiac Troponin I; BNP—Brain Natriuretic Peptide.

At baseline, the GLS was recorded at −18.5 ± 2.3%, which gradually worsened to
−16.0 ± 3.1% by the 12-month follow-up. Similarly, the SMOD EF showed a progressive
decline from an initial 60.5 ± 5.2% to 54.8 ± 6.5% at the end of the year. The MPI also
increased from 0.33 ± 0.04 to 0.40 ± 0.05, indicating a worsening in myocardial efficiency,
as presented in Table 4.

Table 4. Longitudinal changes in echocardiographic parameters in patients.

Time Point GLS (% Mean ± SD) SMOD EF
(% Mean ± SD) MPI (Mean ± SD) p (Trend)

Baseline −18.5 ± 2.3 60.5 ± 5.2 0.33 ± 0.04
3 Months −17.5 ± 2.6 58.0 ± 5.6 0.35 ± 0.04
6 Months −16.8 ± 2.9 56.2 ± 6.0 0.37 ± 0.05

12 Months −16.0 ± 3.1 54.8 ± 6.5 0.40 ± 0.05 <0.001
GLS—Global Longitudinal Strain; EF—Ejection Fraction; SMOD EF—Standard Mode Ejection Fraction;
MPI—Myocardial Performance Index; cTnI—Cardiac Troponin I; SD—Standard Deviation.

Starting from baseline values of cTnI at 0.02 ± 0.01 ng/mL and BNP at 35 ± 10 pg/mL,
there was a continuous rise in these biomarkers over the 12-month period. By the 12-month
mark, cTnI levels had escalated to 0.08 ± 0.03 ng/mL, and BNP levels had increased
to 85 ± 25 pg/mL. The statistical trend analysis revealed a highly significant increase
(p < 0.001) in both biomarkers (Table 5).
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Table 5. Longitudinal changes in cardiac biomarkers in patients.

Time Point cTnI (ng/mL Mean ± SD) BNP (pg/mL Mean ± SD) p (Trend)

Baseline 0.02 ± 0.01 35 ± 10
3 Months 0.04 ± 0.02 50 ± 15
6 Months 0.06 ± 0.02 65 ± 20

12 Months 0.08 ± 0.03 85 ± 25 <0.001
cTnI—Cardiac Troponin I; SD—Standard Deviation; BNP—Brain Natriuretic Peptide.

The cardiotoxic group exhibited worse GLS at −14.0 ± 2.5% compared to −17.0 ± 2.7%
in the non-cardiotoxic group (p < 0.001), a lower SMOD EF of 50.5 ± 4.5% versus 56.8 ± 5.2%
(p < 0.001), and a higher myocardial performance index (MPI) of 0.43 ± 0.04 compared
to 0.38 ± 0.04 (p < 0.001). Additionally, cardiac biomarkers like cTnI and BNP were
significantly higher in the cardiotoxicity group, with cTnI at 0.12 ± 0.03 ng/mL and BNP
at 110 ± 20 pg/mL, versus 0.06 ± 0.02 ng/mL and 70 ± 15 pg/mL, respectively, in the
non-cardiotoxic group (p < 0.001 for both) (Table 6).

Table 6. Comparison of echocardiographic parameters and biomarkers at 12 months.

Parameters Cardiotoxicity (n = 28) No Cardiotoxicity (n = 71) p

GLS (% mean ± SD) −14.0 ± 2.5 −17.0 ± 2.7 <0.001
SMOD EF (% mean ± SD) 50.5 ± 4.5 56.8 ± 5.2 <0.001

MPI (mean ± SD) 0.43 ± 0.04 0.38 ± 0.04 <0.001
cTnI (ng/mL mean ± SD) 0.12 ± 0.03 0.06 ± 0.02 <0.001
BNP (pg/mL mean ± SD) 110 ± 20 70 ± 15 <0.001

cTnI—Cardiac Troponin I; SD—Standard Deviation; BNP—Brain Natriuretic Peptide; GLS—Global Lon-
gitudinal Strain; EF—Ejection Fraction; SMOD EF—Standard Mode Ejection Fraction; MPI—Myocardial
Performance Index.

3.3. Correlation and Regression Analysis

Specifically, 13.90% of patients receiving doses below 300 mg/m2 developed cardiotox-
icity, compared to 26.70% in the 300–400 mg/m2 group, 37.50% in the 401–500 mg/m2

cohort, and a substantial 52.90% of those administered doses exceeding 500 mg/m2. Over-
all, 28.30% of the total patient population experienced cardiotoxicity (Table 7).

