
Sun et al. 
Journal of NeuroEngineering and Rehabilitation          (2024) 21:228  
https://doi.org/10.1186/s12984-024-01533-4

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Journal of NeuroEngineering
and Rehabilitation

Unraveling EEG correlates of unimanual 
finger movements: insights from non-repetitive 
flexion and extension tasks
Qiang Sun1*, Eva Calvo Merino1, Liuyin Yang1 and Marc M. Van Hulle1,2,3 

Abstract 

Background The loss of finger control in individuals with neuromuscular disorders significantly impacts their qual-
ity of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly 
via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements 
exhibit distinct and decodable EEG correlates remains unresolved. This study aims to investigate the EEG correlates 
of unimanual, non-repetitive finger flexion and extension.

Methods Sixteen healthy, right-handed participants completed multiple sessions of right-hand finger movement 
experiments. These included five individual (Thumb, Index, Middle, Ring, and Pinky) and four coordinated (Pinch, 
Point, ThumbsUp, and Fist) finger flexions and extensions, along with a rest condition (None). High-density EEG 
and finger trajectories were simultaneously recorded and analyzed. We examined low-frequency (0.3–3 Hz) time 
series and movement-related cortical potentials (MRCPs), and event-related desynchronization/synchronization 
(ERD/S) in the alpha- (8–13 Hz) and beta (13–30 Hz) bands. A clustering approach based on Riemannian distances 
was used to chart similarities between the broadband EEG responses (0.3–70 Hz) to the different finger scenarios. The 
contribution of different state-of-the-art features was identified across sub-bands, from low-frequency to low gamma 
(30–70 Hz), and an ensemble approach was used to pairwise classify single-trial finger movements and rest.

Results A significant decrease in EEG amplitude in the low-frequency time series was observed in the contralateral 
frontal-central regions during finger flexion and extension. Distinct MRCP patterns were found in the pre-, ongo-
ing-, and post-movement stages. Additionally, strong ERD was detected in the contralateral central brain regions 
in both alpha and beta bands during finger flexion and extension, with the beta band showing a stronger rebound 
(ERS) post-movement. Within the finger movement repertoire, the Thumb was most distinctive, followed by the Fist. 
Decoding results indicated that low-frequency time-domain amplitude better differentiates finger movements, 
while alpha and beta band power and Riemannian features better detect movement versus rest. Combining these 
features yielded over 80% finger movement detection accuracy, while pairwise classification accuracy exceeded 60% 
for the Thumb versus the other fingers.

Conclusion Our findings confirm that non-repetitive finger movements, whether individual or coordinated, can 
be precisely detected from EEG. However, differentiating between specific movements is challenging due to highly 
overlapping neural correlates in time, spectral, and spatial domains. Nonetheless, certain finger movements, such 
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as those involving the Thumb, exhibit distinct EEG responses, making them prime candidates for dexterous finger 
neuroprostheses.

Keywords Brain-computer interfaces (BCIs), Electroencephalography (EEG), Decoding, Finger movement, Neural 
correlates

Background
Individuals with neuromuscular disorders often expe-
rience significant losses in hand strength, tone, move-
ment, dexterity, joint range, and sensation, severely 
impacting their quality of life [1]. One promising tech-
nology for addressing these challenges is a motor brain-
computer interface (BCI), the purpose of which is to 
decode motor intentions from the brain to directly con-
trol end effectors [2, 3]. For example, Hotson et al. suc-
cessfully decoded individual finger movements using 
electrocorticography (ECoG) to control a modular 
prosthetic limb in real-time [4]. Additionally, a tetraple-
gic patient was able to achieve upper-limb movements 
with eight degrees of freedom during various reach-
and-touch tasks and wrist rotations using an epidural 
ECoG-BCI [5]. Another innovative approach involves 
a hybrid electroencephalography (EEG)/electrooculog-
raphy-driven hand exoskeleton, which enables quadri-
plegics to restore intuitive control of hand movements 
necessary for activities of daily living (ADLs) [6].

Advances in BCI-based neuroprostheses hold the 
promise of helping individuals with hand paralysis 
regain dexterity in finger movements. While invasive 
solutions are nearing this goal [7–11], non-invasive 
approaches, such as those using EEG, remain less effec-
tive [6, 12, 13]. This disparity is primarily due to the 
superior spatial resolution, spectral bandwidth, and sig-
nal-to-noise ratio (SNR) offered by invasive recordings 
[14, 15]. Nevertheless, EEG systems offer significant 
advantages: they are non-invasive, even portable, and 
generally more affordable than other brain-recording 
systems, while providing acceptable time and spatial 
resolution. These qualities make EEG-BCI a promising 
tool for neurorehabilitation. However, functional mag-
netic resonance imaging has shown that, although there 
is a small distributed finger-specific somatotopy in the 
human motor cortex, each digit shares overlapping 
representations [16, 17]. This overlap makes decod-
ing finger movements inherently challenging. Recent 
advances in machine learning have enabled high-per-
formance decoding from invasive recordings [8, 9, 11], 
prompting renewed interest in EEG. Recognizing that 
ADLs heavily depend on unimanual finger movements, 
we identified the need to investigate the potential of 
EEG in decoding fine single- (individual) and multi- 
(coordinated) finger movements of the same hand.

Movement can lead to either a decrease or an increase 
in the synchrony of underlying neuronal populations, 
known respectively as event-related desynchronization 
(ERD) and event-related synchronization (ERS) [18]. 
With EEG recordings, finger movements induce alpha 
and beta ERD prior to movement onset over the con-
tralateral Rolandic region, which become bilaterally 
symmetrical immediately before movement execution. 
Beta ERS occurs upon movement termination, while 
the Rolandic alpha rhythm remains desynchronized. 
For a comprehensive review, we refer to [18]. Previous 
research has shown that the strength and spatial distri-
bution of ERD/ERS encode critical information about 
hand movements, including kinematics, kinetics [19, 
20], and movement types [21]. Regarding finger move-
ments, Pfurtscheller et  al. found that pre-movement 
alpha (10–12  Hz) ERD is similar for the index finger, 
thumb, and hand movements, but differs for later stages 
[18, 22]. Additionally, the post-movement beta ERS for 
fingers is significantly smaller compared to the whole 
hand. Ultra-high-density EEG studies have demon-
strated finger-specific ERD/ERS representations, sug-
gesting EEG could provide discriminating information 
crucial for decoding finger movements [12, 23–25].

