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Abstract: Myocardial cells and the extracellular matrix achieve their functions through the availability
of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on
the balance between energy production and consumption. The energy produced is utilized in
various forms, including kinetic, dynamic, and thermal energy. Although total energy remains
nearly constant, the contribution of each form changes over time. Thermal energy increases, while
dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac
function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other
harmful substances accumulate within the myocardium. This leads to the failure of crucial processes
such as myocardial contraction–relaxation coupling, ion exchange, cell growth, and regulation of
apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered.
Energy production and consumption depend on the heart’s metabolic resources and the functional
state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic
and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95%
of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper
understanding of their anatomy, function, and homeostatic properties.
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1. Introduction

The heart can be likened to a household where nearly everything depends on energy
availability to meet the daily needs of each family member. Accordingly, myocardial cells
and the extracellular matrix fulfill their roles thanks to the availability of energy. In fact, the
mechanical and electrical properties of the heart are strongly dependent on maintaining a
balance between energy production and consumption. Cardiac fuel serves as the master
key for crucial processes such as contraction–relaxation coupling, ion exchange, cell growth,
apoptosis, necrosis, and the maintenance of cardiac homeostasis. Interestingly, although
the heart makes up only 0.5% of body weight, it consumes 8% of the body’s energy, and
the ATP produced supports only a limited number of heartbeats. This forces the entire
metabolic machinery to repeat the process every few seconds to meet the heart’s energetic
demands [1,2]. On average, each heartbeat requires approximately 2 to 3 micromoles (µmol)
of ATP per gram of heart tissue [3,4]. This translates to about 6 kg of ATP per day for the
heart in a healthy adult, underscoring its high energy demand. Given that the heart beats
around 100,000 times per day, this amounts to roughly 30 to 40 mg of ATP per heartbeat in
a typical adult [3,4]. About 60–70% of this ATP is used for contractile functions, primarily
supporting the cyclic interactions of actin and myosin filaments, while the remaining
30–40% is allocated to ion transport processes, such as calcium cycling, which is vital for
muscle contraction and relaxation phases [3,4].

There are several forms of energy produced, including kinetic, dynamic, and ther-
mal energy. Notably, under certain conditions such as aging and cardiac disease, while
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total energy remains constant, the contribution of each energy form changes. For exam-
ple, in heart failure patients, thermal energy increases, while dynamic and kinetic energy
decrease, making them insufficient to support cardiac function adequately [5]. Energy
production and transfer within cardiac cells are impaired, as evidenced by a decrease
in cellular ATP, phosphocreatine (PCr), and the PCr/ATP ratio, observed in both heart
failure with reduced [6] and preserved left ventricular ejection fraction [7]. When this
bioenergetic capacity reaches its limit, decompensation begins, leading to cardiac homeo-
static imbalance. This is driven by the overactivation of the sympathetic nervous system,
the renin–angiotensin–aldosterone system, inflammation, and other factors, resulting in a
vicious cycle that leads to heart failure syndrome. The metabolic–energetic dysfunction
promotes the accumulation of toxic products, including unfolded/misfolded proteins and
free radicals, which contribute to changes in the heart’s micro- and macro-architecture,
ultimately leading to cardiac remodeling [8–10]. Specifically, these alterations include i.
misfolded proteins in the mitochondrial respiratory chain complexes which lead to ineffi-
cient ATP production and increase oxidative stress, also impairing electron transport [11],
ii. dysfunction in heat shock proteins that signal a stress response that further exacerbates
mitochondrial dysfunction [12,13], iii. alteration in mitochondrial dynamics proteins such
as DRP1 (Dynamin-related protein 1) and mitofusins (MFN1/2), which are responsible
for mitochondrial fission and fusion, leading to mitochondrial fragmentation and further
bioenergetic and structural issues within cardiomyocytes [14,15], and iv. upregulation of
BNIP3 and other apoptotic proteins due to oxidative stress, promoting cell death pathways,
which contribute to cell loss in cardiac tissue and lead to maladaptive remodeling of the
heart [16,17].

This bioenergetic capacity—energy production and consumption—depends on the
heart’s metabolic resources and the functional status of both cardiomyocytes and non-
cardiomyocyte cells, as well as their metabolic and energetic behavior. Understanding this
behavior, especially the role of mitochondria—the master key in this process—requires
further investigation.

2. Mitochondrial Dynamics

Mitochondria are intracellular organelles that produce more than 95% of ATP re-
quired by the whole body. Their normal structure, integrity, function, and homeostatic
properties are crucial, as their improper anatomy and abnormal or altered function can
lead to myocardial cell injury and death, contributing to the onset and progression of
cardiac disease [1,18,19]. Mitochondria have their own DNA (mtDNA), which is circular in
shape and encodes 13 protein subunits, while the majority of mitochondrial proteins are
encoded by nuclear DNA and transported into the mitochondria via the mitochondrial
membrane. Due to the limited protective mechanisms of mtDNA, it is prone to mutations
that are responsible for many inherited cardiomyopathies [1]. However, the presence of
mutated mtDNA in individuals often exceeds the incidence of myocardial diseases, acting
as a dormant source for future diseases when mitochondrial mutations reach a certain
threshold [20]. An example of a disease linked to mtDNA mutations reaching a pathogenic
threshold is mitochondrial cardiomyopathy. This condition can develop when a critical
proportion—often cited as about 60–90% mutant mtDNA in affected cells—accumulates,
surpassing the cell’s ability to compensate [21,22]. This threshold can vary depending on
the specific mutation and the tissue’s energy demands [21,22].

