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Abstract 

Background: Cancer classification has consistently been a challenging problem, 
with the main difficulties being high-dimensional data and the collection of patient 
samples. Concretely, obtaining patient samples is a costly and resource-intensive pro-
cess, and imbalances often exist between samples. Moreover, expression data is char-
acterized by high dimensionality, small samples and high noise, which could easily lead 
to struggles such as dimensionality catastrophe and overfitting. Thus, we incorporate 
prior knowledge from the pathway and combine AutoEncoder and Generative Adver-
sarial Network (GAN) to solve these difficulties.

Results: In this study, we propose an effective and efficient deep learning method, 
named AEGAN, which combines the capabilities of AutoEncoder and GAN to gener-
ate synthetic samples of the minority class in imbalanced gene expression data. The 
proposed data balancing technique has been demonstrated to be useful for cancer 
classification and improving the performance of classifier models. Additionally, we 
integrate prior knowledge from the pathway and employ the pathifier algorithm to cal-
culate pathway scores for each sample. This data augmentation approach, referred 
to as AEGAN-Pathifier, not only preserves the biological functionality of the data 
but also possesses dimensional reduction capabilities. Through validation with various 
classifiers, the experimental results show an improvement in classifier performance.

Conclusion: AEGAN-Pathifier shows improved performance on the imbalanced data-
sets GSE25066, GSE20194, BRCA and Liver24. Results from various classifiers indicate 
that AEGAN-Pathifier has good generalization capability.

Keywords: Pathway, Deep learning, Pathifier, Generative adversarial network, 
Imbalanced data

Background
Cancer is a complex disease caused by mutations in cellular DNA that may be due to a 
variety of factors such as genetic inheritance, environmental factors, lifestyle and health 
conditions [1, 2]. The danger of cancer lies not only in its deadly nature, but also in its 
physical and psychological effects on the patient [3]. Cancer treatment usually requires 
the use of rigorous treatment protocols such as chemotherapy, radiation and surgery, 
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which can lead to physical side effects such as nausea, vomiting and fatigue and can have 
a serious impact on a patient’s life [4, 5]. Therefore, cancer prevention and early detec-
tion are crucial to reduce the harm of cancer [6, 7].

Cancer classification has become a challenging problem, and one of the major diffi-
culties is the unbalanced gene expression data [8]. Moreover, Obtaining patient samples 
typically incurs significant costs, including medical equipment and technology, human 
resources, and data management [9]. The collection of patient samples may require 
substantial time and manpower, as well as specialized medical and laboratory facili-
ties. These costs can potentially impact the budget and feasibility of the research pro-
ject [10, 11]. And the unbalanced nature of these data may lead to degradation in the 
performance of classifiers, which may affect cancer diagnosis and treatment. It is widely 
recognized that gene expression data harbors characteristics encompassing high dimen-
sionality, limited sample size, and pronounced noise. These characteristics often lead to 
challenges like the high of dimensionality and overfitting in data mining, causing many 
classical machine learning methods to lose their effectiveness. Following this direction, 
researchers have proposed a meta-analysis framework integrating data augmentation 
and elastic data shared lasso regularization to improve gene expression analysis [12]. 
In order to address the issue of excessively large data dimensions, feature selection has 
been widely employed to mitigate the high of dimensionality and related problems [13, 
14]. Additionally, the Multi-Omics Meta-learning Algorithm (MUMA) focuses on multi-
omics data analysis through sample weighting and interaction-based regularization for 
biomarker selection [15]. In recent years, various feature selection algorithms have been 
applied to tumor biomarker identification. For instance, methods such as Correlation-
based Feature Selection (CFS), Mutual Information, Hypothesis Testing, Recursive Fea-
ture Elimination (RFE), Maximum Relevance Minimum Redundancy (mRMR), Random 
Forest, Lasso, 1-norm Support Vector Machine, SCAD, Elastic Net, and Elastic SCAD 
have been utilized [16–18]. Some feature extraction methods have been extensively 
employed for dimensional reduction in omics data, including Independent Component 
Analysis, Principal Component Analysis, Wavelet Transform, and Manifold Learning 
[19, 20]. Due to the highly spatial heterogeneity of cancer, which involves various funda-
mental cellular processes such as apoptosis, proliferation, differentiation, and migration, 
the reproducibility of gene-based tumor markers is poor among different populations 
of cancer patients [21]. As a result, the robustness of classifiers based on gene-based 
tumor markers has been widely questioned. The advancement of cancer treatment strat-
egies requires better methods to identify robust biological tumor markers. To address 
the issue of gene marker instability, many approaches have proposed searching for more 
robust biological markers at the biological pathway level [22]. Consequently, the recent 
focus of research has been on cancer classification based on these robust markers, which 
fold gene-level data into compact and functional biological pathway-level data. This not 
only achieves more reliable classification performance but also provides better biologi-
cal explanations for treatment strategy selection [23, 24]. Thus, we started to use deep 
learning techniques using AutoEncoder and GAN to deal with unbalanced data. The 
proposed methodology we present entails generating novel data by assimilating the 
underlying data distribution, thereby fostering enhanced equilibrium within the dataset. 
Furthermore, we leverage the pathifier algorithm to downscale gene expression data by 
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incorporating pathway information, thereby facilitating notable enhancements in classi-
fier efficacy. This approach offers a more precise and dependable instrument for cancer 
classification, with the potential to empower physicians in their diagnostic and thera-
peutic endeavors.