Unlike ERD/ERS, which reflect power changes, move-
ment-related cortical potentials (MRCPs) are promi-
nent in the low-frequency band (e.g., 0.3–3  Hz) and 
can be easily visualized when performing or attempt-
ing movements [26, 27]. MRCPs are characterized by 
Bereitschaftspotential (BP) or readiness potential, and 
reafferent potential [26]. For finger-related movements, 
MRCPs typically feature an early bilateral negativity 
(early BP) starting around 3 s before movement onset, 
followed by a steeper negative slope (late BP) over the 
contralateral hemisphere about 0.5 s before movement 
onset [28]. Different hand movements induce charac-
teristic MRCP patterns, allowing for differentiation [27, 
29, 30]. However, MRCPs for different finger move-
ments, particularly unimanual ones, are less studied. 
Quandt et al. pioneered decoding individual unimanual 
finger movements (thumb, index, middle, and little fin-
ger) using EEG and magnetoencephalography (MEG) 
recordings [31]. They observed that amplitude varia-
tions in time series provided the best information for 
discriminating finger movements, outperforming fre-
quency band oscillations. This suggests that the MRCP 
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profile contains rich information on unimanual finger 
movements.

Our brain supports a diverse repertoire of finger 
movements, including both individual and coordinated 
actions. It is important to determine whether these 
movements exhibit distinct and decodable EEG cor-
relates, such as ERD/ERS and MRCPs. To date, no EEG 
study has systematically reported these neural correlates, 
leaving their potential in decoding fine finger movements 
largely unexplored. This study aims to investigate the 
EEG correlates of various unimanual finger movements, 
ranging from individual to coordinated ones. We focus 
on non-repetitive finger flexion and extension, simulat-
ing real-world grasping scenarios. This straightforward 
task design allows us to assess the limitations of EEG 
decoding, as complex (repetitive or rhythmic) finger 
movements are typically associated with stronger brain 
activation [32, 33]. While we anticipate some overlap 
in EEG correlates within the repertoire of finger move-
ments, we expect to discern distinct ones that can serve 
as discriminative features for decoding. Our findings 
yield significant implications for the design of dexter-
ous EEG-actuated finger neuroprostheses, potentially 
enhancing the quality of life of individuals with neuro-
muscular disorders. By identifying and decoding these 
EEG correlates, we can advance the development of more 
effective and precise neuroprosthetic devices.

Materials and methods
Participants
We recruited 16 healthy participants (sub1–sub16, 
25.9 ± 2.7 years old, 6 males, 10 females). All subjects are 
right-handed. Fourteen of them completed the Edinburgh 
Handedness Inventory (https:// www. brain mappi ng. org/ 
shared/ Edinb urgh. php) and obtained average scores 
of 91.9 ± 8.5 on the augmented index and 90.3 ± 10.5 on 
the  laterality index. Before the experiment, all subjects 
were informed about the study details and gave their con-
sent. Six of them (sub11–sub16, 4 females) underwent a 
multi-session experiment (Supplementary Table s1), with 
3, 3, 3, 2, 2, and 5 sessions, respectively. Therefore, there 
are a total of 28 sessions of the experiment. Participants 
were remunerated per session. This study was approved 
by the Ethical Committee of the University Hospital of 
KU Leuven (UZ Leuven) under reference number S6254.

Experiment setup
During the experiment, subjects needed to follow the 
instructions shown on the screen (ViewPixx, Canada) 
in front of them, while their brain signals and finger 
trajectories from their right hand were simultaneously 
recorded. We used high-density EEG, 58 active electrodes 
covering frontal, central, and parietal areas with positions 

following the 5% electrode system [34], and a Neuro-
scan SynAmps RT device (Compumedics, Australia) for 
recording. The ground electrode was set at AFz, and the 
reference electrode was at FCz. All electrode impedances 
were kept below 5  kΩ before recording. The sampling 
rate was set to 1000  Hz. Right-hand finger flexions and 
extensions were tracked using a digital data glove (5 Ultra 
MRI, 5DT, Irvine CA, USA). We designed the experi-
mental paradigm by relying on Psychtoolbox-3 (www. 
psych toolb ox. net) to synchronize the EEG and glove data 
per trial.

Finger flex‑maintain‑extend paradigm
We designed a finger flex-maintain-extend paradigm 
including both individual (5 fingers) and coordinated 
(4 gestures) finger movements, as shown in Fig. 1b. The 
‘no movement’ class was designed as the baseline for 
comparison. A single-session experiment comprises 30 
blocks, with each block consisting of a single round of 
the 10 finger movement scenarios, namely, 30 trials per 
scenario for each session. Before the experiment, the 
subjects were told to relax and keep their right hand 
naturally open with the palm facing upwards on the table 
(considered the rest position). Figure 1a shows the timing 

Fig. 1 Paradigm details. a Timing of a trial. The cross is with 
scales that indicate when the subjects need to flex or extend 
the corresponding finger(s). b Different finger movement scenarios. 
During the experiment, the subject’s hand was positioned 
on the table with the palm facing upwards

https://www.brainmapping.org/shared/Edinburgh.php
https://www.brainmapping.org/shared/Edinburgh.php
http://www.psychtoolbox.net
http://www.psychtoolbox.net
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of an exemplary Thumb trial. At the beginning of the 
trial, a picture is displayed on the screen for 2 s indicat-
ing which movement the subjects need to perform in that 
trial. When this movement scenario cue disappears, a 
grey circle shows up and starts shrinking at a fixed speed. 
On top of the circle, there is a cross with scales. When 
the circle reaches the outer scale (3 s), the subjects must 
immediately flex their finger(s) and maintain the action 
for 4 s. Until the circle reaches the inner scale, the sub-
jects need to immediately extend their finger(s) back to 
the rest position. They were given 2-s rest between trials. 
We opt for this shrinking-circle design as it diminishes 
the effect of visual cues [27]. When a trial was started, 
the subjects were required to only move the indicated 
finger(s) according to the scenario cue. For the None 
class, the subjects had to keep their hand at rest while the 
circle shrinks.