Interestingly, gene–gene and gene–environment interactions do not proportionally
affect cardiac mitochondria, thanks to their powerful compensatory mechanisms, which
provide resistance to external harmful events and protect against mitochondrial dysfunction
and heart disease [19]. However, when mitochondria are severely affected, they reach a
non-viable state that leads to harmful effects. Typically, mitochondria are only moderately
affected, giving them time to compensate, restore homeostasis, and adjust their metabolic
actions. If this compensatory process fails, heart diseases emerge and gradually worsen
over time [23–25].
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In the early stages of heart failure syndrome, mitochondrial fission and fragmenta-
tion processes are activated. Mitochondrial fission and fragmentation could be measured
through several advanced imaging and biochemical techniques including high-resolution
fluorescence microscopy with mitochondrial staining, transmission electron microscopy
(TEM), quantitative image analysis using specific software or specialized tools for mito-
chondrial morphology, Western blotting and immunostaining for fission/fusion proteins,
and flow cytometry with specific mitochondrial stains [26–28]. As the syndrome progresses,
there is a decrease in mitochondrial cristae density, the appearance of mitochondrial clus-
ters, vacuolar degeneration, and calcium overload, all of which contribute to myocardial
cell apoptosis and necrosis [25,29–31]. In response, mitochondrial defense mechanisms,
particularly mitophagy, are upregulated to protect myocardial cells and the heart as a
whole. This has been observed in both preserved and reduced ejection fraction heart failure,
with mitophagy being more active in the latter [29,32–34]. However, while these protective
mechanisms are initially beneficial, they become overwhelmed as the syndrome worsens,
leading to mitochondrial dysfunction [34,35]. Additionally, the autophago-lysosomal sys-
tem becomes dysfunctional [36,37], making mitochondria more vulnerable. As a result,
heart failure of any cause continues to deteriorate, signaling the collapse of the heart’s
defenses, as illustrated in Figure 1.

Biomolecules 2024, 14, 1534 3 of 22 
 

In the early stages of heart failure syndrome, mitochondrial fission and fragmenta-
tion processes are activated. Mitochondrial fission and fragmentation could be measured 
through several advanced imaging and biochemical techniques including high-resolution 
fluorescence microscopy with mitochondrial staining, transmission electron microscopy 
(TEM), quantitative image analysis using specific software or specialized tools for mito-
chondrial morphology, Western blotting and immunostaining for fission/fusion proteins, 
and flow cytometry with specific mitochondrial stains [26–28]. As the syndrome pro-
gresses, there is a decrease in mitochondrial cristae density, the appearance of mitochon-
drial clusters, vacuolar degeneration, and calcium overload, all of which contribute to my-
ocardial cell apoptosis and necrosis [25,29–31]. In response, mitochondrial defense mech-
anisms, particularly mitophagy, are upregulated to protect myocardial cells and the heart 
as a whole. This has been observed in both preserved and reduced ejection fraction heart 
failure, with mitophagy being more active in the latter [29,32–34]. However, while these 
protective mechanisms are initially beneficial, they become overwhelmed as the syn-
drome worsens, leading to mitochondrial dysfunction [34,35]. Additionally, the autoph-
ago-lysosomal system becomes dysfunctional [36,37], making mitochondria more vulner-
able. As a result, heart failure of any cause continues to deteriorate, signaling the collapse 
of the heart’s defenses, as illustrated in Figure 1. 

 
Figure 1. Changes in mitochondrial function and structure occur throughout the progression of 
heart failure syndrome. As heart failure advances, vacuolar degeneration of the mitochondria be-
comes evident, along with increased membrane permeability, altered biochemical substrate utiliza-
tion, and heightened production of free radicals. Although defensive mechanisms increase in re-
sponse to these changes, they eventually become insufficient to prevent the impending decompen-
sation as the syndrome worsens. Ultimately, the heart’s defenses are overwhelmed, leading to fail-
ure. The fort fell. p: preserved, r: reduced, ↑: increase, ↓: decrease, ↑↑: bigger increase, ↓↓: bigger 
decrease, ↓↓↓ much bigger decrease. 

Mitophagy, a specialized form of autophagy, is the process by which damaged or 
dysfunctional mitochondria are selectively degraded to maintain cellular health, espe-
cially in energy-demanding cells like cardiomyocytes. PINK1 (PTEN-induced putative ki-
nase 1) and Parkin play central roles in regulating mitophagy [38–40]. Under normal con-
ditions, healthy mitochondria continually import and degrade PINK1, keeping Parkin, an 
E3 ubiquitin ligase, inactive in the cytosol [38–40]. However, when mitochondria become 
depolarized or damaged, PINK1 accumulates on the mitochondrial outer membrane and 
recruits Parkin to initiate mitophagy [38–40]. Parkin ubiquitinates various outer 

Figure 1. Changes in mitochondrial function and structure occur throughout the progression of heart
failure syndrome. As heart failure advances, vacuolar degeneration of the mitochondria becomes
evident, along with increased membrane permeability, altered biochemical substrate utilization, and
heightened production of free radicals. Although defensive mechanisms increase in response to
these changes, they eventually become insufficient to prevent the impending decompensation as the
syndrome worsens. Ultimately, the heart’s defenses are overwhelmed, leading to failure. The fort fell.
p: preserved, r: reduced, ↑: increase, ↓: decrease, ↑↑: bigger increase, ↓↓: bigger decrease, ↓↓↓ much
bigger decrease.

Mitophagy, a specialized form of autophagy, is the process by which damaged or
dysfunctional mitochondria are selectively degraded to maintain cellular health, espe-
cially in energy-demanding cells like cardiomyocytes. PINK1 (PTEN-induced putative
kinase 1) and Parkin play central roles in regulating mitophagy [38–40]. Under normal
conditions, healthy mitochondria continually import and degrade PINK1, keeping Parkin,
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an E3 ubiquitin ligase, inactive in the cytosol [38–40]. However, when mitochondria become
depolarized or damaged, PINK1 accumulates on the mitochondrial outer membrane and
recruits Parkin to initiate mitophagy [38–40]. Parkin ubiquitinates various outer membrane
proteins, signaling the cell’s autophagy machinery to engulf and degrade the impaired
mitochondria [38–40]. This protective process is essential in cardiac pathologies, where
mitochondrial stress and dysfunction contribute to disease progression, such as in heart
failure. By clearing out defective mitochondria, mitophagy helps sustain energy produc-
tion and reduces reactive oxygen species (ROS) accumulation, supporting cardiomyocyte
survival and function under metabolic or oxidative stress [38–40]. In situations where
mitophagy fails or is overwhelmed, as seen in many heart diseases, cells face an accumula-
tion of dysfunctional mitochondria, leading to further energy deficits and cellular damage,
ultimately accelerating disease progression [38–40].