In this study, we propose an effective and deep learning method called AEGAN for 
addressing the issue of data imbalance in generating minority class samples in gene 
expression data. The proposed data balancing approach has been demonstrated to be 
useful for cancer classification and improving the performance of classifier models. 
Additionally, we incorporate prior knowledge from pathways and utilize the Pathifier 
algorithm to calculate the pathway scores of samples [25]. This combined approach, 
referred to as AEGAN-Pathifier, retains the biological functionality of the data while 
also possessing the ability to reduce data dimensionality. Experimental results show that 
when validated using classifiers, the performance of the classifiers improved significantly.

Methods
Datasets

The datasets are mainly from GEO and TCGA. GEO is a public repository for gene 
expression data. It is maintained by the National Center for Biotechnology Information 
(NCBI) and provides a platform for researchers to deposit, access, and analyze a wide 
range of high-throughput gene expression data [26]. TCGA is a landmark project that 
aimed to comprehensively characterize the genomic alterations in various types of can-
cer [27]. Moreover, TCGA collected and analyzed genomic, transcriptomic, and clinical 
data from thousands of cancer patients across multiple cancer types. Table 1 presents 
the sources of the dataset, number of genes, along with the quantities of the minority 
class ( Cm ) and majority class ( Cn ), and the class imbalance ratio ( Ir ). The formula for cal-
culating the class imbalance ratio is given by the following equation.

For dataset GSE25066, it includes 488 samples of breast cancer patients treated with 
NAC (antracyclines/taxanes) profiled with the U133A microarray. This dataset com-
pared 99 pathologic complete response (pCR) samples and 389 residual disease (RD) 
samples. For dataset GSE20194, it is also a chemotherapy response data for breast can-
cer. This dataset compared 56 pathologic complete response (pCR) samples and 222 
residual disease (RD) samples. For dataset Liver24, it is one RNA-Seq data set from 
TCGA. The Liver dataset consists of 421 samples obtained from comparing 371 liver 

(1)Ir =
Cm − Cn

Cm + Cn

Table 1 The detailed information of Gene expression datasets

Datasets Data source Number of genes Number of 
majority class

Number of 
minority class

Class 
imbalance 
ratio (%)

GSE25066 GEO 13236 389 99 59.43

GSE20194 GEO 22284 222 56 59.71

BRCA TCGA 20097 422 141 49.91

Liver24 TCGA 11885 371 50 76.25



Page 4 of 19Zhang et al. BMC Bioinformatics          (2024) 25:392 

cancer samples with 50 normal samples using the Agilent platform. The BRCA dataset 
comprises samples of breast cancer, derived from the TCGA platform. This dataset con-
sists of 422 samples of the lumA subtype and 141 samples of the lumB subtype.

AEGAN

Due to the high dimensionality of gene expression data, which presents challenges in 
training GAN, we propose the AEGAN framework. In this framework, we leverage the 
power of AutoEncoder and GAN to address the limitations of traditional GAN in han-
dling high-dimensional data.

AutoEncoder is a type of neural network architecture consisting of an encoder and 
a decoder [28]. The encoder, denoted as e, maps the input data to a lower-dimensional 
latent space representation. where X represents the input data and Xe represents the 
encoded latent space representation. The decoder, denoted as d, reconstructs the origi-
nal input data from the encoded representation. This architecture can be expressed as:

where L represents the loss function of the AutoEncoder, and the loss function used is 
MSELoss.

GAN is a type of generative machine learning model [29]. Due to the high cost of 
obtaining patient samples, we utilize this network to generate minority class sample 
data in order to achieve sample balance and improve classifier performance. GAN con-
sist of a discriminator (D) and a generator (G). GAN model as shown in the following 
expressions.

The encoded gene expression data Xe is subject to preprocessing using the function f(x), 
and subsequently utilized as the input for the discriminator. In addition, z represents 
the generated noise, which is used as the input for G(z). E represents the Binary Cross 
Entropy loss function.

where y represents the real data, and ŷ represents the generated data. Furthermore, The 
discriminator uses ReLU and Tanh as activation functions. ReLU increases the nonlin-
earity of the network and prevents gradient vanishing, which is defined as follows:

(2)







Xe = e(X),
Xd = d(X),

argmine,dL(X , (e ◦ d)X)

(3)
{

ℓ(x, y) = L = {l1, . . . , lN }
⊤,

ln =
(

xn − yn
)2

(4)f (x) =
x −min(x)

max(x)−min(x)

(5)minmaxV (D,G) =Ex∼f (Xe)[D(x)] + Ez[1− D(G(z))]

(6)E(y, ŷ) = −
1

N

N
∑

i=1

yi log(ŷi)+ (1− yi) log(1− ŷi)
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Additionally, the generator also employs the Tanh activation function, given by:

These activation functions play a crucial role in enhancing the nonlinearity of neu-
ral networks and addressing the issue of gradient vanishing. This becomes particularly 
important when analyzing gene expression data, as it allows for capturing complex rela-
tionships and patterns within the data.