Finger trajectory processing
The kinematic data from the data glove were used to 
precisely detect the onset of movement (finger flexion 
and extension). We first obtained the finger trajectories 
based on normalized bending sensor output. Then, we 
smoothed the trajectories and calculated the trajectory 
velocity for each movement’s representative finger. For 
individual finger movements, the representative one was 
the cued finger, and for coordinated finger movements, 
we selected the index finger for Pinch, ThumbsUP, and 
Fist, and the middle finger for Point. Next, the onset of 
movement was determined by the time when veloc-
ity exceeded a threshold of 0.2 times the maximal value 
(minimal value for finger extension). A graphical expla-
nation is shown in Supplementary Fig. s1.

EEG data preprocessing
Data preprocessing was done by customized scripts and 
Fieldtrip functions [35]. Raw EEG data were first down-
sampled to 250 Hz for ease of computation. An antialias-
ing filtering was applied during this process. Then, the 
power line noise at 50  Hz was removed by a 3rd-order 
two-pass band-stop Butterworth IIR filter. Using the 
same type of band-pass filter, the EEG data were filtered 
between 0.1 and 70  Hz. We visually inspected faulty 
channels and excluded them for further preprocessing. 
Next, Independent Component Analysis was used, and 
components related to eye movements and abnormal 
artifacts were identified and removed. Last, the cleaned 
data went through common average referencing (CAR). 
We epoched the recordings according to trial markers 
once the continuous EEG data were preprocessed. We 
used 4 criteria to find bad channels in each trial. Specifi-
cally, a channel was considered bad when any of its kur-
tosis, mean value, and variance exceeded three times the 

standard deviation of the mean for all electrodes, or its 
peak-to-peak amplitude exceeded 200 microvolts. Bad 
trials, either noisy or containing undesired finger move-
ments, were determined by visual inspection. The bad 
channel and trial information were kept. For later anal-
ysis, bad trials were excluded, and faulty channels and 
bad channels were interpolated with the average value 
of neighboring ones. We used the triangulation method 
in Fieldtrip to calculate each electrode’s neighbors. Ulti-
mately, we obtained an average of 28.4 ± 2.0 clean trials 
per movement scenario across subjects and sessions.

EEG correlates
Each subject’s single-session data were analyzed to inves-
tigate EEG correlates, in which we focused on low-fre-
quency band signals and ERD/ERS.

Low‑frequency band signals
We obtained cleaned epochs in the low-frequency band 
(0.3–3  Hz). For each epoch, we looked into 2-s pre-
movement and 2-s post-movement by indexing finger 
movement (flexion and extension) onset according to 
kinematic information. For the None case, we extracted 
epochs according to the corresponding trial marker. 
We averaged all epochs per finger movement which 
resulted in a low-frequency EEG template of dimensions 
58 × 1000 × 10 (channels × time points × finger move-
ments) for each subject. Two aspects of low-frequency 
EEG correlates were analyzed, i.e., their time series and 
MRCPs. The first aspect was examined by showing the 
temporal evolution of the amplitude topoplots between 
each movement and None. The second aspect was to ana-
lyze, for selected representative channels, their MRCPs.

ERD/ERS
We first segmented the cleaned data based on trial mark-
ers and then extracted the epochs. Then, we implemented 
the Morlet wavelet time–frequency transformation (ft_
freqanalysis() function in Fieldtrip) on each epoch. The 
frequency of interest was set to 1–50 Hz with a resolu-
tion of 1 Hz. The time resolution was set to 0.01 s. The 
resulting power spectra of all trials from the same move-
ment were averaged per subject. Finally, ERD/ERS for 
each movement was derived as:

where TFRi

(
f , t, c

)
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1-s power spectra of the None movement, and Ns the 
total number of subjects. A negative value indicates ERD 
and vice-versa ERS.

Similarity analysis and clustering
We relied on Riemannian distance as the dissimilarity 
metric to assess the finger representations obtained from 
EEG [36, 37]. First, we obtained cleaned epochs during 
finger flexion and extension within the 0.3–70  Hz fre-
quency band. One epoch contains 1-s pre-movement and 
0.5-s post-movement. Then, each epoch was transformed 
into a covariance matrix that lies in the Riemannian man-
ifold [38]. For finger flexion or extension, we obtained the 
centroids of each type of finger movement’s covariance 
matrices and calculated the pairwise Riemannian dis-
tance between them. A larger distance indicates a larger 
dissimilarity. Finally, we could get a symmetric repre-
sentational dissimilarity matrix (RDM) that reflects the 
structure of the broadband EEG responses for different 
finger movements during flexion or extension. Hierarchi-
cal clustering was done based on this matrix. The result-
ing dendrogram was analyzed by looking into clustered 
finger movements.

Decoding models and implementation details
Feature extraction
We tested mainstream feature extraction methods in 
the literature related to hand and upper-limb movement 
classification tasks. First, we obtained the cleaned epochs 
from multiple frequency bands, including the low-fre-
quency (0.3–3 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), beta (13–30 Hz), and low gamma (30–70 Hz) 
bands. Then, for the low-frequency band, feature extrac-
tors including time-domain amplitude [27, 29, 30, 39], 
discriminative spatial patterns (DSP) [40], and dis-
criminative canonical pattern matching (DCPM) [41] 
were implemented. For the other frequency bands, we 
extracted band power, common spatial pattern (CSP) 
[42], and Riemannian geometry tangent space (RGT) [38] 
features.