Mitochondria exhibit various shapes throughout the human body, influenced by the
specific tissue and surrounding cellular environment. These factors affect mitochondrial
structure, function, and behavior, leading to distinct mitochondrial subpopulations that
respond differently to metabolic and energetic conditions, emphasizing their complex-
ity, heterogeneity, and diversity. In the myocardium—the most metabolically active and
mitochondria-rich organ—mitochondria play an essential role in regulating biogenesis,
ion transport, and implementing protective mechanisms such as fusion, fission, and mi-
tophagy [41,42] (Figure 2). This functionality is supported by the presence of three distinct
mitochondrial subtypes within cardiomyocytes: (a) interfibrillar, (b) subsarcolemmal, and
(c) perinuclear mitochondria. Each subtype displays unique shapes and specific responses
to metabolic and pathophysiological changes. Interfibrillar mitochondria are oval, posi-
tioned in longitudinal rows between myofibrils, and demonstrate higher rates of oxidation.
Subsarcolemmal mitochondria are involved in electrolyte and metabolite transport and
enhance myocardial protection. Perinuclear mitochondria, spherical in shape, control
nuclear function and regulate mitochondrial fusion and fission [41].

Mitochondrial respiratory chain complexes (I–IV), located within the inner mitochon-
drial membrane, assemble to form supercomplexes. These “respirasomes” (I + III2 + IV1)
increase the efficiency of electron transfer, supporting mitochondrial and phospholipid
functions (e.g., cardiolipin) to better meet the heart’s energy demands. Furthermore,
these supercomplexes aid in reducing free radical production, thereby safeguarding
against mitochondrial dysfunction [43,44]. As noted, the primary role of mitochon-
dria is energy production, with nearly 90% of ATP generated being utilized to support
contraction–relaxation coupling. The separation and reassembly of actin and myosin are
highly energy-dependent processes directly linked to mitochondrial ATP production.
Similarly, ion exchange, particularly calcium (Ca2+) release and sequestration, requires
significant energy, provided by mitochondria.

Mitochondria must rapidly respond to the body’s energy demands, especially dur-
ing periods of high exertion, such as intense exercise, or under pathological conditions
like myocardial ischemia, hypertension, cardiac hypertrophy, or heart failure. To adapt,
mitochondria are capable of self-protection, interconnection, morphological changes, and
movement within cells, even crossing cell boundaries [45]. These adaptations may occur
under normal physiological conditions or in response to clinical scenarios such as my-
ocardial ischemia or heart failure. When mitochondria become mutated or dysfunctional,
energy production declines, while harmful substances—such as free radicals, heat shock
proteins, and unfolded or misfolded proteins—accumulate, contributing to the onset and
progression of cardiac diseases.

These findings underscore the necessity for mitochondria to have self-protective mech-
anisms to prevent dysfunction and maintain the cell’s energetic, metabolic, and homeostatic
balance. Mitochondrial morphology and function adapt to varying environments, acti-
vating self-defense processes essential for cell survival [41] (Figure 2). These processes
are regulated by specific proteins, including the guanosine triphosphate (GTP) hydrolase
enzyme family, mitochondrial fission and fusion proteins, and mitochondrial dynamics
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proteins 49 and 51, which facilitate continuous adaptation of mitochondrial shape and
function, promote genetic material exchange, and ensure optimal performance [41,46].
Although the precise mechanisms by which mitochondria receive genetic material from
other cells are not fully understood, they suggest an intercellular communication pathway
that helps prevent mitochondrial malfunction [45].
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Figure 2. The primary functions of mitochondria are the production of adenosine triphosphate (ATP)
and the release of reactive oxygen species (ROS). These functions are regulated by proteins involved
in mitochondrial shaping, which are governed by the processes of fission and fusion, each controlled
by specific proteins. Fission is associated with mitochondrial morphological changes, while fusion is
linked to processes such as mitophagy, apoptosis, and energy production. Together, these systems
ensure proper mitochondrial function and cellular homeostasis.

Mitochondrial dynamics, involving fission, fusion, and mitophagy, play critical roles
in the development and progression of HF. Fission, driven largely by the protein Drp1,
promotes the division of mitochondria, a process necessary for removing damaged sections
but which can lead to excessive fragmentation when dysregulated, as seen in HF [47–52].
This fragmentation reduces the efficiency of the mitochondrial network, increasing ROS
production and decreasing ATP output, which are detrimental to cardiomyocytes. Fusion,
regulated by proteins such as mitofusins (Mfn1 and Mfn2) and OPA1, enables damaged
mitochondria to merge with healthy ones, diluting mutations and sharing metabolic re-
sources [47–52]. Fusion supports a more interconnected mitochondrial network that resists
stress, but impaired fusion leads to energy deficits and decreased mitochondrial resilience,
especially impactful in HF with reduced ejection fraction (HFrEF). In this type of HF, mito-
chondrial dysfunction is more severe, and an upregulation in mitophagy—the selective
degradation of damaged mitochondria via PINK1/Parkin pathways—attempts to clear
failing mitochondria to maintain cellular function [47–52]. However, in both preserved
ejection fraction (HFpEF) and HFrEF, these mechanisms eventually become overwhelmed.
In HFpEF, where mitochondrial dynamics are disrupted but less severely than in HFrEF,
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compensatory mechanisms like mitophagy help sustain function longer. Thus, the balance
and integrity of mitochondrial dynamics are essential to HF progression, with each subtype
experiencing distinct mitochondrial stress responses, influencing therapeutic targets and
disease management [47–52].

Three distinct modes of intercellular mitochondrial transport have been proposed:
(a) tunneling nanotubes (TNTs), (b) membrane extracellular vesicles (EVs), and (c) gap
junctions (GJCs) [53]. TNTs are the primary means of mitochondrial transport, forming
quickly from mitochondrial membrane protrusions and comprising F-actin and transport
proteins [54]. Membrane microvesicles, also known as extracellular vesicles (EVs), are
heterogeneous structures released from the intracellular to the extracellular environment.
Smaller EVs carry exosomes, small RNAs, genomic DNA, and mtDNA, while larger EVs
may contain entire mitochondria [45,55,56]. Their main functions include eliminating ab-
normal proteins and facilitating intercellular communication, especially within the nervous
system [57,58]. GJCs act as transport channels for various substances, including nutrients,
metabolites, and mitochondria [59], and appear to play a role in the intercellular transfer of
reactive oxygen species (ROS) [42,60].