Analysis workflow

Data collection and preprocessing. In Fig. 1a, we initiate the process by gathering gene 
expression data and performing preprocessing. Probe information corresponding to 
gene names is obtained using platform information provided by Gene Expression 
Omnibu (GEO) and The Cancer Genome Atlas (TCGA). Both the GEO and TCGA 
datasets are utilized to validate our proposed algorithm for handling imbalanced data. 
The datasets from the GEO platform are acquired using the GEOquery library in the 
R language. Probes are then mapped to gene names based on the relevant platform 
information. As for the datasets from the TCGA platform, we collect them using the 
TCGAbiolinks library and retrieve gene names using the SummarizedExperiment 
library. The objective of obtaining gene names is to facilitate subsequent experiments 

(7)ReLU = (x+) = max(0, x)

(8)Tanh(x) =
exp(x)− exp(−x)

exp(x)+ exp(−x)

Fig. 1 The proposed imbalanced data processing workflow (AEGAN-Pathifier). a gene expression data from 
GEO and TCGA. b AutoEncoder network architecture for encoding dimensional reduction of input data. c The 
encoded data is trained by a generative adversarial network to generate new sample data. d The generated 
data is first decoded and the Pathifier algorithm is used to calculate the pathway scores of the samples 
based on the KEGG pathway database and the gene expression data, and finally the scored dataset will be 
compared on different Classifiers for classification performance
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in calculating pathway scores through the pathifier algorithm. Finally, we employ the 
Minmax approach for normalization, which allows us to unify the scales of features 
and enhance the efficiency of gradient descent as well as the stability of the model.

Data encoding. The problem of class imbalance not only affects the performance of 
classifiers but also increases the false negative rate in patient detection results. There-
fore, we propose the AEGAN framework to address the issue of class imbalance in 
the sample data. In Fig.  1b, we present the AutoEncoder model that we developed. 
The encoder in the AutoEncoder is responsible for encoding high-dimensional gene 
expression data into low-dimensional latent variables, forcing the neural network to 
learn the most informative features. The decoder, on the other hand, aims to recon-
struct the hidden variables back to the initial dimension. The ideal state is when the 
decoder’s output perfectly matches the input,resulting in an effectively self-encoded 
AutoEncoder. Figure 2 shows the similarity between the original data and the decoded 
data.

Generate minority class samples. Due to the complexity of high-dimensional data as 
input to the GAN, it can adversely affect the performance of the model. Therefore, in the 
GAN, we leverage the characteristics of the AutoEncoder and use the gene-encoded data 
as input to enhance the performance of the network. In Fig. 1c, The generative adversar-
ial network comprises a generator and a discriminator. The generator, a neural network 
model, aims to synthesize data that resembles real data by taking in a random noise vec-
tor as input and progressively generating output data through a series of transforma-
tion layers. Its objective is to deceive the discriminator as much as possible, rendering 
it unable to distinguish between the generated and real data. On the other hand, the 
discriminator, also a neural network model, aims to differentiate the generated data from 
the real data. It takes both the generated and real data as input and outputs a probability 
value that represents the likelihood of the input being real data. The discriminator’s goal 
is to accurately discern between the generated and real data. Ultimately, the well-trained 
generator is used to generate the needed samples of minority class data.

Fig. 2 The similarity in Euclidean distance between the decoder data, generated data, and original data in 
AEGAN
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Calculate pathway scores. As shown in Fig.  1d, we introduce prior knowledge from 
the KEGG pathway database and the pathifier algorithm to calculate scores for samples 
in the pathway. This approach not only retains gene biological characteristics but also 
significantly reduces the sample dimension, further improving the classification perfor-
mance of the classifier. Firstly, we use the generator to generate additional samples for 
the minority class to achieve sample balance. Then, we utilize the decoder to decode the 
gene expression data. By combining the KEGG pathway and the pathifier algorithm, we 
calculate the pathway scores for each sample. Finally, we compare the pathway scores 
of each sample using different data balancing methods and our proposed AEGAN algo-
rithm across various machine learning classifiers to evaluate their performance.

KEGG pathway database and pathifier algorithm

In our research on cancer classification of samples, we introduce the KEGG pathway 
database (https:// www. genome. jp/ kegg/) and the Pathifier algorithm to calculate path-
way scores for the samples. KEGG is a collection of databases and related software used 
to understand and simulate the higher-order functional behaviors of cells or organisms 
based on genomic information. KEGG computerizes data and knowledge on protein-
protein interaction networks and chemical reactions that are involved in various cellular 
processes. Additionally, KEGG can be utilized as a reference knowledge for functional 
genomics and proteomics experiments [30].

Pathifier is an algorithm that infers a pathway score for each tumour sample based 
on gene expression data, which translates gene-level information into pathway-level 
information to generate compact and biologically relevant representations for each sam-
ple [31]. By combining this algorithm with the KEGG pathway database, we calculate 
the scores of samples on pathways. This approach not only retains the biologically rel-
evant characteristics of genes but also achieves dimensional reduction. Furthermore, it 
enhances the performance of the classifier.

We provide a detailed description of the underlying principles of the Pathifier algo-
rithm. Assuming a given list of pathway genes, denoted as K ( K � 3 ), the gene expres-
sion data is constructed into a |K|-dimensional space, where each gene represents a 
dimension and each point represents a sample. All the sample points form a point cloud 
in the |K|-dimensional space, with the number of sample points being n. Subsequently, 
the Hastie and Stuetzle algorithm is employed to identify the principal curve f (�) within 
the point cloud, where � represents points along the principal curve [32]. Assuming x is 
a point in the space, the corresponding � is obtained using the following equations.

