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Abstract: A significant role in the pathogenesis of CAVD is played by innate immunity cells, such
as macrophages. In stenotic valves, macrophages have enhanced inflammatory activity, and the
population’s balance is shifted toward pro-inflammatory ones. Pro-inflammatory macrophages
release cytokines, chemokines, and microRNA, which can directly affect the resident valvular cells
and cause valve calcification. In CAVD patients, macrophages may have more pronounced pro-
inflammatory properties, enhanced not only by paracrine signals but also by juxtacrine Notch
signaling and epigenetic factors, which influence the maturation of macrophages’ progenitors. In this
review, we observe the accumulated data on the involvement of macrophages in CAVD development
via paracrine and juxtacrine interactions.
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1. Introduction

Calcific aortic valve disease (CAVD) is a complex, multifactorial process that leads
to the calcification of the valve leaflets, causing hemodynamic obstruction. There is cur-
rently no cure for CAVD other than surgical replacement of the affected valve. The disease
involves endothelial dysfunction and lipid deposition, inflammation, fibrosis, myofibroblas-
tic/osteoblastic differentiation of valve interstitial cells (VICs), as well as valve calcification,
and resembles an atherosclerotic process, but its progress and a final endpoint are dis-
tinct [1]. During the development of the disease, valvular endothelial cells (VECs) and
VICs interact with each other and with immune cells via paracrine signaling, such as
pro-inflammatory cytokines and microRNAs. Juxtacrine Notch signaling has also been
shown to play a crucial role in the pathogenesis of CAVD [2]. However, it remains uncertain
whether the direct contact between immune cells and valvular cells through Notch recep-
tors and ligands plays a role in CAVD development. In this review, we mainly consider
the contribution of macrophages in the pathogenesis of CAVD with special attention to
Notch signaling.

2. Notch in Driving Calcific Aortic Valve Disease

At the beginning of the disease, with mechanical stress, the integrity of VECs is re-
duced, entailing lipoprotein and immune cell infiltration into the interstitium of valve
leaflets [3] (Figure 1). To maintain endothelial barrier function, Notch signaling is essen-
tial [2,4]. Accordingly, it has been demonstrated that in the case of inflammation, glycosyl
transferase-mediated Notch glycosylation affects cell–cell contacts through altered Notch
ligand binding [5]. Therefore, Notch imbalance leads to weakened endothelial function,
including reduced cell integrity and abnormal differentiation [6]. Infiltrated lipoproteins
are then oxidized by reactive oxygen species produced by dysfunctional endothelial nitric
oxide synthase, further augmenting the fibro-osteogenic response of VICs by modulating
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the nuclear factor kappa B (NF-kB) pathway and activating Notch1 [7]. Oxidized lipids
directly stimulate VECs, leading to the upregulation of adhesion molecules such as ICAM-1
and VCAM-1. This allows T-cells and macrophages to infiltrate the tissue, triggering inflam-
mation [8–10]. Interestingly, lipid-lowering therapy has no effect on CAVD progression,
unlike in atherosclerosis [11,12].
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Figure 1. Schematic representation of the pathogenesis of aortic valve calcification in cases where
osteoblastic differentiation is involved. (A) Simplified structure of a healthy valve. The aortic valve
leaflets contain valvular endothelial cells (VECs), valvular interstitial cells (VICs), and the valvular
extracellular matrix, where (i) collagen fibrils/fibers (represented by three collagen triple helices in
purple) are prominent in the lamina fibrosa, (ii) proteoglycans (in blue) are abundant in the lamina
spongiosa, and (iii) elastin fibers (yellow network) are present in the lamina ventricularis. VECs cover
the leaflets and regulate valve permeability and homeostasis. VICs are distributed throughout the
entire interstitium regulating valve remodeling via synthesis and degradation of valvular extracellular
matrix components. Few resident macrophages and dendritic cells as well as a small number of
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myofibroblast-like VICs, although also present [13] are not depicted here. (B) Further simplified
representation of cellular events leading to calcific aortic valve disease (CAVD), where the three-
valve laminae are not displayed. Notch signaling is essential for maintaining endothelial barrier
integrity and proper function (upper figure). Mechanical stress compromises the integrity of the
endothelial layer contributing to CAVD development (lower figure): disruption of the barrier function
leads to lipoproteins entering the interstitium of the valve leaflets and their oxidation by reactive
oxygen species. This process is associated with (i) fibrogenic and/or osteogenic response of VICs,
(ii) abnormal differentiation of VECs, and (iii) immune cell infiltration into the leaflet, triggering
inflammation and further enhancing the alteration of extracellular matrix composition, ultimately
leading to valve dysfunction.