Although mitochondrial structural changes have been associated with various
pathologies, this understanding has not yet been fully integrated into routine clinical
practice [42,61]. Certain mitochondrial phenotypes, such as donut-like or ellipsoid
shapes, may represent defensive adaptations to harmful stimuli [61–63], potentially
affecting key mitochondrial protective mechanisms like fission and fusion. Given the ex-
istence of distinct mitochondrial subpopulations and the roles of specific proteins—such
as mitochondrial fission factor (MFF), mitochondrial division proteins (Drp1, 49, and 51),
and fusion proteins (mitofusin 1 and 2) (Figure 2)—altered mitochondrial morphology
could serve as an early indicator of disease, and quantifying these factors may aid in
clinical diagnosis. Furthermore, studying mtDNA heteroplasmy (the presence of differ-
ent alleles within the same patient) [64] could offer valuable insights into mitochondrial
abnormalities and help identify potential future complications at an earlier stage.

Proteins such as dynamin-related protein 1 (Drp1), mitofusins (Mfn1 and Mfn2), and
optic atrophy protein 1 (OPA1) are central to the regulation of mitochondrial dynamics,
directly influencing mitochondrial shape, structure, and network integrity, all of which are
crucial for cardiac health [65,66]. These proteins modulate two key processes: mitochondrial
fission (division) and fusion (joining), both of which ensure optimal mitochondrial function
and energy production, especially in energy-demanding tissues like the heart [65,66]. Their
balanced regulation is essential for maintaining mitochondrial integrity and function. Al-
terations in their expression levels disrupt mitochondrial dynamics, leading to fragmented
or dysfunctional mitochondria, energy deficits, and increased oxidative stress—all of which
can contribute to the onset and progression of cardiac diseases [65,66].

Drp1 is essential for mitochondrial fission, enabling mitochondria to divide and
remove damaged sections. Upregulation of Drp1 can lead to excessive mitochondrial frag-
mentation, which, while helpful under certain stress conditions, may impair mitochondrial
network continuity and reduce overall efficiency in ATP production if sustained [65,67]. In
heart cells, excessive Drp1 activity can lead to a fragmented mitochondrial network, which
disrupts energy supply, increases ROS production, and may contribute to cardiomyocyte
apoptosis, exacerbating heart failure and other cardiac pathologies [65,67].

Mitofusins (Mfn1 and Mfn2) are critical for mitochondrial fusion, allowing mitochon-
dria to merge and share contents, including DNA and metabolic resources, which helps
maintain a healthy mitochondrial population [50,68]. The upregulation of Mfn1 and Mfn2
promotes a more interconnected mitochondrial network, supporting efficient ATP produc-
tion and resistance to cellular stress [50,68]. However, downregulation or mutations in
mitofusins have been linked to disrupted mitochondrial fusion, leading to a fragmented
and less efficient network. In cardiomyocytes, reduced Mfn activity can impair calcium
handling, fuel metabolism, and overall contractile function, potentially leading to cardiac
hypertrophy and heart failure [50,68].
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OPA1 plays a dual role in inner mitochondrial membrane fusion and maintaining
cristae structure, which is vital for efficient ATP production within the mitochondria.
Upregulation of OPA1 supports mitochondrial stability and helps preserve cristae integrity,
enhancing the efficiency of electron transport chain complexes [69,70]. Conversely, OPA1
downregulation destabilizes cristae structure, impairing ATP production and increasing
susceptibility to apoptosis [69,70]. In myocardial cells, this can reduce the energy available
for contraction–relaxation cycles, leading to contractile dysfunction and contributing to the
progression of heart disease [69,70].

3. Mitochondria: A ‘Socialized’ Organelle

Cellular organelles are interconnected, functioning not as isolated units but as part of a
coordinated system responsive to the cell’s needs [71]. The anatomical and functional com-
munication between organelles—such as the endoplasmic reticulum (ER), mitochondria,
nucleus, plasma membrane, and Golgi apparatus—is well established, underscoring their
crucial role in maintaining homeostasis within the human body [72,73]. Mitochondria, for
instance, are not formed de novo and lack certain biosynthetic capabilities, such as synthe-
sizing phosphatidylcholine, phosphatidylinositol, sterols, and sphingolipids [73]. Conse-
quently, their functions are closely dependent on interactions with other organelles [71,73].

Mitochondria are often regarded as the most “socialized” organelle due to their
extensive interconnections with various cellular components. Their defensive mechanisms—
such as fusion, fission, and mitophagy—rely heavily on effective communication with other
organelles. Notably, mitochondria interact with lysosomes [74,75], peroxisomes [76], and
lipid droplets [77], facilitating optimal cellular homeostasis and function. Of particular
significance is the continuous communication between the ER and mitochondria. This
interaction is essential because mitochondrial functions such as oxidative phosphorylation,
ATP production, and Ca2+ exchange and buffering are dependent on efficient lipid and
Ca2+ transport from the ER [18,73].

3.1. The Endoplasmic Reticulum (ER) and Mitochondria: Interconnected Organelles in
Cardiovascular Health

The ER is involved in numerous cellular processes, including secretion, protein folding,
ion homeostasis, and lipid biosynthesis, and it communicates with other cellular organelles
to regulate these activities. In cardiovascular diseases, factors such as ischemia, pulmonary
and arterial hypertension, and metabolic disorders can disrupt normal ER function, leading
to homeostatic imbalances characterized by increased free radical production and accu-
mulation of misfolded proteins. This disruption impairs communication between the ER
and other cardiomyocyte organelles [78], promoting processes like apoptosis and necrosis.
Specifically, the connection between the ER and mitochondria, via mitochondria-associated
membranes (MAMs), is essential for proper mitochondrial function, including cellular
metabolism, ion homeostasis, and inflammation regulation. The ultrastructural organi-
zation between these two organelles governs numerous critical cellular processes [72]
and plays a pivotal role in cardiovascular remodeling and the progression of various
cardiovascular diseases [79,80].