Once the principal curve f (�) is obtained, the point on the curve that is closest to the 
projected sample point x represents the position of the sample on the principal curve. 
The centroid formed by a subset of normal samples serves as the starting point of the 
principal curve. Thus, the pathway score for each sample is determined by the distance 
along the curve from its position on the curve to the starting point. After obtaining the 

(9)f (�) = E(X |�f (X) = �)

(10)�f (x) = sup
�

{� : �x − f (x)� = inf �x − f (µ)�},X ∈ Mn×|K |(R)

https://www.genome.jp/kegg/
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pathway scores for each sample, we trained machine learning classification algorithms 
using this reduced-dimensional data and obtained classification metrics.

Results
Evaluation of AEGAN

We use Euclidean distance (d) to measure similarity in AutoEncoder’s decoder data (x) 
and original data (y), as well as generated data from Generative Adversarial Networks.

In the context of AutoEncoder, the Euclidean distance serves as a valuable metric for 
assessing the similarity between the decoder data and the original data. This distance 
measure allows us to quantify the resemblance between the reconstructed data pro-
duced by the decoder and the original input data.

Furthermore, when incorporating Generative Adversarial Networks, we can extend 
the use of Euclidean distance to evaluate the similarity between the decoded data and 
the original data. GAN consist of a generator network that generates synthetic data and 
a discriminator network that distinguishes between the generated data and the original 
data. By utilizing the Euclidean distance, we can measure the similarity between the gen-
erated data and the original data, providing insights into the GAN’s ability to produce 
data that closely resembles the original samples. From Fig. 2, it can be observed that the 
similarity between the original GSE25066 dataset and the datasets processed by AutoEn-
coder and GAN is d = 0.02 and 0.19, respectively. For the GSE20194 dataset, the simi-
larity is d = 0.12 and 0.67. As for the BRCA dataset, the similarity is d = 0.52 and 0.88, 
while for the Liver24 dataset, the similarity is d = 0.11 and 0.65. Therefore, the data pro-
cessed by our constructed network is highly similar to the original data. Therefore, the 
Euclidean distance is a valuable tool for quantifying the similarity between the decoder 
data and the original data in AutoEncoder models. Additionally, it can be extended to 
measure the similarity between the generated data from GAN networks and the original 
data. This approach allows for a comprehensive evaluation of both the AutoEncoder and 
GAN networks in terms of their ability to produce data that closely resembles the origi-
nal samples.

Evaluation of AEGAN‑Pathifier

The performance of different classifiers is significantly influenced by dimensional reduc-
tion, resampling, and other data preprocessing techniques. Additionally, imbalanced 
data can also lead to a decrease in classifier performance. Therefore, several classifiers 
are employed to evaluate the effectiveness and performance of our constructed AEGAN-
Pathifier. These classifiers include the Random Forest Classifier (RF), Extra Trees Clas-
sifier (ET), Light Gradient Boosting Machine (LGBM) and Gradient Boosting Classifier 
(GBC). These classifiers are chosen based on their strong performance across various 
datasets [33]. Each classifier is evaluated using the same data preprocessing methods and 
the K-Fold Cross Validation technique with a fold number of 8. Furthermore, all evalua-
tion experiments are conducted on a machine running the Ubuntu 20.04.6 LTS operat-
ing system with 64GB of memory, an Intel E5-2680v4 processor, and a 3090ti GPU.

(11)d =

√

(x1 − x2)2 + (y1 − y2)2
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The performance of data balancing methods is evaluated by comparing the perfor-
mance of each classifier in three different scenarios. The first scenario involved training 
the classifiers using the original data without any balancing or feature reduction. The 
second scenario involves training the classifier using balanced data preprocessed by 
Smote, Edited Nearest Neighbours (ENN), and All K-Nearest Neighbors (AllKNN) algo-
rithms. The third scenario involves training the classifiers using the balanced data pre-
processed by AEGAN. Lastly, the fourth scenario involves training the classifiers using 
the gene pathway scores obtained from AEGAN-Pathifier. All classifiers are trained on 
the same training set and evaluated on the same test set in each scenario to ensure a fair 
evaluation of the classifiers. The performance of each classifier is measured based on all 
the metrics listed in Table 2.

Results for GSE25066 dataset

This section discusses the classification results after applying balancing methods to 
the GSE25066 dataset. Table  3 presents all the classifiers that show improved perfor-
mance in terms of any metric on the GSE25066 dataset. The results indicate that ET, RF, 
LGBM and GBC achieve performance improvement when combined with AEGAN and 
AEGAN-Pathifier.

When the ET is combined with AEGAN, it shows significant improvements in per-
formance compared to using the original data. Currently, it is noticeably increasing by 
9.28% in Accuracy, 22.96% in AUC score, and exhibiting substantial improvement in 
Kappa and Time metrics. Additionally, when combined with AEGAN-Pathifier, it is 
outperforming the original data in terms of Accuracy, AUC, and Precision scores, with 
increases of 22.2%, 31.94%, and 24.78% respectively. Moreover, it demonstrates signifi-
cant improvements in F1-Score, Kappa, and Time metrics.

When the RF is combined with AEGAN, it shows significant improvements in perfor-
mance compared to using the original data. Specifically, there is a noticeable increase of 
9.33% in Accuracy, 27.22% in AUC score, and substantial improvements in Kappa and 
Time metrics. Furthermore, when the RF is combined with AEGAN-Pathifier, it exhibits 
even greater improvements compared to the original data. There is an increase of 21.85% 
in Accuracy, 36.15% in AUC score, and 24.33% in Precision. Additionally, there were sig-
nificant improvements in F1-Score, Kappa, and Time metrics.