Due to the changed integrity of VECs, immune cells also infiltrate into the valve
interstitium and become activated. T-cells and monocytes that have penetrated the tissues,
which then turn into macrophages, secrete pro-inflammatory cytokines such as tumor
necrosis factor (TNF-α), interleukin-1β (IL-1β), and IL-6. These cytokines can modulate
the Notch signaling pathway, particularly by increasing the expression of NOTCH1 [14–16]
probably also in VICs (Figure 2). It has been demonstrated that cells from patients with
CAVD display an imbalanced NOTCH profile. Accordingly, it was shown that aortic en-
dothelial cells from CAVD patients have a down-regulated Notch signaling state and fail to
activate Notch-dependent endothelial-to-mesenchymal transition (EMT) when stimulated
by different Notch ligands or transforming growth factor-β (TGF-β) [17]. Additionally, the
Notch-dependent mechanisms in VICs derived from CAVD patients also display altered
activity [18]. Numerous studies have shown that dysregulation of the Notch pathway
promotes calcification of the aortic valve. However, activation or inhibition of different
Notch pathway components can lead to opposite effects on calcification [19–27].

Furthermore, with the participation of Notch mechanisms, pro-inflammatory cy-
tokines released by immune cells stimulate VICs to differentiate into myofibroblast-like
cells or osteoblast-like cells [28,29]. Myofibroblasts produce extracellular collagen and
tenascin-C, which alter the components of the extracellular matrix and promote fibro-
sis [30]. Osteogenically-differentiated VICs produce bone morphogenetic protein 2 (BMP-2)
and osteopontin (OPN), and express Runx2 and osterix (OSX) transcription factors [31,32].
BMP-2 is believed to be a potent initiator of osteoblastic differentiation, while Runx2 acts as
the master transcriptional regulator for osteogenesis. Studies have shown that the expres-
sion of BMP2 is stimulated by pro-inflammatory cytokine IL-6, and silencing IL-6 results in
a reduction in calcium-salt deposition on VICs [33].

Osteogenic differentiation of VICs leads to further calcification and the formation of
bone-like structures, although they were found in only 13 to 15% of histologically examined
CAVD-affected aortic valves [34,35]. The majority of mineral deposits are acquired as
a result of the diffuse precipitation of calcium on cellular debris following apoptosis of
VICs. This process is suggested to be regulated by TGF-β [36–38]. Interestingly, a pro-
calcific cell death other than apoptosis was also identified [39], in which a dramatic release
of acidic lipid material derived from degenerating VIC membranes acts as a dominant
nucleator of hydroxyapatite crystals, with its final by-products resulting in multitudes
of calcospherules, i.e., structures that are commonly detectable in any soft tissue affected
by ectopic calcification [40]. Such a degeneration was enhanced when cultures of VICs
stimulated with bacterial lipopolysaccharide (LPS) were supplemented with media derived
from parallel cultures of LPS-stimulated macrophages. Microcalcification is also promoted
by the release of microRNAs, pro-inflammatory, and pro-calcific cargo from extracellular
vesicles released by macrophages and VICs [41–44]. Ecto-nucleotidase ENPP1, which
hydrolyzes extracellular adenosine triphosphate and generates inorganic pyrophosphate,
contributes to the enhancement of valve calcification [45].