In healthy myocardial cells, MAMs ensure efficient calcium transfer from the ER to
mitochondria, support lipid synthesis and trafficking, and facilitate communication that
aligns mitochondrial function with cellular metabolic demands [81,82]. Specifically, one of
the primary roles of MAMs is to mediate rapid and controlled transfer of Ca2+ from the
ER to mitochondria [81,82]. This process is regulated by specific proteins at MAM sites,
such as the inositol 1,4,5-trisphosphate receptors (IP3Rs) on the ER membrane and the
voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane [81,82].
MAMs also facilitate the transfer of lipids, such as phosphatidylserine, from the ER to
mitochondria, where it is converted into phosphatidylethanolamine, a critical component
of mitochondrial membranes. This lipid exchange supports membrane integrity, promotes
mitochondrial dynamics, and aids in the synthesis of cardiolipin, a lipid essential for the
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optimal function of respiratory chain complexes [83,84]. Efficient lipid trafficking ensures
that the mitochondria can maintain their structure and support the high levels of energy
production needed for cardiac function [83,84]. Finally, MAMs act as signaling hubs,
coordinating responses to cellular stress and helping to regulate apoptosis. They play a
crucial role in activating stress responses that protect cardiomyocytes from injury under
conditions such as ischemia or oxidative stress [85].

Disruption of ER–mitochondria communication can lead to redox imbalances, ER
stress, mitochondrial injury, calcium (Ca2+) homeostasis imbalance, energy depletion,
and programmed cell death. A detailed assessment of ER–mitochondria communication
and the impact of its disruption on cellular function could be measured through bio-
chemical and imaging techniques such as fluorescence resonance energy transfer (FRET)
or bioluminescence resonance energy transfer (BRET), transmission electron microscopy,
proximity ligation assay (PLA), Western blotting for MAMs, immunoprecipitation for
protein complexes and functional assays for redox and calcium homeostasis [86–88].
Consequently, myocardial contraction–relaxation coupling and vascular smooth muscle
cell differentiation are impaired. Damaged or dysfunctional mitochondria produce
large amounts of reactive oxygen species (ROS), which accumulate within the cell,
exacerbating myocardial injury. In heart failure patients, elevated levels of free iron
within mitochondria—a critical ion in free radical production through Fenton chemistry—
further contribute to oxidative stress [89]. Whether the ER or mitochondria are initially
affected, the resulting loss of homeostasis and communication between these organelles
leads to incomplete cardiomyocyte repair, oxidative stress imbalances [90], Ca2+ dys-
regulation [91], abnormal lipid metabolism [92], insufficient energy production [72],
and activation of mitochondria-associated membranes (MAMs), which contribute to
inflammasome formation and inflammatory processes [17,93]. When mitochondrial and
ER structure and function are severely compromised, protective mechanisms become
overwhelmed, releasing toxic substances such as nuclear and mitochondrial DNA into
the cytosol [94], marking the onset and progression of cardiovascular diseases.

Cardiovascular diseases are frequently associated with cardiac remodeling, involving
abnormal structural and functional changes within the cardiovascular system [95]. These al-
terations result from abnormal responses to stimuli and involve inflammation, defects in au-
tophagy, impaired gene transcription, energy metabolism deficiencies, increased oxidative
stress, ion homeostasis imbalances, apoptosis, and necrosis [96–101]. A significant factor
in these changes is the uncoupling of sarcoplasmic/endoplasmic reticulum-mitochondria
interactions [102,103], while proper coupling is crucial for maintaining cellular stabil-
ity [104]. Cardiomyocytes, which are highly energy-dependent, rely on the connection
between these two organelles to regulate key processes such as Ca2+ buffering and trans-
port [95]. Mitochondria act as major calcium reservoirs [105] and play a central role in
biochemical processes such as lipid metabolism and calcium signaling [106]. Similarly,
the ER serves as the primary regulator of Ca2+ homeostasis [107] and a critical site for
protein and lipid biosynthesis [108]. Therefore, communication between these organelles
is essential for two main cardiomyocyte functions: (a) Ca2+ buffering and transport, vital
for contraction–relaxation coupling, and (b) oxidative phosphorylation, which meets the
energetic demands of the myocardium (Figures 2 and 3). Dysfunctional ER–mitochondrial
interactions contribute to the development of various cardiovascular diseases, including
cardiac hypertrophy [109], heart failure, cardiomyopathy [110], ischemic heart disease [111],
and arrhythmias [112].

Calcium is a critical ion for regulating mitochondrial redox processes and energy
production. During cardiomyocyte contraction, Ca2+ is transferred from the ER and cy-
toplasm to mitochondria, activating functions essential for maintaining cardiomyocyte
bioenergetics [95]. However, uncontrolled Ca2+ accumulation can severely impair mito-
chondrial function, leading to a loss of cellular homeostasis, activation of the mitochondrial
apoptotic pathway, increased inflammation, and ultimately the onset and progression of
heart failure (Figure 3). Mitochondrial dysfunction is also observed in patients with renal
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insufficiency, insulin resistance, and other comorbidities frequently associated with heart
failure, underscoring the critical role that mitochondria play in overall human homeostasis
and disease progression [1].
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Figure 3. Mitochondrial function is crucially dependent on several factors: the efficient utilization of
metabolic resources, proper communication with other organelles, regulated ion exchange, minimal
accumulation of free radicals and harmful byproducts, and the ability to control cell necrosis and
apoptosis. Protective mechanisms such as mitochondrial fission and fusion play an essential role
in maintaining mitochondrial integrity and function. These processes help adapt to cellular stress
and damage, ensuring the organelles continue to operate normally. However, when these protective
mechanisms fail—whether due to a breakdown in homeostasis or malfunctioning of the fission and
fusion processes—mitochondrial dysfunction ensues. This dysfunction marks the onset of heart
failure syndrome, which progressively worsens over time as the mitochondria can no longer sustain
normal cellular function.

Mitochondria and Quadruple Therapy in Heart Failure Patients

In heart failure, the heart’s energy demands are significantly impaired by mitochon-
drial dysfunction, leading to poor contractility, increased ROS, and altered cell survival.
Moreover, the pathophysiological basis of heart failure syndrome, regardless of its cause,
lies in the treatment of the hyperactivation of the renin–angiotensin–aldosterone system
(RAAS) and the sympathetic nervous system. This hyperactivation leads to metabolic
imbalance, excessive free radical production, and the activation of inflammatory processes.
Consequently, quadruple therapy for heart failure aims to block this hyperactivity to reduce
myocardial oxygen consumption, reprogram the altered metabolic remodeling, and address
the energetic needs of the heart [1,113–116]. By targeting mitochondrial dysfunction on
multiple levels, these therapies collectively improve the energy state, reduce oxidative dam-
age, and support mitochondrial quality control, translating to enhanced cardiac function
and improved clinical outcomes.