Implementation
Denote the i-th EEG trial as X(i) ∈ R

C×P , where C and 
P indicate the number of channels and sampling points, 
respectively. In this study, we fixed the time window 
to be 1.5  s, and thus P = 375. The time-domain ampli-
tude was taken every 0.12 s, resulting in a 754-dimen-
sional feature vector for each trial with C = 58 channels. 
Considering the scarcity of training data, we removed 
redundant features using Lasso regularization with 
a regularization coefficient of 0.05 [43]. For DSP, we 
selected the top 10 eigenvectors as spatial filters, hence 

the trial channel dimension was reduced from 58 to 10. 
Then, the average value of each channel was extracted 
as a feature. For DCPM, the top 10 eigenvectors were 
selected as spatial filters during computation, and 
finally, the model outputs a 3-dimensional feature vec-
tor for each trial. To extract power features, we took the 
average square value of each trial’s channel, resulting in 
a 58-dimensional feature vector. For CSP, we selected 
the paired first and last 3 spatial filters and gener-
ated a 6-dimensional feature vector. Last, for RGT, the 
mapped features in Riemannian Tangent space have an 
original dimension of C × (C + 1)/2 but were reduced 
again using Lasso regularization. Note that the above 
description of feature dimensions is the theoretical 
value of a trial in one single frequency band. When 
multiple frequency bands’ information was fused, the 
dimensions changed accordingly.

Classification task
The shrinkage linear discriminant analysis (sLDA) model 
was used as the classifier for its excellent performance in 
single-trial EEG classification [27, 30, 39, 44]. The regu-
larization parameter was set to 0.8 according to a trial–
error test on one subject. Based on this model, we aim 
to investigate: (I) which feature extractor and frequency 
band contributes the most to finger movement detec-
tion and pairwise classification, and (II) whether we 
could build a model based on those contributing fea-
tures and obtain an overall performance improvement. 
In order to address task I, we trained and tested several 
sLDA classifiers based on each feature type on the low-
frequency, delta, theta, alpha, beta, and low gamma band, 
individually. The contribution of features and frequency 
bands was analyzed. For task II, we gathered all classifi-
ers trained on the selected features and frequency bands 
and used majority voting for prediction. Based on this 
ensemble model, we also investigated the impact of data 
sizes, time window choices, and EEG electrode layouts 
on model performance. We tested the impact of data 
sizes  on decoding performance with increasing sub11-
sub16’s multi-session data. For time window choices, 
we considered three primary time windows [−1.6, −0.1]
s, [−1, 0.5]s, and [0, 1.5]s to the movement onset (0  s). 
Likewise, different EEG electrode layouts (Supplemen-
tary Fig. s2) were selected from the 58 electrodes in total 
and compared based on the ensemble model. All data (28 
sessions) were used for each task, except for the data size 
testing one. We performed tenfold cross-validation on all 
tasks. All trained models are subject-specific. The chance 
levels were estimated following [45], and we obtained 
0.6225 for single-session and 0.5722 (estimated based 
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on the averaged trial numbers across sub11–sub16) for 
multi-session pairwise classification (alpha = 0.05).

Statistical analyses
All statistical tests were conducted using MATLAB with 
a significance level of 0.05. For multiple within-factor 
conditions, such as finger movement scenarios, time 
windows, and electrode layouts, we relied on one-way 
repeated measures ANOVA. Then, a post hoc multiple 
comparisons test with Bonferroni correction was used 
to identify significant pairwise differences. For pairwise 
conditions, we relied on the Wilcoxon signed-rank test. 
We marked associated p-values using asterisks in figures 
(N.S.: not significant; *: p < 0.05, **: p < 0.01; *** p < 0.001).

Results
Low‑frequency EEG signals correlate with non‑repetitive 
finger flexion and extension
Figure  2 shows the evolution of amplitude differ-
ence between different finger movement scenarios and 
no movement (None). Overall, all finger movements 
induced significant changes in amplitude in the low-fre-
quency band. Contralateral frontal-central brain regions 
were found to be the most active related to both fin-
ger flexion and extension. The EEG amplitude in those 
regions started decreasing 0.5-s before the onset of 
movement, reached the minimal at the moment of move-
ment, and rebounded afterward. This phenomenon was 
consistent when the movement state transits from rest to 
flexed (flexion in Fig. 2a) or from flexed to rest (extension 
in Fig. 2b). An interesting finding was that brain regions 

surrounding the frontal-central showed a prominent 
short-term increase of amplitude during the movement, 
as shown in Fig. 2a, b when time equals 0 and 0.25 s. The 
MRCPs of a selection of channels are visualized in Fig. 3 
and Supplementary Fig. s3. The temporal EEG waveform 
from FC1 indicated three significant features of finger 
movement-related MRCPs, including an early increase in 
amplitude 1-s preceding the movement, a strong negative 
potential around the movement onset, and followed by a 
clear positive rebound 1-s after. The MRCP morphologies 
were brain region-dependent. According to Supplemen-
tary Fig. s3, the ipsilateral and central-parietal channels 
(C2, CP1, and CP2) showed a more obvious positive 
rebound than a negative deflection. Besides, finger exten-
sion was found to have a smaller negative peak around 
movement onset compared to flexion. While non-repeti-
tive finger flexion and extension could evoke clear MRCP 
patterns, they were highly overlapping.

Finger flexion and extension induce prominent changes 
in ERD/ERS in the alpha and beta bands
Figure  4 illustrates the progression of ERD/ERS 
changes during finger flexion, movement maintenance, 
and extension. Since finger flexion and extension onsets 
were detected separately using motion trajectories, we 
chose a time window of −1 to 2.5 s for flexion and −2.5 
to 1 s for extension, ensuring that the movement main-
tenance period was fully captured. Prominent changes 
of ERD/ERS in the alpha and beta bands were found 
during different finger movement scenarios, and these 
changes were mainly located in central brain regions. 