Thus, disruption of Notch-dependent endothelial signaling could contribute to the
activation of inflammation-dependent mechanisms of CAVD.
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Figure 2. Juxtacrine Notch signaling may play a role at different stages of macrophage involvement
in CAVD development. In CAVD, monocytes infiltrate valve tissues due to reduced integrity of
VECs and then turn into naive macrophages M0. The reduction in VECs integrity occurs due to
mechanical stress and loss of cell–cell Notch contacts after Notch receptor glycosylation observed in
inflammatory conditions. In addition to monocytes and other immune cells, low-density lipoproteins
(LDLs) also infiltrate the valve and act as osteogenic provocateurs in various ways. LDLs can
activate TLRs in macrophages, which in turn induce the expression of Notch receptors and ligands,
including Jagged1, Dll1, and Dll4. Activation of the Notch pathway in macrophages can lead to their
differentiation into pro-inflammatory M1 phenotype and impact CAVD progression. Furthermore,
VECs can induce macrophage M1 transition by losing the Notch4 receptor (while Notch1-3 remain
expressed) and increasing the production of Dll4 by both VECs and immune cells. M1 macrophages
express cytokines that promote inflammation and influence the osteogenic differentiation of resident
valve cells. These cytokines can regulate the Notch signaling pathway by increasing the expression of
NOTCH1, potentially in VICs as well. Dysregulation of Notch signaling, in turn, stimulates VICs to
differentiate into myofibroblast-like cells or osteoblast-like cells. However, it is still unclear whether
direct contact between macrophages and VICs via Notch receptors and ligands occurs in CAVD.

3. Macrophages Play a Role in CAVD Progression in Different Ways, Depending on
Their Type

It has been shown that both innate immunity and adaptive immunity mechanisms
play a major part in the development of CAVD, as well as atherosclerosis. Within the heart
valve, around 10–15% of cells evolve from hematopoietic origin [46]. This number increases
due to inflammation, as innate immune cells, T-lymphocytes, and B-lymphocytes infiltrate
the valve and promote further inflammation, influencing the properties of resident cells.
A very special role in disease progression is dedicated to infiltrating monocytes and the
tissue macrophages resulting from them. Two gene hubs have been identified in these cells
as being closely correlated with CAVD, playing an important role in disease development
through immune-related signaling pathways [47].
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Macrophages are derived from monocytes after they infiltrate heart valve tissue.
Intensive monocyte infiltration has been observed in both early and advanced stages of
CAVD [35].

Naïve macrophages (M0) have been shown to be increased in calcified aortic valve
tissue samples [48]. These macrophages can acquire a classical (M1, pro-inflammatory)
or alternative (M2, anti-inflammatory) phenotype, depending on the activation signals
they receive. M2 macrophages produce anti-inflammatory cytokines, such as TGF-β, IL-10,
and others, which contribute to the proliferation of regulatory T-cells and immunomod-
ulatory functions [49]. Within the valve, they have the potential to differentiate into
osteoclasts, which help remove calcium deposits within the vasculature [50]. In contrast,
pro-inflammatory M1 macrophages express enzymes such as nitric oxide synthase and
cytokines such as TNF-α, IL-6, and IL-12, which promote inflammation, influence VIC and
VEC properties and osteogenic differentiation potential, attract monocytes to the valve,
and further propagate the inflammation [51]. IL-6 has been identified as a susceptibility
gene underlying CAVD [52]. M1 macrophages accumulate in aortic valvular lesions, which
suggests that inflammation induced by these cells may play a pivotal role in cardiovascular
calcification [44,53].

The balance of M1 and M2 macrophages may reflect pathological disorders including
cancer, infection, and autoimmunity [54–56]. Excessive M1 macrophage polarization can
lead to atherogenesis, cardiometabolic syndrome, insulin resistance, and adipose inflam-
mation [57,58]. This is due to M1 macrophages’ ability to induce systemic inflammation
through the production of IL-6, monocyte chemoattractant protein-1 (MCP-1), and TNF-α,
which altogether weaken insulin sensitivity and enhance mechanisms favoring atheroscle-
rotic plaque formation [59,60]. In aortic valve disease, excessive production of inflammatory
cytokines has been shown to contribute to a significant shift in the M1/M2 ratio with M2
macrophages being barely observed [48,61]. Therefore, the available data suggest that
macrophages play a role in the process of aortic valve calcification.