Beta-blockers primarily reduce sympathetic overdrive, mitigating ROS production
and preventing mitochondrial calcium overload. Most specifically, beta-blockers, such as
carvedilol and metoprolol, reduce sympathetic nervous system (SNS) activation [117–120].
By blocking beta-adrenergic receptors, beta-blockers reduce heart rate, myocardial oxygen



Biomolecules 2024, 14, 1534 10 of 23

demand, and workload on the heart, which indirectly benefits mitochondrial function.
They help with the reduction in the excessive catecholamine stimulation that increases
mitochondrial ROS production, thus indirectly lowering ROS and thereby protecting mito-
chondrial integrity and function [117–120]. Moreover, they inhibit mitochondrial calcium
overload caused by SNS activation, promoting thus, stable mitochondrial function and
reducing the likelihood of mitochondrial permeability transition pore (mPTP) opening, a
key driver of apoptosis [117–120]. Finally, carvedilol, has been shown to upregulate peroxi-
some proliferator-activated receptor-gamma coactivator-1α (PGC-1α), a master regulator of
mitochondrial biogenesis, enhancing mitochondrial number and function, and potentially
improving cardiac energy metabolism [117–120].

RAAS inhibitors, including angiotensin-converting enzyme (ACE) inhibitors and
angiotensin receptor blockers (ARBs), decrease the adverse effects of angiotensin II and
aldosterone, which are major contributors to cardiac remodeling, fibrosis, and cellular
dysfunction in heart failure. They also alleviate oxidative stress, balance mitochondrial
dynamics, and improve ATP efficiency [1,121–125]. Specifically, angiotensin II upreg-
ulates NADPH oxidase, promotes mitochondrial fission (fragmentation) and disrupts
mitochondrial fusion. By blocking angiotensin II, RAAS inhibitors reduce ROS produc-
tion, alleviating mitochondrial oxidative stress, and improve the balance between fission
and fusion, which is crucial for maintaining healthy mitochondrial networks, supporting
mitochondrial quality control and optimizing ATP production [1,121–125]. Additionally,
decreased inflammation from RAAS inhibition helps reduce damage to mitochondrial
membranes and proteins, preserving mitochondrial function [1,121–125]. Finally, RAAS
inhibitors help alleviate the strain on mitochondrial ATP production through the reduc-
tion in the afterload and myocardial oxygen consumption [1,121–125]. Some studies also
suggest RAAS inhibition can directly enhance mitochondrial oxidative phosphorylation
efficiency, improving cellular energy availability [1,121–125].

Similarly, SGLT2 inhibitors positively influence metabolic and mitochondrial func-
tion [126–128], improving mitochondrial energetics and meeting the myocardial fuel
demands [129]. SGLT2 inhibitors promote a shift toward ketone utilization, a more
energetically efficient fuel compared to glucose and fatty acids, and enhance autophagy
and mitochondrial resilience [130]. This reduces mitochondrial workload and oxidative
stress while increasing ATP production efficiency, benefiting failing myocardial cells
with compromised energy production. Moreover, they reduce inflammation and ox-
idative stress by mechanisms that may include reduced Na+ overload in myocardial
cells, preserving thus, mitochondrial DNA, proteins, and membranes, and supporting
mitochondrial function. Indeed, there are studies suggesting that SGLT2 inhibitors may
enhance autophagy, which aids in the removal of damaged mitochondria and enhances
mitochondrial turnover [131–133]. This dynamic regulation of mitochondrial quality
helps maintain a healthy pool of mitochondria, thus improving cellular resilience in
heart failure [131–133].

Neprilysin inhibitors, combined with ARBs in drugs like sacubitril/valsartan, enhance
natriuretic peptide levels, counteracting the maladaptive neurohormonal effects in heart
failure. Natriuretic peptides promote NO production, which has protective effects on
mitochondria by reducing oxidative stress and improving endothelial function [134–136].
NO can inhibit excessive mitochondrial ROS production and stabilize mitochondrial func-
tion. Neprilysin inhibition also reduces the breakdown of natriuretic peptides, which
promotes vasodilation, natriuresis, and reduces cardiac afterload. These effects decrease
myocardial oxygen demand and ROS production, protecting mitochondrial integrity in the
myocardium ana leading to reduction in mitochondrial oxidative stress [134–136]. Finally,
neprilysin inhibitors present beneficial effect on the modulation of mitochondrial biogenesis
and cell survival pathways [134–136]. Although the effects on mitochondrial biogenesis
are not fully understood, these drugs have been observed to influence signaling pathways
associated with cell survival, such as cyclic GMP (cGMP) pathways. Increased cGMP might
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support mitochondrial health indirectly by reducing apoptotic signaling and enhancing
cellular stress resistance in heart failure [134–136].

Mitochondrial-targeted therapies hold promise not only for heart failure but also for
other cardiovascular diseases where mitochondrial dysfunction plays a pivotal role, such
as ischemic heart disease and cardiomyopathies. In ischemic heart disease, mitochondria
experience oxidative damage due to fluctuating oxygen levels, leading to bioenergetic
deficits and increased cell death; thus, treatments aimed at enhancing mitochondrial
resilience could reduce ischemic injury [137]. In cardiomyopathies, where genetic muta-
tions or acquired factors disrupt mitochondrial DNA and dynamics, therapies targeting
mitochondrial function and integrity may prevent progression and improve cardiac out-
comes [138,139]. Quadruple therapy’s impact on mitochondrial health underscores its
potential not only as a therapeutic standard for heart failure but also as a foundation
for further advances in mitochondrial-targeted therapies across cardiovascular diseases.
By incorporating mitochondrial-protective strategies into broader cardiovascular care,
these treatments could enhance cell survival, reduce ROS, and improve energy efficiency,
addressing underlying mechanisms that drive a range of heart diseases [137,138,140–143].

However, despite the application of the recommended quadruple therapy for heart
failure and other cardiovascular diseases, morbidity and mortality rates remain high, in-
dicating that something is still lacking. Therefore, further scientific research is necessary
to better understand the metabolic and energetic status of myocardial cells, with a par-
ticular focus on the interconnection and function of mitochondria and the endoplasmic
reticulum (ER).