Fig. 2 Topographical EEG amplitude difference between different finger movements and no movement during a flexion and b extension 
in the low-frequency band (0.3–3 Hz). Time = 0 s corresponds to the movement onset, aligned by kinematic data. The channels with significant 
differences are marked in black
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For the alpha rhythm shown in Fig. 4a, b, a strong con-
tralateral ERD was found before movement onset when 
referring to the time window [−1, 0] s for finger flexion 
and [−2, 0] s for finger extension. At movement onset, a 
stronger ERD was elicited on both sides, as depicted in 
the time window of [−0.5, 2.5]  s for finger flexion and 
[−0.5, 1] s for finger extension. However, the beta band 
behaved differently in that a less strong ERD happened 
contralaterally before  the flexion ([−1, 0]  s), and a 
prominent rebound (ERS) occurred bilaterally for post-
movement of finger flexion ([0.5, 2.5]  s) and extension 
([0, 1]  s) (Fig.  4c, d). Statistical comparisons between 
the behavior of alpha and beta rhythms on channels 
C3 and C4 during different stages of the movement are 
reported in Table 1. There was a clear beta rebound in 

the movement maintenance (post-flexion) and relaxa-
tion (post-extension) stages, significantly different from 
the alpha rhythm on both C3 and C4 channels. Within 
the finger repertoire, individual finger movements acti-
vated more ipsilateral regions, which is evidenced by 
significantly stronger pre-flexion ([−1, 0] s) alpha ERD, 
and post-extension ([0, 1] s) beta ERD compared to the 
coordinated ones on the C4 channel (Supplementary 
Table s2).

Similarity analysis reveals distinct EEG responses 
between finger movements
Similarity analysis results are presented in Fig. 5a, b for 
finger flexion and extension, respectively. None, as well as 
Thumb, exhibited a higher dissimilarity compared to the 
other movement scenarios, and this was also reflected 
in the dendrogram. Statistical test results showed that 
the cluster of None and Thumb was significantly distinct 
from the rest (p < 0.001 for both flexion and extension). 
However, for most of the finger movements, their neu-
ral representations were similar, especially for the indi-
vidual finger group Middle-Ring. Figure  5c–e compares 
MRCPs and ERD/ERS between the Thumb and Thumb-
sUP movements. ThumbsUP was chosen for comparison 
as it represents the combination of the rest four fingers 
(Index-Middle-Ring-Pinky). We would like to know 
whether EEG supports at least two distinguishable finger 
groups and thus provides more degrees of freedom for 
control purposes. As seen in Fig. 5c, d, significant differ-
ences in MRCPs were found both in the pre-, ongoing-, 
and post-movement stages, where ThumbsUP showed 
stronger positive and negative deflections. Differences 
in beta band ERD/ERS were also found in contralateral 
brain regions, while only during finger extension did 
some channels show statistical differences.

Features and frequency bands contribute differently 
to finger movement decoding
Figure  6 demonstrates different features and frequency 
bands’ contributions to decoding accuracy. First, the 
low-frequency band (0.3–3 Hz) performed better in dif-
ferentiating finger movements than other frequency 
bands. On the other hand, alpha and beta bands per-
formed well in detecting finger movements from the rest 
(None) condition. When referring to the amount and 
value of significant above-chance level accuracies, time-
domain amplitude (F1) performed better than DSP (F2) 
and DCPM (F3) in the low-frequency band, while band 
power (F4) and RGT (F6) were comparable and relatively 
superior to CSP (F5) in other frequency bands. Taking 
each feature’s advantage together, an ensemble model 
was proposed, voting the results of three types of feature-
trained sLDA: F1+sLDA, F4+sLDA, and F6+sLDA. The 

Fig. 3 MRCPs of different finger movements during a flexion 
and b extension. Channel FC1 from the frontal-central brain 
regions was selected for visualization. Time = 0 s corresponds 
to the movement onset. The shaded area indicates a significant 
(p < 0.05) amplitude difference among those 9 movement scenarios
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results are shown in Fig. 7. In Supplementary Fig. s5, we 
also tested three other types of ensemble models, and it 
turned out that the mentioned model performs best. The 
decoding performance markedly improved using the clas-
sifier ensemble. Specifically, for finger flexion, the high-
est detection accuracy reached 0.8352 ± 0.0962 (Point vs. 

None) and the pairwise classification accuracy reached 
0.6550 ± 0.0974 (Thumb vs. Pinky). While for finger 
extension, the highest detection- and pairwise classifica-
tion accuracies reached 0.8611 ± 0.0911 (Index vs. None) 
and 0.6364 ± 0.0890 (Thumb vs. ThumbsUP), respectively 
(Fig. 7a, b). What stands out in those accuracies was that 

Fig. 4 Topographical EEG ERD/ERS of a, b alpha and c, d beta rhythm for different finger movements during (a, c) flexion and (b, d) extension. Each 
topoplot shows the averaged ERD/ERS value within the 1-s time window. Six windows were selected from −1 to 2.5 s for flexion and −2.5 to 1 s 
for extension with an interval of 0.5 s
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the Thumb and Fist movements were easier to classify. 
When comparing the overall finger movement detection 
and pairwise classification performance, detection accu-
racy was significantly higher than classification accuracy 
(Flexion: 0.8198 ± 0.1023 vs. 0.5712 ± 0.0969, p < 0.001; 
Extension: 0.8081 ± 0.1210 vs. 0.5608 ± 0.1008, p < 0.001) 
(Fig.  7c, d). However, a quarter of the subjects and fin-
ger combinations still obtained significant above-chance 
level accuracies according to the boxplot of pairwise clas-
sification results. With more training data, the decoding 
performance increased from a group-level perspective 