4. Macrophages Play a Signaling Role in Resident Valvular Cells Transformations or
Directly Affect the Calcification Process

Macrophages are able to promote microcalcification of the aortic valve by directly
releasing microvesicles containing pro-inflammatory and pro-calcific substances [62]. These
extracellular vesicles secreted by activated macrophages come into contact with the extra-
cellular matrix, nucleate hydroxyapatite crystals and serve as nucleation sites for microcal-
cification at the early stages of mineralization [36,63].

In addition, macrophages play a crucial role in the transformation of valvular cells
into osteoblast-like cells. This is due to their increased pro-inflammatory activity, which
is gained through paracrine and juxtacrine signals that occur during their maturation.
Paracrine signaling pathways between macrophages and valve cells have been studied,
and they involve pro-inflammatory molecules that drive the transformation of VICs into
osteogenic cells, leading to valve calcification. However, juxtacrine interactions between
macrophages and residents have not been fully investigated, especially since the role of
Notch signaling remains unclear.

VICs are the main osteogenic players in CAVD [64]. VECs have been shown to
influence the calcification potential of VICs. In turn, macrophages can influence VEC and
VIC properties and induce calcification in the valves. For example, it has been shown that
RUNX2-expressing osteoblast-like VICs were located significantly closer to macrophages,
and exposure to macrophages was associated with the osteogenic calcification of VICs [65].
On the other hand, recently it has been demonstrated that the cellular communication
network protein 3 (CCN3), released by macrophages, decreases BMP-2 production and VIC
calcification [66].

The great influence of M1 macrophages on valvular cells has been documented, and
the conditioned medium from these macrophages enhances VIC calcification [67]. In
CAVD, M1 macrophages infiltrate the interstitium of the valve leaflets and release pro-
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inflammatory cytokines such as IL-1β, IL-6, TGF-β, and TNF-α [68,69]. These cytokines can
lead to inflammation of the cardiac valve and influence the process of calcification. It has
been shown that TNF-α, IL-1β, and IL-6 promote VIC activation, inhibit the myofibroblast
response in VICs, and induce the expression of alkaline phosphatase, eventually leading to
the osteogenic differentiation of VICs and valvular calcification [70–73]. Those cytokines
released by pro-inflammatory M1 macrophages can drive a myofibroblast-to-osteogenic
switch of VIC phenotypes, which may mediate the transition from fibrosis to calcifica-
tion during aortic valve stenosis progression [73]. Additionally, TNF-α has been shown
to exacerbate valvular inflammation by making VICs more sensitive to toll-like recep-
tor (TLR) activators [74], while TGF-β1 was shown to promote VIC calcification through
apoptosis [38]. M1 macrophages produce oncostatin M, which in combination with IL-21
promotes a JAK3/STAT3-dependent osteogenic mechanism in smooth muscle cells [75],
which has been confirmed in cultured VICs as well [76]. Furthermore, M1 macrophages
express significant amounts of cathepsin S—a cysteine protease that affects the proper-
ties of the extracellular matrix [77] and intensifies calcification in CAVD [78]. Activated
macrophages also release matrix metalloproteinase (MMP)-1, -2, -3, -9, and -10, which are
able to modulate the elasticity of the extracellular matrix (ECM), which in turn determines
VICs activation [79].

In addition, M1 macrophages have been shown to promote the calcification of VICs
mediated by the microRNA-214/TWIST1 pathway [44]. These macrophages release vesicles
containing microRNA-214 (miR-214), which are then delivered to VICs, target TWIST1,
and enhance VIC calcification. In this way, macrophages can promote VIC calcification by
the delivery of miR-214 to them via macrophage-derived microvesicles and subsequent
downregulation of TWIST1 in VICs.

Macrophages also affect VECs in which TNF-α is known to induce inflammation and
oxidative stress [80]. Adult VECs retain the developmental ability to undergo EMT and
differentiate into VICs. It has been shown that inflammatory cytokines such as TNF-α
and IL-6, released by infiltrating pro-inflammatory macrophages, induce EMT in valve
endothelium [81–83]. Overall, the data suggest that macrophages contribute to calcification
by interacting with the cells of the valve via various signaling mechanisms.