3.2. Unusual Location of Mitochondria

Another crucial area warranting further investigation is the emergence of cell-free
mitochondria and mitochondrial DNA (mtDNA) circulating in the blood, released from
various cells in response to stress, injury, or disease [144]. Although reports on their
functionality are somewhat conflicting, it appears that these cell-free mitochondria may
lack energetic activity [145]. Their presence in the bloodstream raises several pertinent
questions that require in-depth exploration:

1. What is the significance of cell-free mitochondria in healthy versus diseased individu-
als? Understanding the role these particles play could provide valuable insights into
cellular health and disease mechanisms.

2. What is the source of origin for these circulating mitochondria? Identifying the specific
cells or tissues from which they are released could help clarify their role in various
physiological and pathological contexts.

3. Can circulating mitochondria serve as therapeutic targets? If these mitochondria
are found to influence disease progression, they could potentially be targeted in
treatment strategies.

4. How do cells and tissues react to the presence of cell-free mitochondria in the blood-
stream? Since these particles may represent non-self substances, it is essential to
investigate the protective responses activated by individual cells and tissues to miti-
gate any harmful effects.

Interestingly, high levels of circulating cell-free mtDNA have been observed in various
clinical contexts, including diabetes, cancer, and myocardial infarction, suggesting their
potential as prognostic biomarkers [45,146]. Notably, elevated levels of cell-free mtDNA
are not limited to specific cardiovascular diseases but are also associated with cell necrosis,
acute respiratory distress syndrome, tumors, and inflammation of various origins [147,148].

In conclusion, the presence and implications of cell-free mitochondria and mtDNA in
the bloodstream represent an open area of research with significant potential. Understand-
ing their biological significance could lead to advancements in the diagnosis, prognosis,
and treatment of a range of diseases, ultimately contributing to a more comprehensive
understanding of cellular health and disease management.
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4. Identify Mitochondria Dysfunction: Imaging Techniques and Biomarkers

Although mitochondria play a central role in several cardiac diseases, their detection
through imaging techniques and/or blood sample analysis is not yet well established.
Moreover, some available methods do not serve as optimal identifiers, are expensive, and
therefore are not commonly used in everyday clinical practice. Additionally, it must be
considered that of the total energy consumed by the heart, only 25% is used for mechanical
purposes, while the remaining portion is allocated to non-mechanical processes such as
metabolism and heat production [149,150]. These calculations were performed through
invasive techniques via calculating the input energy by measuring coronary sinus blood
flow and the oxygen content difference between arterial and venous blood, and advanced
non-invasive imaging methods, such as positron emission tomography (PET) with carbon-
11-labeled acetate or oxygen-15 tracers, and magnetic resonance spectroscopy (MRS) using
phosphorus-31 [150–152].

Regarding imaging techniques, there are two approaches to indirectly calculate mi-
tochondrial energy production capacity: invasive and non-invasive techniques. In the
invasive technique, the input energy is measured by calculating the coronary sinus blood
flow multiplied by the arteriovenous oxygen content difference, while the output energy
can be assessed using the pressure–volume loop. Non-invasive techniques include PET,
cardiovascular MRS [153], and the identification of metabolic disturbances in plasma [154].

For PET imaging, carbon-11-labeled acetate (11C-acetate) and oxygen-15-labeled
molecular oxygen (15O2) tracers have been employed [150]. However, these tracers present
several drawbacks, limiting their application. Phosphorus-31 (31P) magnetic resonance
spectroscopy (MRS) can measure endogenous cardiac high-energy phosphate metabolites,
creatine kinase (CK) flux [155–157], and other markers, demonstrating the mitochondrial
energetic capacity [158–160].

PET and MRS offer unique advantages and limitations in assessing mitochondrial
function. PET is highly sensitive and can quantify metabolic activity in real-time, allow-
ing it to detect even subtle changes in mitochondrial energy production. It uses tracers,
such as 11C-acetate and 15O2, to measure oxygen consumption and other metabolic
processes, making it a powerful tool for studying mitochondrial efficiency and ATP
generation. However, PET’s use of radioactive tracers, high cost, and limited availability
can restrict its application, especially in routine clinical settings [161]. MRS, on the other
hand, is non-invasive and does not rely on radiation, making it safer for repeated assess-
ments. It can evaluate high-energy phosphate metabolites like ATP and phosphocreatine
directly in the myocardium, offering valuable insights into mitochondrial bioenerget-
ics [162,163]. Despite these benefits, MRS has lower sensitivity and resolution compared
to PET, making it challenging to capture rapid metabolic changes or subtle mitochondrial
dysfunctions [162,163]. Furthermore, MRS requires specialized equipment and expertise,
which can limit its accessibility and clinical feasibility. Both methods provide valuable
data, yet their limitations underscore the need for complementary approaches to obtain
a comprehensive understanding of mitochondrial health.

In heart failure patients, mitochondrial function is impaired, biochemical processes are
disrupted, and abnormal substances are utilized. This dysfunction can be detected using
metabolomics; however, the source of these abnormal substances is unclear, reducing the
accuracy of the technique [164,165]. While cardiovascular magnetic resonance spectroscopy
holds promise, its use is limited due to inherent challenges [166].

Several other biomarkers have been explored, but none have shown the potential to
provide robust information regarding mitochondrial function. Biomarkers such as lactate,
pyruvate, the lactate-to-pyruvate ratio, and creatine phosphokinase have been used, but
all show low specificity and sensitivity in detecting mitochondrial deficiency. Addition-
ally, newer proposed biomarkers, such as growth differentiation factor 15 (GDF-15) and
fibroblast growth factor 21 (FGF-21), are of interest but currently show limited diagnostic
power [149].
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GDF-15 and FGF-21 have been explored as potential biomarkers for mitochondrial
dysfunction due to their roles in cellular stress response and metabolic regulation, particu-
larly under conditions like oxidative stress and inflammation [167–169]. Both proteins are
upregulated in response to mitochondrial stress, making them appealing candidates for
monitoring mitochondrial health in pathologies such as heart failure. GDF-15, for instance,
is produced in response to mitochondrial damage and is associated with oxidative stress,
while FGF-21 is involved in energy metabolism and is elevated under metabolic stress con-
ditions, such as impaired fatty acid oxidation [167–169]. Recent advancements in biomarker
research are addressing these limitations by focusing on more specific markers of mitochon-
drial processes, such as mitochondrial DNA (mtDNA) release or specific metabolites like
acylcarnitines that reflect mitochondrial activity more directly [170,171]. Challenges ahead
include improving specificity and sensitivity while also identifying markers that reflect
early mitochondrial dysfunction before significant cellular damage occurs. Techniques
like metabolomics and multi-omics integration are being leveraged to identify complex
biomarker patterns, paving the way for more precise and disease-specific mitochondrial
biomarkers in the future [170,171].