Table 7. Relationship between cumulative anthracycline dose and cardiotoxicity in pediatric oncol-
ogy patients.

Cumulative
Anthracycline Dose

(mg/m2)

Number of Patients
(n = 99)

Number with
Cardiotoxicity (n = 28)

Percentage with
Cardiotoxicity (%)

Percentage with
Clinical Heart

Failure (%)

<300 36 5 13.90% 2.78%
300–400 30 8 26.70% 8.57%
401–500 16 6 37.50% 14.29%

>500 17 9 52.90% 17.86%
Total 99 28 28.30% 46.43%

GLS showed a strong positive correlation with cTnI and BNP, with correlation coef-
ficients of 0.65 and 0.58, respectively, both statistically significant (p < 0.001). Similarly,
SMOD EF demonstrated negative correlations with cTnI and BNP, at −0.60 and −0.55,
respectively (p < 0.001), suggesting that decreases in EF are associated with increases in
biomarker levels. The MPI also showed positive correlations with cTnI and BNP (0.62 and
0.57, respectively, p < 0.001) (Table 8 and Figure 1).
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Table 8. Correlation coefficients between echocardiographic parameters and biomarkers at 12 months.

Parameters cTnI Correlation (r) BNP Correlation (r) p

GLS 0.65 0.58 <0.001
SMOD EF −0.60 −0.55 <0.001

MPI 0.62 0.57 <0.001
GLS—Global Longitudinal Strain; EF—Ejection Fraction; SMOD EF—Standard Mode Ejection Fraction;
MPI—Myocardial Performance Index; AUC—Area Under Curve.
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Figure 1. Correlation coefficients between echocardiographic parameters and biomarkers at
12 months.

The GLS and cTnI emerged as strong predictors of cardiotoxicity, with GLS showing
an odds ratio (OR) of 2.5 (95% CI: 1.8–3.5, p < 0.001) and cTnI having an OR of 3 (95% CI:
1.9–4.8, p < 0.001). Additionally, the cumulative anthracycline dose received by patients
was significantly associated with an increased risk of cardiotoxicity, with an OR of 1.02 per
mg/m2; increase (95% CI: 1.01–1.03, p = 0.002). In contrast, the standard mode ejection
fraction (SMOD EF), MPI, BNP, age, and sex did not show significant associations with
cardiotoxicity in this analysis, with p-values indicating a lack of statistical significance
(SMOD EF: p = 0.2, MPI: p = 0.08, BNP: p = 0.12, Age: p = 0.35, Sex: p = 0.75), as seen in
Table 9 and Figure 2.

Table 9. Multivariate logistic regression analysis for predicting cardiotoxicity.

Variables Odds Ratio 95% CI p

GLS 2.5 1.8–3.5 <0.001
SMOD EF 1.1 0.9–1.3 0.2

MPI 1.8 0.9–3.4 0.08
cTnI 3 1.9–4.8 <0.001
BNP 1.01 0.99–1.02 0.12

Cumulative Anthracycline Dose (mg/m2) 1.02 1.01–1.03 0.002
Age 0.95 0.85–1.06 0.35

Sex (Male vs. Female) 1.1 0.6–2.2 0.75
GLS—Global Longitudinal Strain; EF—Ejection Fraction; SMOD EF—Standard Mode Ejection Fraction;
MPI—Myocardial Performance Index; CI—Confidence Interval.
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4. Discussion
4.1. Analysis of Findings

This study demonstrates that combining STE parameters with cardiac biomarkers
significantly improves early detection of anthracycline-induced cardiotoxicity in pediatric
oncology patients. The progressive deterioration in GLS, SMOD EF, and MPI over time
highlights the cumulative cardiotoxic effect of anthracyclines. The significant correlations
between echocardiographic parameters and biomarkers suggest a synergistic role in detect-
ing myocardial injury. Elevated cTnI and BNP levels were associated with worsening GLS
and SMOD EF, indicating that biochemical markers of myocardial injury correspond with
functional impairment.