5. Macrophages in CAVD Have Strong Pro-Inflammatory Properties
5.1. Notch Signaling in Macrophages Regulates Their Pro-Inflammatory Activity

Several studies have reported the expression of Notch1–4 receptors and ligands in
human-derived primary macrophages, indicating their ability to both induce and respond
to Notch signals [84–86]. Notch signaling plays a crucial role in mediating juxtacrine
communication between macrophages through interactions with other macrophages and
stromal cells. Immunohistochemical and ultrastructural analyses have revealed direct
membrane contact between adjacent macrophages in human atherosclerotic plaques [87].
Moreover, upregulation of the Dll4 ligand and multiple components of the Notch signaling
pathway within macrophages in these plaques has been demonstrated [88]. These findings
suggest that macrophages can function as both Notch signal producers and receivers,
responding to external microenvironmental cues. In CAVD, there has been an increased
number of macrophages infiltrating and maturing, which is associated with the Notch1
receptor [65].

Notch signaling is considered to be a major regulator of the biological function of
macrophages [89]. Activating Notch signaling promotes the differentiation of macrophages
into a pro-inflammatory M1 phenotype, whereas blocking Notch signaling polarizes
macrophages toward an anti-inflammatory M2 phenotype [90–92]. Different cytokines,
chemokines, and microRNA are involved in the regulation of macrophage polarization
through Notch signaling. IL-37, for instance, inhibits the polarization of macrophages
toward M1 by suppressing the NOTCH1 and NF-kB [93]. MicroRNA miR-148a-3p, on the
other hand, promotes the M1 polarization and inhibits the M2 polarization of macrophages
upon Notch activation.
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Notch signaling in macrophages may also be induced by pathogen-associated molecu-
lar patterns (PAMPs) and endogenous molecules, as well as damage-associated molecular
patterns (DAMPs), which act via TLRs expressed by macrophages. For example, oxidized
low-density lipoproteins (LDLs), which accumulate in the aortic valves of CAVD patients,
can activate TLRs in macrophages and trigger an inflammatory response [94] (Figure 2).
One mechanism by which TLRs modulate Notch signaling is by inducing the expression of
Notch receptors and ligands. Activation of macrophages with TLR ligands has been shown
to induce the expression of Notch receptor ligands, including Jagged1, Dll1, and Dll4 [95,96].
Additionally, there is evidence that activation of Notch target genes such as HES1 and
HEY1 in human primary macrophages can be directly induced by TLR stimulation [97].
Therefore, TLR signaling promotes activation of the Notch pathway in macrophages and
can influence their differentiation into the M1 phenotype. This changes the balance between
M1 and M2 macrophage populations and impacts CAVD.

5.2. Accumulated Lipoproteins Influence on Macrophages’ Inflammatory Potential

The pro-inflammatory properties of macrophages are enhanced by lipoproteins that
accumulate in the diseased aortic valve. LDLs can penetrate through the endothelium
due to mechanical disruption of contacts between VECs at the initial stages of CAVD
development. LDL is the main type of lipoprotein that accumulates in the aortic valve
during hyperlipidemia, leading to the recruitment of monocyte-derived macrophages
expressing pro-inflammatory genes, which contribute to early-stage aortic valve disease [98].
In the valve, the accumulated LDL molecules become oxidized and are recognized by
scavenger receptors of macrophages and then captured. This promotes both inflammation
through increased production of IL-1β and TNFα, and inhibition of interferon gamma-
induced pro-inflammatory cytokines [99–101]. Macrophages in stenotic aortic valves have
been shown to express the CLEC4E receptor [102], which recognizes cholesterol crystals.
These crystals are then incorporated into the macrophages, where they are degraded,
leading to subsequent vascular inflammation and the development of atherosclerosis [103].

Monocyte adhesion with an increase in the inflammatory response may also be en-
hanced by apolipoprotein ApoC-III, which is known to interact with lipoprotein (a), an
intensive CAVD actor synthesized by hepatocytes [104]. ApoC-III is abundantly expressed
in the disease-prone fibrosa and accelerates VIC-driven calcification via increased IL-6
production [105].