When combining the LGBM with AEGAN, it is currently showing significant improve-
ments in performance compared to using only the original data. Specifically, there is a 
noticeable increase of 8.6% in Accuracy and 27.11% in AUC score, along with substan-
tial improvement in Kappa metric. Additionally, when combined with AEGAN-Pathifier, 
it outperforms the original data in terms of Accuracy, AUC, and Precision scores, with 
increases of 21.85%, 36.44%, and 23.38% respectively. Moreover, it demonstrates signifi-
cant improvements in F1-Score, Kappa, and Time metrics.

When the GBC is combined with AEGAN, it shows significant improvements in per-
formance compared to using the original data. Currently, it is noticeably increasing by 
9.63% in Accuracy, 30.15% in AUC score, and exhibiting substantial improvement in 
Kappa metric. Additionally, when combined with AEGAN-Pathifier, it is outperform-
ing the original data in terms of Accuracy, AUC, and Precision scores, with increases of 
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23.4%, 39.37%, and 17.15% respectively. Moreover, it demonstrates significant improve-
ments in F1-Score, Kappa, and Time metrics.

Finally, we applied the Smote, ENN, and AllKNN techniques for data balancing on 
the original GSE25066 dataset and compared the results using four classifiers - ET, RF, 
LGBM, and GBC. However, we observed that employing these data balancing methods 
yielded significantly lower classification metrics compared to our proposed AEGAN and 
AEGAN-Pathifier methods.

Results for GSE20194 dataset

This section discusses the classification results of the GSE20194 dataset after applying 
balancing methods. Table 4 presents all the classifiers that have shown improved per-
formance in various metrics on the GSE20194 dataset. The results indicate that ET, 
RF, LGBM and GBC have achieved performance enhancements when combined with 
AEGAN and AEGAN-Pathifier.

When combined with AEGAN, the performance of the ET in terms of classification 
metrics, such as Accuracy and AUC, is significantly improved by 7.83% and 20.8%, 
respectively, compared to using only the original data. Additionally, there are substantial 
improvements in Kappa and Time metrics. Furthermore, when combined with AEGAN-
Pathifier, it outperforms the original data with a remarkable increase of 19.52%, 22.41%, 
and 18.67% in Accuracy, AUC, and Precision scores, respectively. Moreover, there are 
significant improvements in F1-Score, Kappa and Time metrics.

When AEGAN is combined with the RF, there is a noticeable improvement in the clas-
sification metrics of Accuracy and AUC, with an increase of 8.13% and 17.91% respec-
tively, compared to using only the original data. Additionally, significant enhancements 
are observed in the Kappa and Time metrics. Furthermore, when AEGAN-Pathifier is 
employed in conjunction with the classifier, there is a remarkable boost in performance. 
Specifically, there is a substantial increase of 13.94%, 21.92%, and 18.17% in Accuracy, 
AUC, and Precision scores respectively, compared to the original data. Moreover, signifi-
cant improvements are observed in the F1-Score, Kappa and Time metrics.

When combined with AEGAN, the performance of the LGBM in terms of classifica-
tion metrics, such as Accuracy and AUC, is significantly improved by 7.94% and 30.58%, 
respectively, compared to using only the original data. Additionally, there are substantial 
improvements in Kappa and Time metrics. Furthermore, when combined with AEGAN-
Pathifier, it outperforms the original data with a remarkable increase of 10.64%, 33.89%, 
and 16.06% in Accuracy, AUC, and Precision scores, respectively. Moreover, there are 
significant improvements in F1-Score, Kappa, and Time metrics.

When combined with AEGAN, GBC demonstrates significant improvements in clas-
sification metrics such as Accuracy and AUC, with performance increases of 7.59% and 
26.3%, respectively, compared to using the original data. Additionally, there are substan-
tial enhancements in metrics like Kappa and Time. Furthermore, when combined with 
AEGAN-Pathifier, it shows even greater improvements. Specifically, there is a notable 
increase of 13.36%, 32.60%, and 14.91% in Accuracy, AUC, and F1-Score scores, respec-
tively, compared to the original data. Moreover, there are significant advancements in 
metrics such as Kappa and Time.
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In conclusion, the Smote, ENN, and AllKNN data balancing techniques are applied 
to the original GSE25066 dataset, and a comparison is made with the ET, RF, LGBM, 
and GBC classifiers. It is observed that these data balancing methods yield significantly 
lower classification metrics compared to our proposed AEGAN and AEGAN-Pathifier 
methods.