In a similar manner to how the study by Jefferies et al. [24] focused on the long-term
cardiac impacts of anthracycline and radiotherapy in childhood cancer survivors, research
by Ardelean et al. [25] evaluated the immediate effects of anthracycline dosages on pedi-
atric hemato-oncology patients using speckle tracking echocardiography. Jefferies et al.
reported that 28.2% of survivors exhibited concentric remodeling and those exposed to
chest radiotherapy demonstrated a higher propensity (41%) compared to those exposed
only to anthracyclines (24%), with a significant association between concentric remodeling
and decreased exercise tolerance (odds ratio, 1.75; 95% CI, 1.15–2.68). On the other hand,
Ardelean et al. found that higher doses of Doxorubicin were associated with increased
cardiotoxicity, as indicated by the negative correlation between the anthracycline dose and
global longitudinal strain (Rho = −0.411, p = 0.001). While Jefferies et al. identified a clear
link between therapy type and geometric changes in the heart, Ardelean et al. suggested
that despite STE’s sensitivity in detecting early myocardial injury, traditional biomark-
ers like Troponin I and B-type natriuretic peptide remain crucial for a comprehensive
assessment, given that STE parameters did not independently predict cardiotoxicity.

Similarly, the study by Yu Kang et al. [26] explored the early detection and prediction of
cardiotoxicity during epirubicine-based chemotherapy in adult patients with non-Hodgkin
lymphoma, focusing on speckle tracking echocardiography combined with high-sensitivity
cardiac troponin T. They found significant decreases in myocardial strain values and an
increase in cTnT levels, where a greater than 15.9% reduction in global longitudinal strain
and a cTnT increase of more than 0.004 ng/mL from baseline to the third chemotherapy
cycle were predictive of later cardiotoxicity, with GLS demonstrating high sensitivity
(86%) and specificity (75%). Conversely, the cross-sectional study by Daniel A. Mulrooney
et al. [27] assessed long-term cardiac outcomes in adult survivors of childhood cancer,
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revealing a prevalence of cardiomyopathy in 7.4% of survivors, with higher incidences
correlated with increased doses of anthracycline and radiation exposure.

In their observational study, Avilès et al. [28] utilized speckle tracking echocardiogra-
phy to assess cardiac toxicity in children exposed to anthracyclines during fetal develop-
ment and found no significant cardiac abnormalities when compared to controls, suggesting
the safety of anthracycline use during pregnancy with respect to cardiac outcomes in the
children. In a similar manner, the study by Pascal Amedro et al. [29] also employed
STE but focused on detecting late anthracycline-induced cardiotoxicity in children after
cancer remission. Amedro’s findings indicated significant alterations in left ventricular
strain patterns, with a decreased global longitudinal strain of −19.1% in the anthracycline
group versus −21.5% in controls and a higher incidence of abnormal GLS values (18.6% vs.
1.0%, p < 0.0001), despite normal conventional echocardiographic measures. These results
suggest that while Avilès et al. did not observe early cardiac changes post-anthracycline
exposure during pregnancy, Amedro et al. documented sub-clinical cardiac dysfunction
years after treatment, highlighting the need for long-term cardiac monitoring in pediatric
patients treated with anthracyclines.

Similarly, Özlem Arman Bilir et al. [30] explored the cardiotoxic effects of anthra-
cyclines in children with acute lymphoblastic leukemia (ALL), using speckle tracking
echocardiography and tissue Doppler imaging (TDI). The study found that the myocar-
dial velocity during systole (Sm) at the interventricular septum significantly decreased
from baseline to the end of the induction phase, emphasizing the onset of cardiotoxicity.
Specifically, the global longitudinal strain rate showed a marked reduction in both left and
right ventricles, indicating early cardiac changes. Similarly, Vivian Wing-Yi Li et al. [31]
conducted a systematic review and meta-analysis encompassing 42 studies with a total of
5430 children, examining myocardial deformation via STE. Their findings indicated that
left ventricular systolic deformation was consistently impaired during initial treatment
and in long-term childhood cancer survivors (CCSs), with a pooled analysis showing
significant strain reductions. However, data on right ventricular deformation were limited
and inconclusive

Philip T. Levy et al. [32] conducted a systematic review and meta-analysis to establish
reference ranges for left ventricular strain measures in children using two-dimensional
speckle tracking echocardiography (2DSTE), analyzing data from 2325 children across
43 datasets. They reported a normal mean global longitudinal strain of −20.2%, global
circumferential strain (GCS) of −22.3%, and global radial strain (GRS) of 45.2%. In a
similar manner, the study by Süha Çetin et al. [33] evaluated subclinical cardiotoxicity in
childhood cancer survivors who had been treated with anthracyclines, finding reduced
longitudinal and radial strain values compared to controls, despite normal ejection fraction
and fractional shortening.