5.3. The Increase in Inflammatory Activity Occurs Even at the Monocyte Stage

Blood monocytes can differentiate into both dendritic cells and macrophages after
engagement within inflammatory markers and become highly specialized resident car-
diac cells. Monocytes are classified into three subtypes that play significantly different
roles in the inflammatory response: classical monocytes (CD14hiCD16null), intermediate
monocytes (CD14hiCD16+), and non-classical monocytes (CD14lowCD16hi) [106].

Intermediate monocytes produce the highest amount of reactive oxygen species [107],
and when treated with lipopolysaccharides, they produce the largest amounts of TNF-α,
IL-1β, and IL-6 [108]. Therefore, they may have greater inflammatory properties than the
other two subtypes of monocytes. However, the most abundant monocyte subtypes are
classical and non-classical. In conditions of chronic inflammation, such as myocardial
infarction and heart failure, the population of intermediate monocytes expands from being
almost undetectable to approximately 8% of circulating blood monocytes [109,110]. The
same situation of expanding intermediate monocytes is presented in severe aortic valve
stenosis valve calcification [46,111]. Exhibiting large amounts of reactive oxygen species
and inflammatory markers, interferon-gamma (IFNγ) intermediate monocytes represent
the greatest proponent of chronic inflammation within the valve of all monocytes [112].

It is not clear if intermediate monocytes have a discrete biological role or whether they
are the unavoidable intermediates in a continuous differentiation from classical into non-
classical monocytes. However, they have been found to be increased in certain inflammatory
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conditions, such as rheumatoid arthritis [113], patients with severe asthma [114], myocardial
infarction [109], and loss of kidney function [115,116]. Intermediate monocytes are believed
to be indicators of coronary stenosis, as studies have shown that an increase in their number
significantly predicts extensive plaque formation [117].

Few studies have characterized monocyte subsets in the setting of CAVD. The study [111]
showed that patients with severe CAVD exhibited significantly higher levels of circulating
intermediate monocytes, while levels of circulating classical and non-classical monocytes
or monocyte activation did not differ compared to controls. The level of circulating in-
termediate monocytes has been reported to drop after aortic valve replacement [118,119].
Moreover, the amount of intermediate monocytes correlated with worse cardiac function.
The relationship between disease severity and monocyte subtypes is still unclear. It remains
speculative whether the increased levels of circulating (intermediate) monocytes play a
causal role in the pathophysiology of CAVD or are rather a consequence of the disease
through hemodynamic changes or valvular inflammation [120]. Although these studies sug-
gest that the phenotype of circulating monocytes is altered in patients with CAVD, a more
in-depth exploration of monocyte function and phenotype has not yet been performed.

Inflammatory conditions may cause changes in the signaling pathways of intermediate
monocytes. This is shown by Mycobacterium tuberculosis infection, where increased
expression of Dll4 was observed in intermediate and non-classical monocytes, leading
to activated Notch signaling [121]. Another study found that β-catenin expression is
increased in intermediate monocytes in patients with heart failure, which may indicate
Wnt/β-catenin signaling intensification [122].

5.4. Increase in Pro-Inflammatory Properties at the Stage of Hematopoietic Precursors

Hematopoietic stem cells in the bone marrow give rise to myeloid and lymphoid
progenitors; myeloid progenitor cells, in turn, give rise to all leukocytes including mono-
cytes and macrophages [123]. The status of the myeloid progenitor cells and, consequently,
the properties of outcoming macrophages are affected by the status of the bone marrow
niche. It has been shown that with age and in various diseases, the condition of bone
tissue deteriorates, leading to an imbalance in the hematopoietic stem cell niche and an
increased production of inflammatory cells in the bone marrow [124]. For example, mono-
cyte/macrophage recruitment from hematopoietic organs may be intensified during the
initiation and progression of atherosclerosis [125]. Mice studies have demonstrated that
ischemic injury elicits the production of monocytes from the bone marrow, leading to
accelerated systemic atherosclerosis [126].