Fig. 3 Compare the accuracy metric among the Original data, Smote, ENN, AllKNN, AEGAN, and 
AEGAN-Pathifier methods in the scenarios of GSE25066, GSE20194, BRCA, and Liver24 datasets

Fig. 4 The improvement of classifier metrics using AEGAN-Pathifier on each dataset
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Results for the BRCA dataset

This section delves into the classification outcomes of the BRCA dataset after the imple-
mentation of balancing methods. Table 5 showcases all classifiers that exhibit enhanced 
performance across various metrics on the BRCA dataset. The findings demonstrate 

Table 2 Classification metrics

Metric Expression

Accuracy TP + TN

TP + TN + FP + FN

AUC Area under ROC curve

Precision TP

TP + FP

F1-Score 2 · Precision · Recall

Precision+ Recall

Kappa p0 − pe

1− pe

Time (Sec) Time taken for classification

Table 3 Results summary for the GSE25066 dataset

Dataset: GSE25066
Classifier Data balancing methods Metrics

Accuracy AUC Precision F1‑Score Kappa Time

ET Original 0.7974 0.7579 0.8014 0.8854 0.0370 0.4725

Smote 0.8020 0.7727 0.8231 0.8840 0.2036 1.4525

ENN 0.7633 0.7694 0.8768 0.8419 0.3352 0.9200

AllKNN 0.7406 0.7628 0.8902 0.8227 0.3231 0.8112

AEGAN 0.8714 0.9319 0.7941 0.8834 0.7363 0.4162

AEGAN-Pathifier 0.9744 1.0000 1.0000 0.9737 0.9487 0.0300
RF Original 0.7997 0.7330 0.8043 0.8862 0.0531 0.6362

Smote 0.7656 0.7637 0.8227 0.8581 0.1739 1.5538

ENN 0.7428 0.7554 0.8740 0.8266 0.3039 0.8112

AllKNN 0.7338 0.7486 0.8911 0.8164 0.3187 0.7062

AEGAN 0.8743 0.9263 0.8013 0.8856 0.7428 0.5400

AEGAN-Pathifier 0.9744 0.9980 1.0000 0.9737 0.9487 0.0700
LGBM Original 0.7997 0.7281 0.8105 0.8853 0.0997 0.3375

Smote 0.7816 0.7485 0.8240 0.8690 0.1695 16.3125

ENN 0.7452 0.7709 0.8833 0.8277 0.3205 5.8900

AllKNN 0.7315 0.7673 0.8874 0.8159 0.3135 6.4288

AEGAN 0.8685 0.9255 0.8115 0.8783 0.7309 0.3113

AEGAN-Pathifier 0.9744 0.9934 1.0000 0.9737 0.9487 0.0500
GBC Original 0.7792 0.7147 0.8109 0.8710 0.0760 0.3300

Smote 0.7815 0.7380 0.8329 0.8665 0.2367 30.2550

ENN 0.7291 0.7694 0.8761 0.8175 0.2812 24.6562

AllKNN 0.7246 0.7619 0.8901 0.8100 0.3060 13.9162

AEGAN 0.8542 0.9302 0.7968 0.8646 0.7008 0.6075

AEGAN-Pathifier 0.9615 0.9961 0.9500 0.9620 0.9231 0.0400
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that the ET, RF, LGBM, and GBC all show improved performance when combined with 
AEGAN and AEGAN-Pathifier.

When combined with AEGAN-Pathifier, ET demonstrates a noteworthy improvement 
of 5.72% and 4.34% in terms of Accuracy and AUC, respectively, compared to using the 
original data alone. Moreover, the F1-Score, Kappa, and Time metrics also exhibit sub-
stantial improvements.

When combined with AEGAN-Pathifier, the utilization of RF showcases a consider-
able enhancement of 3.86% and 5.34% in terms of classification performance, specifically 
Accuracy and AUC, compared to solely utilizing the original data. Additionally, signifi-
cant enhancements are also observed in the F1-Score, Kappa, and Time metrics.

When employed in conjunction with AEGAN-Pathifier, the utilization of LGBM 
demonstrates a noteworthy enhancement of 2.42% and 3.96% in terms of classification 
metrics, specifically Accuracy and AUC, compared to solely utilizing the original data. 
Furthermore, notable improvements are observed in the F1-Score, Kappa, and Time 
metrics.

When employed in conjunction with AEGAN-Pathifier, the utilization of GBC show-
cases a notable improvement of 4.65% and 4.73% in terms of classification metrics, spe-
cifically Accuracy and AUC, compared to solely utilizing the original data. Furthermore, 
notable enhancements are observed in the F1-Score, Kappa, and Time metrics.

Table 4 Results summary for the GSE20194 dataset

Dataset: GSE20194
Classifier Data balancing methods Metrics

Accuracy AUC Precision F1‑Score Kappa Time

ET Original 0.7995 0.7822 0.8043 0.8861 0.0283 0.7088

Smote 0.7911 0.7894 0.8139 0.8784 0.1567 1.7038

ENN 0.7835 0.7812 0.8579 0.8630 0.3095 0.7262

AllKNN 0.7835 0.7985 0.8890 0.8589 0.3784 0.8588

AEGAN 0.8621 0.9449 0.7946 0.8749 0.7209 0.6875

AEGAN-Pathifier 0.9556 0.9575 0.9545 0.9545 0.9111 0.5800
RF Original 0.7996 0.7918 0.8039 0.8857 0.0329 0.6362

Smote 0.7873 0.8181 0.8303 0.8727 0.2165 1.9038

ENN 0.7516 0.7763 0.8307 0.8449 0.1883 0.7025

AllKNN 0.7752 0.7919 0.8831 0.8535 0.3566 1.0163

AEGAN 0.8646 0.9336 0.7959 0.8764 0.7267 0.7738

AEGAN-Pathifier 0.9111 0.9654 0.9500 0.9048 0.8218 0.6600
LGBM Original 0.8034 0.7218 0.8163 0.8865 0.1531 5.2175