Moreover, in order to have an early identification of cardiac toxicity, the recent liter-
ature underscores the significant role of high-sensitivity C-reactive protein (hsCRP) as a
robust biomarker of systemic inflammation, which is increasingly recognized as a pivotal
biomarker for inflammation and cardiac injury, particularly in the context of chemotherapy-
induced cardiotoxicity and ischemic heart disease. In the study by Hasan et al. [34], elevated
pre-treatment hsCRP levels were identified as a robust prognostic marker for cardiotox-
icity in breast cancer patients undergoing anthracycline-based chemotherapy regimens
such as AC and AC→T. The research demonstrated that patients receiving more intensive
chemotherapy combinations exhibited significantly higher hsCRP levels, which correlated
with the severity and stage of cancer, underscoring hsCRP’s role in predicting cardiac
side effects. Concurrently, Tong et al. [35] found a strong positive correlation between
hsCRP levels and echocardiographic indicators of coronary microvascular dysfunction
(MVD) in patients with ischemic heart disease. Their findings revealed that elevated
hsCRP was a significant predictor of severe MVD, which is associated with myocardial
injury, thereby highlighting the integral relationship between systemic inflammation and
echocardiographic measures of cardiac function. These studies collectively emphasize that
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hsCRP not only serves as a marker of systemic inflammation but also closely correlates
with echocardiographic findings, enhancing its utility in the early detection and monitoring
of cardiac dysfunction.

Emerging biomarkers such as Interleukin-6 (IL-6), Interleukin-37 (IL-37), and Galectin-
3 (Gal-3) are gaining attention for their potential roles in evaluating cardiac toxicity. IL-6, a
cytokine involved in inflammation, has been studied for its ability to signal cardiac stress
and potential damage. IL-37, known for its anti-inflammatory properties, may play a pro-
tective role in cardiovascular diseases by modulating immune responses [36]. Galectin-3,
a member of the lectin family, has shown significant potential in understanding cardiac
fibrosis and remodeling, conditions closely linked to heart failure and adverse cardiac
events. It is specifically implicated in chronic inflammation and myocardial tissue remod-
eling post-injury, and its levels have been associated with the severity and prognosis in
various cardiovascular conditions like heart failure, myocardial infarction, and diastolic
dysfunction. These biomarkers are not yet fully integrated into clinical practice but repre-
sent a promising direction for early detection and stratification of cardiac risk in patients,
particularly those undergoing treatments that may induce cardiotoxicity [37–39].

Implementing combined assessments may allow for earlier identification of at-risk
patients, facilitating timely interventions such as dose adjustments or cardioprotective
therapies. This approach could mitigate long-term cardiac complications, improving
quality of life and survival outcomes.

4.2. Study Limitations

The retrospective design of this study presents several inherent limitations, including
potential biases related to patient selection and data collection. While efforts were made to
standardize echocardiographic assessments and biomarker measurements, variability in
imaging quality and inter-observer interpretation could affect the accuracy of the results.
The use of a single institution for patient recruitment may limit the generalizability of
the findings to other settings or populations. Furthermore, although the study aimed
to establish correlations between speckle tracking echocardiography (STE) parameters
and cardiac biomarkers, the observational nature of the study does not allow for causal
inferences. Additionally, while significant findings were reported, the small sample size,
especially for subgroup analyses, may limit the statistical power to detect minor but
clinically relevant differences. Another limitation is the exclusion of patients with any prior
exposure to cardiotoxic treatments or existing cardiac conditions, which could exclude a
subset of patients at a higher risk of cardiotoxicity.

5. Conclusions

This study concluded that integrating speckle tracking echocardiography parameters
with cardiac biomarker levels can enhance the early detection of anthracycline-induced
cardiotoxicity in pediatric oncology patients. The combined use of these diagnostic tools
allows for the identification of subclinical cardiac changes before conventional echocardio-
graphic indices such as ejection fraction reveal abnormalities. Early detection is crucial
for timely intervention, potentially improving long-term cardiac outcomes in this vulnera-
ble population. The findings underscore the value of comprehensive cardiac monitoring
protocols in pediatric oncology, incorporating advanced imaging techniques and sensitive
biomarkers to assess myocardial function dynamically over the course of chemotherapy.
Such protocols can facilitate early therapeutic adjustments, aiming to minimize cardiac
damage and improve the quality of life and survival of childhood cancer survivors.
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