In addition to an increase in number, monocytes/macrophages that are recruited
from the bone marrow during cardiovascular disease may have more prominent pro-
inflammatory characteristics. This can be influenced by several factors, even during the
stage of cell maturation in the bone marrow. Trained immunity and clonal hematopoiesis of
indeterminate potential (CHIP) are recently described mechanisms that occur in hematopoi-
etic stem cells. They could potentially contribute to the long-term activation of innate im-
mune cells and influence macrophage activity in CAVD. The discovery of these mechanisms
raises the question of whether chronic infiltration of immune cells or the expansion of patho-
logically altered immune cells within the valve is responsible for the disease progression.

5.4.1. Clonal Hematopoiesis of Indeterminate Potential

Clonal hematopoiesis of indeterminate potential (CHIP) is a phenomenon in which
somatic mutations are found in the blood or bone marrow cells without meeting any other
criteria for hematologic neoplasia. It becomes more frequent with age and is observed in
about 10% of people between the ages of 70 and 80 [127]. In this condition, a big fraction of
an individual’s blood cells derives from a single dominant hematopoietic stem cell clone. It
was shown that mutations associated with CHIP have effects on macrophages [128]. Since,
in a cardiac valve, 10–15% of cells have evolved from hematopoietic origin [46], CHIP may
influence the state of macrophages within the aortic valve.
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Transcriptomics and immunohistochemistry data confirm that CHIP is common in
CAVD patients and its presence is associated with higher mortality [129]. CHIP has also
been linked to coronary artery disease and cardio-vascular mineralization; CHIP carriers are
four times more likely to experience myocardial infarction than those without it [130,131].
The most common age-related hematopoietic mutations, TET2 and DNMT3A, regulate
the inflammatory potential of circulating leukocytes, and their presence is correlated
with CAVD and chronic inflammation [131,132]. These mutations are known to increase
inflammation by activating the inflammasome complex, leading to increased expression of
IL-6 and IL-1β [133]. That is why macrophages in the aortic valves of patients with CAVD
may have stronger pro-inflammatory properties and play a role in driving the progression
of the disease.

5.4.2. Trained Immunity and CAVD

The concept of trained immunity is also relevant to the question of whether macrophages
of CAVD patients are pro-inflammatory and more active. Trained immunity is a phe-
nomenon in which innate immune cells change their properties after contact with DAMPs
or PAMPs. This leads to a long-term hyperresponsive state, characterized by an increase
in cytokine production [134]. For example, the exposure of human monocytes to oxidized
LDLs, uric acid, and adrenaline/noradrenaline induces a trained macrophage pheno-
type [101,135,136]. Training of tissue macrophages and blood monocytes occurs at the level
of myeloid precursors in the bone marrow and that is why hyperresponsive macrophages
and monocytes can be found in the organism for a long time. Accordingly, it has been
shown that peripheral blood mononuclear cells and bone marrow mononuclear cells from
patients with atherosclerosis exhibit a higher capacity for cytokine production following ex
vivo stimulation.

The composition of bone marrow was skewed toward myelopoiesis and transcriptome
analysis of the hematopoietic cells showed enriched monocyte and neutrophil-related
pathways [137,138].

Trained and activated innate immune cells may contribute to pathophysiology and
tissue damage. It is known that the development of atherosclerosis, coronary artery disease,
and hypercholesterolemia are influenced by trained immunity. Similarly, this mechanism
may also be involved in the development of CAVD [139–141].

6. Conclusions

Cells of innate immunity, such as macrophages, are actively involved in CAVD devel-
opment. These immune cells interact with resident valvular cells—VICs and VECs—and
may contribute to the progression of CAVD. Macrophages communicate with these cells
through paracrine and juxtacrine interactions, causing calcification of the aortic valve. The
progression of CAVD depends on the pro-inflammatory potential of macrophages. Notch
signaling is known to regulate the biological function of macrophages and the osteogenic
transformation of VICs, but it is unclear whether direct juxtacrine communication between
immune cells and valve cells via Notch receptors and ligands contributes to the progres-
sion of CAVD. Therefore, further research into the role of Notch in the interaction between
macrophages and valve tissue cells is essential for understanding the pathogenesis of CAVD
and for developing therapeutic approaches to targeting inflammation in calcification.
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