(Supplementary Fig. s6c, d). The highest detection accu-
racy reached 0.8794 ± 0.0902 for Middle finger exten-
sion, and the highest pairwise classification accuracy 
reached 0.6650 ± 0.0607 for Thumb vs. Middle during 
flexion. However, from an individual-level perspective, 
the impact of data size on decoding performance differed 
within sub11-sub16 (Supplementary Fig. s6a, b, Table s3). 
Besides, there was a significant difference between time 
window choices, as can be seen in Fig. 7e, f. Movement 
detection was more sensitive to the time window choice 
compared to classification. Moreover, it is worth not-
ing that decoding using the pre-movement period (time 

Table 1 Comparison between the ERD/ERS of alpha and beta rhythms during different stages of finger movement

The ERD/ERS values are the grand averages across subjects and finger movement scenarios. The difference between alpha and beta rhythms was tested by Wilcoxon 
signed-rank test (alpha = 0.05), and the associated p-values were listed. Pre-flexion, ongoing-flexion, and maintenance correspond to time intervals of [−1, 0], [−0.5, 
0.5], and [1, 2] s, respectively, in Fig. 4a, c, while pre-extension, ongoing-extension, and relaxation correspond to time intervals of [−1, 0], [−0.5, 0.5], and [0, 1] s, 
respectively, in Fig. 4b, d

Channel Rhythm ERD/ERS [%] during different stages of finger movement

Pre‑flexion Ongoing‑flexion Maintenance (flexed) Pre‑extension Ongoing‑extension Relaxation

C3 alpha −35.4 ± 24.65 −35.87 ± 28.59 −37.53 ± 26.21 −36.84 ± 25.55 −35.75 ± 28.11 −32.63 ± 30.65

beta −27.83 ± 20.85 −31.89 ± 21.96 −17.99 ± 21.62 −30.95 ± 20.52 −32.90 ± 21.39 −19.54 ± 28.63

p-value 0.0285 N.S 1.6651e−9 N.S N.S 0.0016

C4 alpha −21.51 ± 27.62 −29.98 ± 31.55 −31.66 ± 30.12 −22.77 ± 25.00 −28.14 ± 31.52 −31.21 ± 36.11

beta −19.37 ± 19.30 −29.58 ± 18.38 −14.70 ± 21.08 −23.57 ± 16.48 −30.43 ± 17.17 −24.45 ± 21.30

p-value N.S N.S 1.3196e−7 N.S N.S 0.0228

Fig. 5 Distinct EEG responses between finger movements. Similarity analysis results for a finger flexion and b extension. The left and right panels 
show the RDM (the lower triangular part of the symmetric matrix) and hierarchical clustering results, respectively. c, d show the MRCP of Thumb 
(blue) and ThumbsUP (red) movements in channel FC1 for finger flexion and extension, respectively. The variance and average values across subjects 
are plotted. The shaded gray area indicates a significant difference (p < 0.05) between the two finger movements. e Beta band ERD/ERS difference 
between Thumb and ThumbsUP movement (ERD/ERSThumb − ERD/ERSThumbsUP) at three movement states. Significant channels are marked



Page 10 of 16Sun et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:228 

Fig. 6 Feature contribution to the binary classification of finger flexion at different frequency bands. F1–F6 represents different feature extraction 
methods (F1: Time-domain amplitude, F2: DSP, F3: DCPM, F4: Band power, F5: CSP, F6: RGT). F1–F3 were tested on the low-frequency band, 
while F4–F6 were tested from delta to low gamma bands. The time window between −1 and 0.5 s was selected with 0 s indicating movement 
onset. sLDA serves as the classifier. Accuracies below 0.5 are not shown and the ones above the estimated chance level (0.6225, adjusted Wald 
interval, alpha = 0.05) are marked with stars. Similar phenomena can be observed when referring to finger extension results (Supplementary Fig. s4)
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window of [−1.6, −0.1]  s) is also feasible as we could 
observe above-chance level accuracies for certain finger 
combinations.

Bilateral electrode layout contributes to unimanual finger 
movement decoding
Figure  8 compares the finger flexion decoding per-
formance at varying densities and brain region cover-
age electrode layouts. The choice of layout significantly 
impacted the decoding performance, as evidenced by 
the marked statistical results. First, bilateral layouts (L1, 
L4, and L7) obtained significantly higher accuracy than 
contralateral (L2, L5, and L8) and ipsilateral (L3, L6, and 
L9) ones, particularly for movement detection, where the 
ipsilateral layouts had the lowest accuracy. However, for 
pairwise classification, ipsilateral layouts were found to 
significantly outperform contralateral ones while exhibit-
ing no significant difference from bilateral ones. Second, 

within the bilateral layouts, although the number of 
electrodes was substantially reduced from 58 (L1) to 14 
(L7), the difference was not significant. Similar results 
were found for finger extension decoding (Supplemen-
tary Fig. s7), where bilateral layouts performed the best 
and the electrode density had no significant impact on 
performance.

Discussion
While studies have reported decodable EEG correlates of 
specific hand, upper limb, or lower limb movements, a 
systematic investigation on finger movements is lacking, 
albeit they are critical for supporting ADLs of a hand-
disabled person. In our attempt to contribute to ADLs, 
we systematically compared EEG correlates of non-repet-
itive flexion and extension of individual and coordinated 
finger movements of the dominant hand. Our analysis 
showed that MRCPs and ERD/ERS from EEG could be 

Fig. 7 Binary classification results based on an ensemble model. The panels in the first row are for finger flexion, while those in the second row 
for finger extension. a, b provide the accuracy of each finger movement combination. c, d compare the detection and pairwise classification 
(abbreviated as Pairwise Cls) accuracy of finger movements. Each dot indicates a finger movement combination of one subject. e, f show the mean 
and standard deviation of detection and pairwise classification accuracy at different time windows ([−1.6, −0.1], [−1, 0.5], and [0, 1.5] s)
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discerned even for simple finger movements. Our feature 
and frequency band analysis identified low-frequency 
band time-domain amplitude, power and Riemannian 
features in alpha and beta bands as the most informa-
tive for single-trial finger movement decoding. Further 
combining those features we could precisely detect finger 
movements and obtain encouraging pairwise classifica-
tion results on some finger combinations.