Smote 0.8193 0.7520 0.8521 0.8919 0.3311 13.5200

ENN 0.7757 0.7954 0.8826 0.8538 0.3469 1.0238

AllKNN 0.7272 0.7930 0.8742 0.8165 0.2678 4.1112

AEGAN 0.8672 0.9425 0.8172 0.8758 0.7310 10.7238

AEGAN-Pathifier 0.8889 0.9664 0.9474 0.8780 0.7770 0.4200
GBC Original 0.8037 0.7392 0.8267 0.8844 0.2160 15.4850

Smote 0.8033 0.7591 0.8323 0.8830 0.2350 2.0250

ENN 0.7431 0.7284 0.8494 0.8328 0.2639 0.8925

AllKNN 0.7194 0.7293 0.8687 0.8128 0.2579 11.6250

AEGAN 0.8647 0.9336 0.8137 0.8743 0.7256 26.6250

AEGAN-Pathifier 0.9111 0.9802 0.9500 0.9048 0.8218 2.7500
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In conclusion, we apply SMOTE, ENN, and AllKNN data balancing methods on the 
BRCA original dataset and compare the results with the ET, RF, LGBM, and GBC clas-
sifiers. We observe that when utilizing these data balancing methods, the classification 
metrics exhibit slightly lower performance compared to our proposed AEGAN method 
and significantly lower performance compared to the AEGAN-Pathifier method.

Results for the Liver24 dataset

This section discusses the classification results of the Liver24 dataset after applying bal-
ancing techniques. Table 6 presents all the classifiers that have shown improved perfor-
mance in terms of any metric on the Liver24 dataset. The results indicate that the GBC, 
Ada Boost Classifier, and Logistic Regression Classifier have achieved performance 
improvements when combined with AEGAN and AEGAN-Pathifier.

From Table 6, it can be observed that the classifiers achieve good results on the origi-
nal dataset, but there is still room for improvement. After incorporating our proposed 

Table 5 Results summary for the BRCA dataset

Dataset: BRCA 
Classifier Data balancing methods Metrics

Accuracy AUC Precision F1‑Score Kappa Time

ET Original 0.8704 0.9372 0.8487 0.6711 0.5957 0.4638

Smote 0.8781 0.9412 0.8064 0.7191 0.6412 1.9562

ENN 0.8681 0.9335 0.6905 0.7415 0.6523 0.7500

AllKNN 0.8706 0.9369 0.6821 0.7585 0.6707 0.5675

AEGAN 0.8583 0.9643 0.9596 0.8407 0.7165 0.6075

AEGAN-Pathifier 0.9203 0.9779 0.9714 0.9145 0.8388 0.0800
RF Original 0.8908 0.9330 0.8970 0.7277 0.6610 0.4475

Smote 0.9010 0.9370 0.8028 0.7714 0.7065 2.5938

ENN 0.8706 0.9399 0.6995 0.7507 0.6631 0.7138

AllKNN 0.8757 0.9390 0.7027 0.7633 0.6790 0.7488

AEGAN 0.8898 0.9655 0.9714 0.8793 0.7795 0.5888

AEGAN-Pathifier 0.9253 0.9828 0.9739 0.9215 0.8496 0.0700
LGBM Original 0.8985 0.9454 0.8407 0.7531 0.6889 0.4200

Smote 0.9060 0.9500 0.8254 0.7762 0.7159 22.5763

ENN 0.8807 0.9419 0.6874 0.7586 0.6795 1.2237

AllKNN 0.8631 0.9411 0.6523 0.7386 0.6463 0.7500

AEGAN 0.9055 0.9681 0.9402 0.9016 0.8110 1.0688

AEGAN-Pathifier 0.9203 0.9829 0.9483 0.9172 0.8390 0.0700
GBC Original 0.8908 0.9347 0.8255 0.7275 0.6587 0.6238

Smote 0.8833 0.9357 0.7735 0.7192 0.6448 34.5700

ENN 0.8755 0.9344 0.6974 0.7506 0.6676 0.6775

AllKNN 0.7995 0.8837 0.5672 0.6586 0.5242 0.7050

AEGAN 0.9094 0.9717 0.9506 0.9046 0.8189 0.5725

AEGAN-Pathifier 0.9322 0.9789 0.9511 0.9308 0.8630 0.0400
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AEGAN-Pathifier method for handling imbalanced data, all metrics reached 100%. 
Additionally, the time required for classification by the classifiers is significantly reduced. 
Therefore, our proposed method effectively enhances the performance of the classifiers 
and provides valuable assistance in accurately classifying cancer.

In conclusion, we apply the Smote, ENN, and AllKNN data balancing techniques to 
the original Liver24 dataset and compare them with the ET, RF, LGBM, and GBC classi-
fiers. It is observed that these data balancing methods yield significantly lower classifica-
tion metrics compared to our proposed AEGAN and AEGAN-Pathifier methods.

Results for pathway scores

This section discusses the pathway scores of the GSE25066, GSE20194, BRCA and 
Liver24 datasets and investigates whether these pathways are associated with cancer. 
According to Table 7, we select the top five pathways with the highest pathway scores. 
We conduct a literature search and find evidence linking these pathways to the cancer. 
Therefore, our proposed AEGAN-Pathifier method can provide better assistance for tar-
geted therapies.