5. Strategies to Keep Mitochondrial Structural and Functional Integrity

Two strategies exist to protect mitochondrial integrity: non-pharmacological and phar-
macological approaches. The non-pharmacological approach includes exercise training
and lifestyle modifications. While definitive conclusions are still lacking [41], evidence
suggests that regular exercise promotes beneficial changes in mitochondrial function and
metabolism [172,173], as well as in the activity of mitochondrial fusion and fission pro-
teins [174], thereby demonstrating a cardioprotective effect [175,176]. Remarkably, even a
few days of endurance exercise training can provide protection to mitochondria against
ischemia–reperfusion injury [177]. The protective effects of endurance exercise on mito-
chondria, especially in the context of ischemia–reperfusion injury, are measured through
various physiological, biochemical, and imaging methods including measurement of ROS
levels, lipid peroxidation, and antioxidant enzyme activities in cardiac or skeletal muscle
tissue, measurement of mitochondrial respiration and ATP production, calcium retention
capacity (CRC), staining techniques, such as TUNEL (for apoptosis) or staining for necrotic
markers, as well as changes in the expression of mitochondrial protective proteins in re-
sponse to exercise, such as PGC-1α (a regulator of mitochondrial biogenesis), mitochondrial
fusion proteins (e.g., MFN2, OPA1), and antioxidant enzymes through Western blotting,
PCR, and immunohistochemistry [178–181]. Typical exercises that induce these protec-
tive effects include moderate-intensity endurance activities such as running, cycling, or
swimming [178–181]. Similarly, although not fully proven, lifestyle habits, particularly
calorie restriction, have been proposed to improve cardiac dysfunction by better controlling
cardiac fibrosis, inflammation, and mitochondrial defense mechanisms [182,183].

In terms of pharmacological intervention, the current optimal medical treatment for
heart failure, known as quadruple therapy, includes mechanisms aimed at conserving
energy to restore mitochondrial function. However, despite the use of these treatments,
morbidity and mortality rates remain high. Consequently, new medications are being
explored to refine and enhance a truly optimal treatment approach. Various agents target-
ing metabolism (fatty acids, glucose) and antioxidants have been proposed [23,184]. For
example, the modulation of peroxisome proliferator-activated receptor-α agonists and L-
carnitine may improve left ventricular function and prevent myocardial fibrosis [185,186].
Likewise, SGLT2 inhibitors aid in restoring biochemical substrate utilization (fatty acid
oxidation/glycolysis) and enhancing mitochondrial energetics [187]. Additionally, met-
formin, thiazolidinediones, and statins indirectly activate AMPK, thereby promoting
mitochondrial biogenesis [188].

The use of sacubitril/valsartan increases levels of natriuretic peptides, particularly
αANP [189], restores the ratio of the inner mitochondrial membrane (IMM) to the outer
mitochondrial membrane (OMM), reduces ROS levels, and enhances autophagy, thereby
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exerting cardioprotective effects. While antioxidant drugs present a promising option, their
results have been inconsistent. For instance, Coenzyme Q10 improved ejection fraction in
one study [190], but showed no benefit in another [191].

Other pharmacological interventions, such as mitochondrial pyruvate carriers [192],
mitochondrial permeability transition pore (mPTP) inhibitors like cyclosporine A [193],
and various other agents [194–198], have been investigated, yet none have consistently
demonstrated conclusive results. Some studies targeting mitochondrial fusion and fission
mechanisms have shown improvements in mitochondrial function [68,199–203], while
others have not [204–209]. Thus, this area of research clearly warrants further investigation.

6. Future Directions

The scientific community’s interest in mitochondrial structure and function is growing
rapidly. However, there remains a lack of sufficient and robust data to accurately identify
malfunctioning mitochondria. Despite advancements in this field, many questions remain
unanswered and require further exploration. The diversity of mitochondrial phenotypes
may aid in identifying various diseases, including cardiovascular conditions [210]. Alter-
ations in key functional sites could reflect changes in mitochondrial energetic status and
may potentially indicate early disease onset. The multi-scale mitochondrial configurations
observed across different cell types are not yet fully understood, but they may represent an
important step forward in this research [63].

In addition, little is known about the depletion or alteration of mitochondrial RNA
(mtRNA), which could impact mitochondrial defense mechanisms and other vital func-
tions [211]. Depletion of mtRNA, or other events that disrupt these protective mechanisms,
could compromise mitochondrial defense [212]. Furthermore, do mitochondria-associated
membranes (MAMs) play a preventive role in cardiovascular diseases? Could everyday
habits influence MAMs and contribute to the progression of cardiovascular disease [213]?

In any case, our knowledge remains limited, and further efforts are essential to better
understand this “energy factory,” especially within myocardial mitochondria. Could
artificial intelligence assist in advancing this understanding? That question also remains
open for future investigation [214].

7. Conclusions

Significant progress has been made over time in understanding heart failure syndrome.
Among the key contributors to this condition are mitochondria—vital organelles influ-
enced by risk factors, comorbidities, and other multifactorial mechanisms, which together
contribute to the syndrome’s progression. Mitochondrial dysfunction in heart failure is
marked by a decline in bioenergetic efficiency, reduced energy production, altered ion
transport, increased free radical generation, and the production of misfolded proteins.
This dysfunction, combined with neurohumoral hyperactivation, disrupts homeostatic
mechanisms, pushing the condition toward more severe stages with serious consequences.

Despite advances in understanding mitochondria’s role in heart failure, further re-
search is essential to deepen insights into mitochondrial function and its involvement in
the disease. Such research could pave the way for more effective treatment strategies. The
prospect of targeting mitochondria therapeutically in heart failure patients is promising, as
it offers an opportunity to “protect the fort” and prevent further deterioration [23].
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