EEG correlates of unimanual non‑repetitive finger flexion 
and extension
We looked into two aspects of EEG correlates: MRCPs 
and ERD/ERS, as they reflect different neuronal mecha-
nisms of movement [26]. In general, we found clear 
MRCPs and ERD/ERS in response to our finger move-
ment scenarios. Each movement scenario had a similar 
MRCP morphology in that a stronger negative deflection 
occurred before the movement, which we attributed to 
the late BP [26], and peaked around the movement onset. 
Later, the potential started to  rebound and peaked at 
around 1 s after movement onset. We also noticed a small 
intermediate positive component 0.3 s after the move-
ment onset, which likely corresponds to the reafferent 

potential P+300 [46]. A contradictory finding is that 
we didn’t see an early BP monotonously decreasing as 
reported in [26], but a positive component 1 s before the 
movement in concordance with previous studies working 
on hand and upper limb movements [29, 39, 47, 48]. We 
found this phenomenon to be brain region-dependent, 
as shown in Supplementary Fig. s3. The pre-movement 
positive component was observed in contralateral fron-
tal-central channels, which were most responsive to fin-
ger movements (Fig. 2). Spatially, there was an interesting 
finding as contralateral frontal-central surrounding areas 
had a prominent short-term increase of amplitude during 
the movement, as also reflected in the study of [39]. This 
could result from the sequence activation within motor 
areas [26]. Regarding ERD/ERS, we found contralateral 
pre- and bilateral ongoing-movement alpha and beta 
ERD for all finger movements, with the contralateral side 
being more prominent (Fig.  4). However, a strong post-
movement ERS was only found in the beta band for all 
finger movements around 1  s after the termination of 
flexion and extension, in line with the literature [18].

We found distinct EEG responses through similar-
ity analysis when comparing EEG correlates of different 

Fig. 8 Box plots of decoding accuracy of finger flexion for different EEG electrode layouts. L1 to L9 correspond to the layouts in Supplementary Fig. 
s2. Specifically, the layouts have three different densities (dense: L1, L2, L3; sparse: L4, L5, L6; sparse focal: L7, L8, L9), and cover three different brain 
regions (bilateral: L1, L4, L7; contralateral: L2, L5, L8; ipsilateral: L3, L6, L9). Each dot in the box corresponds to a finger movement combination of one 
subject. The grand average accuracy and standard deviation were noted above each box
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finger movements, although their MRCP morphologies 
and ERD/ERS patterns are similar. According to Fig. 5a, 
b, the Thumb had a unique response compared to other 
movements, with the Fist being next. On the other hand, 
the EEG responses of other movements were clustered, 
particularly the Middle and Ring fingers. This neural 
basis partially explains why Thumb is easier to differ-
entiate than others (Fig.  7a, b). From the neuromuscu-
lar control perspective, the activation of a larger muscle 
mass (like the case for coordinated finger movements) 
will involve a relatively larger population of cortical neu-
rons [18]. As the Thumb shows higher individuation than 
other digits during self-paced movement [49], a unique 
neural response is expected, which is reflected by the 
clustering results. Besides, we attribute the tighter clus-
tering of the Thumb and None conditions to the shorter 
displacement exhibited by Thumb movement. Moreo-
ver, this neuromuscular theory could also explain why a 
stronger positive/negative deflection of MRCP (Fig.  5c, 
d) was observed for coordinated finger movements com-
pared to individual finger movements.

As for the comparison between finger flexion and 
extension, we found flexion-related MRCPs had a more 
pronounced negative peak around movement onset than 
extension (Fig.  3, Supplementary Fig. s3). However, our 
results contradict previous findings in that our MRCP 
was larger for the contralateral brain regions during 
muscle relaxation (extension) than for contraction (flex-
ion) [50, 51]. The primary difference is our task design. 
We simulated a natural grasping scenario that requires 
the finger to first flex and maintain and then to release 
(extend). Thus, the extension task always came after flex-
ion and movement maintenance, whereas wrist or finger 
relaxation and contraction are separate tasks in those 
studies [50, 51]. We assume the task design will cause this 
amplitude disparity, but it needs to be further studied.

The role of low‑frequency EEG signals in differentiating 
finger movements
Low-frequency EEG signals encode upper and lower 
limb movements [27, 29, 52, 53], unimanual and biman-
ual reach-and-grasp [39, 48], and grasping types [21]. 
According to our study, we added that this signal is also 
informative in differentiating non-repetitive finger flex-
ion and extension, a more subtle aspect of finger move-
ment compared to repetitive movements. Moreover, 
referring to Fig.  6 (feature extraction methods F1–F3), 
we observe that low-frequency EEG signals, particularly 
the amplitudes, contain rich information about move-
ment kinematics. Although low-frequency EEG is still 
informative in detecting finger movements, it is not com-
parable to the contribution of alpha and beta band signals 
(Fig.  6). Figure  3 suggests that discriminative amplitude 

information is present during pre-, ongoing-, and post-
movement periods. However, as many finger movement 
scenarios were involved, their MRCP morphology is 
similar. Besides, we also found similarities between the 
MRCPs of our finger movements and that of other hand 
movements, such as palmar and lateral grasps [27, 29]. 
Therefore, there seems to be a limit to differentiating fin-
ger movements solely based on time-domain amplitude 
features. Spatial information could be added as compen-
sation, as we saw topographical differences between dif-
ferent finger movements in low-frequency band signals 
in Fig.  2. We have tried two spatial-filter-based feature 
extractors DSP and DCPM using low-frequency EEG 
and obtained comparable results on some finger com-
binations to amplitude features, particularly for DCPM 
(Fig. 6, F1–F3).