Table 6 Results summary for the Liver24 dataset

Dataset: Liver24
Classifier Data balancing methods Metrics

Accuracy AUC Precision F1‑Score Kappa Time

ET Original 0.9841 0.9981 0.9911 0.9910 0.9189 0.4938

Smote 0.9815 0.9963 0.9908 0.9894 0.9120 1.3487

ENN 0.9815 0.9980 0.9969 0.9894 0.9127 0.7300

AllKNN 0.9788 0.9978 0.9939 0.9879 0.8976 0.5825

AEGAN 0.9880 0.9998 0.9878 0.9878 0.9757 0.4888

AEGAN-Pathifier 1.0000 1.0000 1.0000 1.0000 1.0000 0.0600
RF Original 0.9814 0.9985 0.9850 0.9895 0.9048 0.6762

Smote 0.9868 0.9992 0.9940 0.9925 0.9342 1.8700

ENN 0.9814 0.9980 0.9908 0.9894 0.9128 0.6050

AllKNN 0.9815 0.9968 0.9969 0.9894 0.9127 0.7138

AEGAN 0.9865 0.9997 0.9853 0.9865 0.9726 0.5362

AEGAN-Pathifier 1.0000 1.0000 1.0000 1.0000 1.0000 0.0600
LGBM Original 0.9735 0.9971 0.9822 0.9850 0.8586 5.9462

Smote 0.9815 0.9948 0.9910 0.9895 0.9104 30.1375

ENN 0.9895 0.9967 1.0000 0.9940 0.9483 5.9812

AllKNN 0.9895 0.9969 1.0000 0.9940 0.9483 5.5612

AEGAN 0.9820 0.9992 0.9818 0.9823 0.9637 14.3412

AEGAN-Pathifier 1.0000 1.0000 1.0000 1.0000 1.0000 0.0500
GBC Original 0.9736 0.9941 0.9853 0.9851 0.8640 9.9825

Smote 0.9842 0.9795 0.9941 0.9911 0.9167 18.2200

ENN 0.9736 0.9806 0.9940 0.9849 0.8733 9.1812

AllKNN 0.9629 0.9791 0.9879 0.9789 0.8214 8.9188

AEGAN 0.9835 0.9979 0.9848 0.9834 0.9666 21.5088

AEGAN-Pathifier 1.0000 1.0000 1.0000 1.0000 1.0000 0.0400
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Discussion and conclusion
Accurate cancer classification underpins effective diagnosis and treatment planning. 
However, the limited availability of patient samples and class imbalance often affect clas-
sifier performance. To address these challenges, we developed AEGAN, a deep learning 
framework that combines AutoEncoder and GAN to generate synthetic samples for the 
minority class. By incorporating the KEGG pathway database and Pathifier algorithm, 
we calculated pathway scores for each sample. Our analysis reveals correlation between 
pathway genes and sample genes, suggesting the preservation of biological relation-
ships while achieving dimension reduction. Overall, from Fig. 3 and 4, our experimen-
tal results demonstrate that the proposed method exhibits outstanding classification 
performance after handling imbalanced data samples. Additionally, our approach could 
potentially serve as a supportive tool for clinicians in cancer diagnosis and may contrib-
ute to personalized medicine by providing more accurate cancer classification.

Improving cancer classification accuracy holds significant clinical value as it can 
assist physicians in better understanding individual patient conditions. Through con-
tinuous refinement of classification methods, we hope this research can provide valuable 
insights toward achieving precision medicine. In clinical practice, accurate classifica-
tion information can help develop more targeted treatment strategies, which may have 
potential value in improving patient outcomes and quality of life. While our experimen-
tal results are promising, several limitations should be noted. Our validation is currently 
restricted to a limited number of cancer types with relatively small sample sizes. The 
computational complexity of our approach may also pose challenges in clinical settings. 
Future work should focus on extending the validation to more cancer types, incorporat-
ing additional biological prior knowledge to enhance interpretability, exploring model 

Table 7 Top 5 pathways identified from AEGAN-Pathifier

Datasets Rank Pathway ID Pathway Name Score Proof

GSE25066 1 hsa05211 Renal cell carcinoma 0.7869 [34, 35]

2 hsa05132 Salmonella infection 0.7199 [36]

3 hsa03010 Ribosome 0.7100 [37, 38]

4 hsa00561 Glycerolipid metabolism 0.7026 [39, 40]

5 hsa04723 Retrograde endocannabinoid signaling 0.7003 [41]

GSE20194 1 hsa00750 Vitamin B6 metabolism 0.7534 [42]

2 hsa05332 Graft-versus-host disease 0.7206 [43]

3 hsa04211 Longevity regulating pathway 0.6828 [44]

4 hsa00591 Linoleic acid metabolism 0.6820 [45]

5 hsa05330 Allograft rejection 0.6819 [46]

BRCA 1 hsa00232 Caffeine metabolism 0.9653 [47]

2 hsa03015 mRNA surveillance pathway 0.9198 [48]

3 hsa03040 Spliceosome 0.9197 [49]

4 hsa05212 Pancreatic cancer 0.9194 [50]

5 hsa05220 Chronic myeloid leukemia 0.9191 [51]

Liver24 1 hsa04950 Maturity onset diabetes of the young 0.8350 [52]

2 hsa00982 Drug metabolism 0.8150 [53]

3 hsa00360 Phenylalanine metabolism 0.7864 [54]

4 hsa00350 Tyrosine metabolism 0.7672 [55]

5 hsa00830 Retinol metabolism 0.7657 [56]
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simplification strategies to reduce computational costs, and integrating multi-omics data 
for more comprehensive feature representation.
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