The potential of EEG in decoding fine finger movements
We tested an extreme condition of single-trial finger 
movement decoding: unimanual, non-repetitive, simple 
flexion or extension in multiple finger movement scenar-
ios. Our study returned a promising detection accuracy 
of over 80% on average for finger flexion and extension, 
and significant above-chance-level pairwise classifica-
tion accuracy for Thumb versus other scenarios (Fig. 7a, 
b). The high detection accuracy could be attributed to 
our visual cue design (shrinking circle) and movement 
onset alignment, as also reported by Suwandjieff and 
Müller-Putz [54]. As to subject and finger combination 
variability, a quarter of them reached over 90% in move-
ment detection and 64% in classification, which is quite 
encouraging (Fig.  7c, d). The decoding performance 
could be further improved by shifting the time window 
(Fig. 7e, f ) and by incorporating more training data (Sup-
plementary Fig. s5). Referring to the literature, Alsuradi 
et  al. recently reported 60% 5-class decoding accuracy 
on a public dataset of imagined individual finger move-
ments (similar but weaker cortical activations compared 
to attempted or performed movements) [55, 56], which 
is state-of-the-art as far as we know. During the imagery 
task, the participant imagined a flexion of the cued fin-
ger up or down for 1 s and completed a substantial num-
ber of trials [56]. Lee et al. achieved an average of 64.8% 
5-finger pairwise classification accuracy using an ultra-
high-density EEG system [12]. The participant extended 
the cued finger and maintained extension for 5 s. Overall, 
these cases show the feasibility of decoding specific finger 
movements. Although it is difficult to make a fair com-
parison, as each study differs in its experimental setup 
and paradigm design, our analysis of multiple finger 
movement scenarios and separate flexion and extension 
provided evidence in support of our decoding results, in 
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the low-frequency time series, MRCPs, and ERD/ERS, 
extending the cited studies.

The challenge of EEG in decoding finger movements 
seems solvable by using advanced machine learning 
approaches, such as the Riemannian features extracted 
in this study, the neural networks used by Alsuradi et al. 
[55], or the customized ensemble model by Yang et  al. 
[57]. However, EEG can only provide limited discrimina-
tive information when resolving fine finger movements, 
as in our case with the 9 finger movements shown in 
Figs. 2–5. Although the patch electrodes (placed on the 
scalp) used by Lee et al. have a better spatial resolution, 
and are claimed to provide a higher SNR, the resulting 
performance is still not ideal [12]. One encouraging fact 
is that we could discern a selection of finger movements 
with unique EEG responses out of a repertoire of them, 
as shown in Fig.  5. Therefore, for practical applications, 
we suggest focusing on decoding those movements with 
unique neural signatures and those that  serve the user’s 
needs.

Implications for EEG‑actuated finger neuroprostheses
Choosing appropriate electrode layouts is a critical issue 
when considering an out-of-the-lab application of BCIs. 
Our results show that the ipsilateral electrodes can also 
provide useful information for unimanual finger move-
ment decoding (Fig.  8, Supplementary Fig. s7). As for 
the density of electrodes, we did see that higher density 
could result in better decoding performance, but as long 
as the electrodes cover the brain region of interest, the 
difference is minor, probably due to volume conduc-
tion. Another issue is the choice of the decoding time 
window as it determines the latency of neuroprosthe-
ses control. We tested three time windows as shown in 
Fig. 7e, f. There was a trade-off between performance and 
latency with a higher decoding performance at the cost 
of a longer latency. It is encouraging that we could obtain 
over 70% detection accuracy on average using purely pre-
movement data (time window of [−1.6, −0.1] s), with fin-
ger movement classification also being feasible. Our EEG 
analysis supports these results as we noticed prominent 
MRCPs and ERD/ERS patterns 1-s before the movement 
onset. It has been suggested that the latency between the 
volitional movement onset and afferent feedback should 
be kept within 400–500  ms to promote cortical plastic-
ity effectively [58, 59]. Our results indicate that designing 
low-latency neuroprostheses for use in finger neuroreha-
bilitation is possible.

Limitations and future work
One limitation of this study comes from the scarcity 
of training data per finger movement, which poten-
tially leads to the pairwise classification results being 

underestimated. Since we focused on ten scenarios of 
finger movement and looked into flexion- and exten-
sion-related EEG correlates, our study design inevitably 
resulted in limited trials for each scenario considering 
the subjects’ fatigue during recording. We assume the 
decoding performance has room for improvement as 
we noticed positive accuracy improvement for some 
subjects from  the  multi-session experiment results 
(Supplementary Fig. s6, Table  s3). Theoretically, a 
higher decoding performance is expected when ample 
data is available from a  single session, as combining 
multiple session data poses a transfer learning chal-
lenge [60]. We did not relate our analysis of the EEG 
representations to behavioral- (movement trajectories) 
or categorical model (individual vs. coordinated) rep-
resentations [61]. Studies have shown characteristic 
representational similarities between EEG and grasp-
ing properties during different stages of movement [62, 
63], and thus it would be interesting to investigate how 
neural patterns of various grasping differ from those of 
simple finger movements.

Conclusion
This study explored EEG correlates of unimanual, 
non-repetitive finger movements. We found signifi-
cant decreases in low-frequency EEG amplitude in 
the contralateral frontal-central regions during finger 
flexion and extension, reflecting MRCPs. Strong ERD 
was observed in alpha and beta bands, with the beta 
band showing a notable post-movement rebound. The 
decoding results confirm that, while non-repetitive fin-
ger movements can be precisely detected, differenti-
ating between them is challenging due to overlapping 
EEG correlates. Nevertheless, finger movements with 
distinct EEG responses and relatively superior decod-
ability could be a primary focus for designing dexterous 
finger neuroprostheses, paving the way for improved 
BCI applications and a better quality of life for individ-
uals with neuromuscular disorders.
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